A Comparison between Statecharts and State Tran-
sition Assertions

Nancy Day

Integrated Systems Design Laboratory, Department of Computer Science, University of

British Columbia, Vancouver, BC, V6T 172, Canada.

Abstract

This paper compares statecharts, a specification formalism for reactive systems, to state
transition assertions, a verification method for hard real-time systems. While these two
methods are used for different tasks and they take different points of view in describing a
system, it is useful to compare them to determine what is necessary in a formal specifica-
tion notation for real-time systems. In this paper, we conclude with a list of issues that
need to be resolved when integrating formal verification with a specification notation. The
future goal of this work is to provide a more readable front-end specification formalism
which can be used for verification. The purpose of doing a formal verification of specifi-
cations is to check for correctness early in the system development process and discover
errors which can prove costly in later stages. If a more readable notation like statecharts
is embedded in the theorem-prover, HOL (Higher Order Logic), it would provide the tools
necessary to do mechanized verification.

Keyword Codes: D.2.1;:D.2.4;F.3.1
Keywords: Software Engineering, Requirements/Specifications; Program Verification; Log-
ics, Specifying and Verifying and Reasoning about Programs

1 Introduction

Discovering errors early in the design and implementation of any system, reduces the
cost of development and increases one’s confidence in the reliability of the end result.
Top-down system development begins with a very high-level, abstract description of the
system, taking into account its environment and the results it is expected to produce.
More and more details are added as the process moves closer to a final product. Each
level can be viewed operationally as a way of moving from one moment in execution to
the next or it can be viewed as a specification for what the next, more detailed level must
produce at the end of a step or series of steps. Phases in this development process are
commonly refered to as specification, design, and implementation.

Although formal specification and verification methods show promise for reducing or



eliminating errors[13], the difficulty in learning these techniques makes industry reluctant
to use them except possibly as an afterthought[13]. Perhaps before using the system, it
is “verified” using some method, but this is separate from the steps of the development
process. However, work in industry has already demonstrated the advantages of using
formal specification notations early in the development process[13]. If we take the second
point of view mentioned above, that one level of description is a specification for the
next level, then there is room to use formal verification techniques to ensure that a lower
level description correctly implements a higher level one. It would also be possible to
show overall system properties, such as safety requirements, continue to hold as more
implementation details are added.

The general purpose theorem prover HOL (Higher Order Logic)[5] makes it possible to
machine-check proofs of this form. Previous work in verifying that level by level descrip-
tions correctly interpret a more abstract level has been done for hardware[14][17], and is
currently being completed for the complete “stack” of a system including the hardware,
compiler, and software (SAFEMOS at SRI International). One of the advantages of us-
ing a theorem-prover is that a compositional approach is possible which is well-suited to
viewing parts of the system at different levels of abstraction and reusing completed proofs.

This paper looks at two different approaches to system specification: statecharts (D.
Harel [7]), and state transition assertions(STAs) (M. Gordon [4]). These two formalisms
were chosen because they approach the problem from the two different points of view that
we would like to see integrated. Statecharts have an elegant visual notation for describing
the operation of a system and are supported by the commercial tool STATEMATE [10].
STAs are designed for use in formally verifying systems and expressing limitations on the
system’s implementation.

At the end of this comparison, we are able to conclude that five issues which need to be
considered when looking for a real-time specification formalism to be used for verification
are:

e Does it express operation or assertions?

Can 1t handle complete system description at any level?

Does it have a formal model of time?

Can it integrate data and control descriptions?
o [s it a visual notation?

The first section of this paper defines the type of system these specification techniques
are used for. Then a brief description of each method is given. An example described in
each notation is presented in Section 5 to provide a basis for comparing them. Finally,
we present the list of issues outlined above.

2 Terminology

Before beginning to look at methods for describing real-time reactive systems, we should
define precisely the meanings of “reactive” and “real-time”.



In Harel’s original paper on statecharts[7], he defines reactive systems as being event
driven, meaning they have to respond to both internal and external stimuli. In a later
paper[10], he states that it is necessary to “specify the relationship between inputs and
outputs over time”. Gordon places the emphasis on the timing requirements in saying hard
real-time systems “are required to meet explicit timing constraints, such as responding to
an input within 100 milliseconds of a change” [4].

For our purposes, real-time systems are a type of reactive system where the response
time to an event is an essential part of the description of a system. It is important to
note that the word “system” is meant to describe the complete set-up including software,
computing hardware, and any specialized peripherals.

3 Statecharts

Statecharts build on the ideas of finite state machines (FSMs), extending the notation to
overcome some of its limitations. The system is described as being in one of a number of
possible states, and it changes from state to state as a result of events which occur.

Since statecharts are a type of higraph, they are a visual formalism. Higraphs are a
notation which combines the ideas of graphs and Venn diagrams [9]. The nodes (or blobs)
in the graph represent states the system can be in. The edges indicate transitions between
states. This movement is considered to happen instantaneously. Please note that in the
following description, transition labels such as T1 have no semantic meaning and are only
used to reference certain transitions.

With reference to the statechart of Figure 1, the main features of statecharts are the
following:

o Concurrency: The Cartesian product of states is represented by orthogonal compo-
nents of a state. In the example, states A and D are orthogonal components which
make up state Y. They are separated by a dashed line through state Y. (Also note
that the labelling of the state Y is in a small box outside of its contour.) This
means that for the system to be in state Y, it must be in state A and in state D.
This notation prevents the explosion of states in a FSM resulting from the Cartesian
product of state diagrams.

Synchronization between the various substates the system is in simultaneously can
be accomplished using events, conditions, and actions which are described below.

o Hierarchy: A state can be decomposed into substates (often called OR states) indi-
cating more of the internal workings of a state. A state which is not refined is called
a basic state. In the example, state A is decomposed (or refined) into the basic
states B and C. This means that when the system is in state A, it is in either state
B or state C (exclusive or). (B is called a descendant of A and A is an ancestor
of B.) This hierarchy of states allows a system to be initially specified at a higher
level of abstraction, and later decomposed, as the design process progresses.

o Transitions: Transitions are labelled with the notation e[¢]/a. The occurrence of
event e enables the transition (meaning it can be taken) providing the condition c¢ is



[c1]

Figure 1: An Example of a Statechart

true. (If no condition is given then “true” is assumed.) A transition can be enabled
if it originates in any descendant or ancestor of a state the system is currently in.
If the transition is taken then the actions a are carried out. These actions can be to
start and stop data processes (called activities), to generate events, such as internal
events for synchronization, or to change the values of variables or conditions. For
example, if the system is currently in the basic states (B,F) and the event p occurs,
then transition T1 is enabled. All parts of the transition label are optional. If
neither an event nor a condition is given then the transition is always enabled.

Broadcast communication: This type of communication is implicit in the operation
of statecharts. This means that every external and internal event which occurs can
be seen in all parts of the system.

Default states: The small arrow originating from a filled-in circle pointing at state
B in Figure 1 gives a default state for state A. It means that whenever a transition
terminates at the outside boundary of a non-basic state the default arrow will be
followed to enter a basic state. The transition labelled T2 originating at state P is
an example of this. Following this transition will cause the system to follow default
entries for state Y, which in turn means default entries for both states A and D,
leaving the system in state B and F.

History states: A history connector, marked with an H can also be the destination
of a transition. It dynamically represents the substate which this state was in at



the time it was last exited. For example, if the transition labelled T4 from state
G triggered by event m was taken to leave state D and the system then followed
T5 to arrive in state Q, and T3 terminating at the history connector, to return to
D, it would re-enter state G. If there is no history (ie the system has never been in
this state before or the history has been cleared) then a transition from the history
connector is followed if it exists or else the default transition is taken.

o Terminal connectors: Entering a terminal connector, labelled by T in a circle, stops
all processing in the system.

o Transition connectors: These connectors are a way of decomposing transitions into
smaller parts. For example the three transitions joined by the C connector in the
diagram really represent two transitions from state I, one going to G and labelled
e[c2], and the other going to state C, labelled e[c1].

3.1 The Semantics of Statecharts

While statecharts have the advantage of using pictures to portray a great deal of infor-
mation about the system being specified, there are instances in which it is not clear from
the diagram what is intended by the specification. These problems have been noted and
discussed by Harel and others[6][12]. Harel’s description of the semantics [6] differs from
those used in STATEMATE somewhat. In particular, some operators which he describes
for checking the state of the system in between “steps” (see the third section below) are
not implemented. In this section, we characterize some of these subtleties and describe
the semantics which STATEMATE uses in simulating the specification.

A great deal of work has been completed recently on incorporating timing models into
statecharts[11] [15]. Since STATEMATE was developed before this work, it is based on the
original form of statecharts. Because our future goal is to provide a connection between a
commercial CASE tool and formal verification through the theorem-prover HOL, we have
decided, at this time, to consider only the semantics of statecharts in STATEMATE.

3.1.1 Non-determinism

A non-deterministic situation exists when an event enables two or more possible transi-
tions leaving the same state. Even if the transitions have the same target, there could be
different actions associated with each one. The simulator of STATEMATE prompts the
user to choose which transition to follow in a case like this.

3.1.2 Structural Non-determinism

Statecharts are very good at graphically describing a hierarchy of states. This allows
for refinement of specifications, or the opposite, abstraction. This is accomplished using
OR states. However, transitions can leave any state boundary and it is possible the same
event will trigger a transition from both a state and one of its ancestor states. An example
is given in Figure 2 where the event e triggers the transition T1, leaving state B as well
as one from its parent, state A, labelled T2.



Figure 2: Structural Ambiguity

In STATEMATE, priority is given to transitions leaving states higher up in the hierar-
chy. In the preceding example, the transition T2 would be taken.

3.1.3 Timing

There is no inherent model of timing associated with statecharts other than the movement
between states by following transitions. STATEMATE offers both an asychronous and
a synchronous model of time. The first stage in the algorithm for both models is to
determine all the enabled compound transitions. A compound transition(CT) is the
connection of all the transitions necessary to go from one basic state to another (through
default and history connectors, etc). The trigger for a CT is the conjunction of the triggers
for its component transitions. A maximal, non-conflicting set of enabled transitions for
the system is then determined by randomly picking one when two or more transitions
leave the same state.

In the synchronous model, time is incremented just before the set of CTs to be exe-
cuted is determined and then the system performs these transitions in a random order.
Performing a transition consists of doing the actions for exiting one state, entering the
new state and then the actions for the transition itself. The execution of the complete set
of CTs is called a “step” and the results of actions and any internal events generated are
not available until the next step.

In the asynchronous model, the system repeatedly determines and executes all enabled
CTs without incrementing time or considering any new external events generated until
there are no more transitions enabled. This is called a “super step”. This is the model
Harel describes in his paper[6] but there is some question as to whether external events
persist for the length of the entire super step or whether only internal events are relevant in
later steps of a super step. The examples in Harel’s paper indicate that the external events
persist for the whole time. The author has yet to experiment with this in STATEMATE.

Another model of time which could have been used is to determine the set of enabled
transitions after each execution of a compound transition. This way, internally generated
events could have an effect on the next step (where step means executing only one CT).
However, this would create more opportunities for race conditions.

These three possible models raise questions about how much time a transition should
take. (Are they really instantaneous?) Also, when should the system react to external
events?



T1: e/x:=1 2:e/x:=2

Figure 3: Race conditions

predicate on sequence
of inputs

P .
predicate A B predicate
on state on state

predicate on sequence
of states

Figure 4: State Transition Assertion

3.1.4 Race Conditions

Race conditions occur when two transitions are enabled at the same time but if executed
in different orders sequentially will have different results. An example is given in Figure
3 when the transitions T1 and T2 are both enabled and the last one to finish execution
will determine the value of x. STATEMATE chooses randomly which transition to follow
first although this effect is repeatable.

4 State Transition Assertions

State transition assertions are logical statements of constraints on the sequence of state
transitions of a machine. They use the semi-graphical notation described in Figure 4
(from Figure 4 in [4]).

The notation means that if the system is ever in a state satisfying the predicate A and
the next sequence of inputs satisfies P, then the system will arrive in a state satisfying B,
having gone through a series of states satisfying Q. The STA must hold true everywhere
in the system.

STAs are formulated about the problem at the specification level. An STA can also
describe the semantics of a single machine instruction of a simple microprocessor where
the transition only takes one step to execute (=1).

For example, for a typical jump instruction, JMP n would be described by:



[T]

< pe, stk,mem > < n,stk,mem >
=1

where pc, stk, and mem mean program counter, stack, and memory respectively. The
predicate on the sequence of inputs is [T] (true) since this operation will hold true for any
input.

Every transition (even ones composed of several steps) must take at least one time unit.
Using rules in the axiomatic style, Gordon is able to compose lower level STAs to see if
the higher level ones hold. The following is an example of one of these rules describing a

form of transitivity:

P1 P2
B B
<61 A ] < 63 A [qa]

PLAP,

<G+ M@ via)

The timing restrictions on all these phases are given by the notation < ¢ or = ¢ in the
STA to indicate the number of time steps or transitions taken between states.

One of the most important features of Gordon’s work is his use of axiomatic semantics
to compose STAs to produce higher level statements about the system. It also bridges the
gap between the specification and the implementation in the machine code. This makes
the timing more exact.

Verification of the system implementation is accomplished by translating the
low level machine code into primitive STAs and showing that these STAs
correspond to the STAs of the specification [1].

This method could be used as a bottom-up approach to verification. Difficulties arise in
attempting to use it as a top-down approach because of the strong constraints placed on
inputs by the predicate P, which must hold in all transitions decomposed from a higher

level STA.

5 An Example

To provide a basis for comparing statecharts and STAs, it is useful to look at a simple
example. The device OP given by Figure 5 and its corresponding description are from
Gordon’s paper [4].



inl 1n2

req
oP

|

out =1inl x in2

avail

Figure 5: The binary device OP

req=0 req = 1
req=1
inl =n
ANY req =0 in2 =m out=v req=0 [out=mxn
STATE <tl <=1 avail = 0 <=3 avail =1
[avail=1) [avail =0)
[out=V)

Figure 6: A STA specification of OP

OP is a device which calculates the operation x, given two operands inl and in2, and
produces output out. (The x can be any binary operation.) Two signals req and avail
control its execution. Req is provided by the user (or “client”) and avail is driven by
OP.

Whenever avail is 1, the client can initiate a request to perform the operation by setting
req to 1. The client must keep its inputs stable and req at 1 until avail is set to 0. If the
client continues to keep req at 1 then the output remains stable. After the client drops
req to 0, the new output is available when avail goes to 1. The output then stays stable
while req is 0.

Figure 6 gives five STAs which must hold in the implementation of the device. The
left-most one says that from any state, if the req signal remains low, then the system
must move into a state where avail is high in less than t1 time units. The two main
other timing restrictions are that the system receives the inputs and therefore moves into
a state where avail is low in less than t2 units after req goes high and that once req goes
low again, the system will produce valid output and raise avail in less than t3 time units.
(The notation [p) means p will hold true for all states in the transition except the last
one. The first state is included in the sequence of states which must satisfy the predicate

below the line in an STA.)

In attempting to express the behaviour of this device in a statechart it is more intuitive



availT TCCIT

RUNNING

reql
RECEIVE
INPUT

Figure 7: A statechart specification of OP

to think of the events which cause transitions to happen. Therefore we look at events like
reql when the req signal goes high. Figure 7 is a statechart specification for OP. (There
are many statecharts which could be used to describe the execution of this device.)

This second specification contains less information about the state of the system at each
point since no predicates are attached to the states and we can only give them meaningful
names. To associate these states with the operation of the device, some invariants on the
control signals which would hold in these states are:

avail req
IDLE 1 0
RECEIVE INPUT 1 1
IDLE2 0 1
CALC 0 0

Time is passing and possibly work is being done (except for in the IDLE states) within
the state and the transitions take no time.

We also need to distinguish between internal and external events. The req signal is
controlled by the client but the changes to avail must be internally generated. This infor-
mation would appear in a more detailed statechart where the states RECEIVE INPUT
and CALC were decomposed further. For example, the last action in RECEIVE INPUT
would be to generate the internal event avail|. The constraints on how long the system
can take to perform these tasks are also not expressed.

The set of STAs gives no indication of what the system should do if the client lowers
req before the system has raised avail when reading in the inputs. Procedurally, it makes
sense, to return to the IDLE state since the output has not yet been changed and in doing
this, we satisfy the initial STA which must hold from any state.



The statechart highlights one constraint given by the STAs which is not immediately
apparent from their visual representation. In the model of operation which the statechart
presents, we can see that in attempting to check the first STA, which applies to “any
state”, it is only relevant in the three states of RUNNING because in IDLE the output is
already valid and avail is high. From RECEIVE INPUT, when req goes low, we return
to IDLE because the inputs have not yet been read in. This transition must take less than
t1 time units to satisfy the first STA. From IDLE2, when req goes low, the system will
attempt to calculate the output going through CALC. This calculation phase is bounded
in the last STA by time t3, but it must also be limited by t1 since both assertions apply
to the same path through the statechart in the execution of OP. Therefore t3 must be less
than or equal to t1. (The first STA has wider applicability than the last one therefore t1
could be larger.)

6 Differences Between STAs and Statecharts

Many of the differences between statecharts and STAs are already apparent from the
example. This section will briefly summarize these:

Events vs Conditions In statecharts, transitions can be triggered by both events and
conditions. STAs rely entirely on conditions. Conditions are appropriate if, for
example, as in hardware, an input is always available on an input line, but in other
cases it may be more natural to speak of events, like a button being pushed. It is
also possible to show inputs persisting over time by using events when they change
their values. In the state RECEIVE INPUT of the example, the req signal must
stay high otherwise the transition triggered by req| would be taken.

Visual Notation The actual arrangement of states in a statechart has meaning, whereas
the ideas of concurrency and modularity are not expressed visually with STAs. The
example presented above shows how it is possible to group the states RECEIVE
INPUT, IDLE2, and CALC in the state RUNNING.

State Conditions STAs allow the specifier to give a meaning to a state in terms of
predicates which must hold, rather than just a mnemonic name.

Synchronization Between Components In statecharts, it is possible to synchronize
concurrent components using events, conditions and actions. While concurrency
is not really represented in STAs, the only tools available for synchronization are
predicates on the variables.

Passage of Time In statecharts, time passes, and possibly work is done, while the sys-
tem is in a state, since the transitions are instantaneous. In STAs, the state describes
a moment in time, and time passes and work happens on transitions. Although one
STA could be true at several moments in time. These are dual notations in this
sense and each developer will have a different preference on the notation used for
the passage of time.



Incrementing Time As stated earlier, statecharts have no particular model of time
associated with them, whereas, STAs have a very clear synchronous model. STAs
also can have predicates on the amount of time a transition can take. In statecharts,
it is possible to check how long the system has been in a particular state using
conditions. It is also possible to schedule events to happen in the future.

7 Issues for Connecting Real-time Specification and
Verification Techniques

The purpose of this study was to look at how a real-time specification technique differs
from a method designed for verification with the aim of connecting a readable specification
formalism with verification. The results which can be presented at this time are a list
of issues, drawn from looking at both techniques, which need to be resolved in a formal
specification method which includes verification as an integral part.

It should be first noted though that different types of systems will have different re-
quirements of the specification technique. In describing a general notation and method, it
may become less useful for certain problems. However, the usefulness of having a common
standard which allows for comparison and integration between components of a project
or projects themselves may outweigh this disadvantage.

Following is a list of these issues and a brief discussion of each. This list is not intended
to be exhaustive and the usual requirements for a specification technique like readabil-
ity, expressibility and support tools are not examined here. (See [2][16] for a report on
these.) This list is based on items particularly concerning an approach which integrates
verification into the design process for real-time systems.

Does it express operation or assertions? The fundamental difference between the
two notations is the point of view from which they approach the system. STAs
are limitations on the implementation’s operation whereas statecharts are high level
programs for the operation of the system. Timing conditions are a good example
of this. A STA on the number of steps in a transition is a constraint on how
much time the system can take to complete the task described by the transition. A
statechart condition checking how long the system has been in a state which triggers
a transition means the system should follow that path when the condition becomes
true, regardless of whether it has finished the task assigned in that state.

Can it handle complete system description at any level? Rather than speak of ei-
ther “hardware” or “software” specification, real-time systems are usually a com-
bination of the two working together. From this point of view, the method should
be equally applicable to both, and, as the specification becomes more detailed, the
developer can decide which parts will be implemented in either hardware or soft-
ware. Ideally, the process should begin with a very high-level description which can
be decomposed and have more details added to it using the same notation, right
down to the gate level for hardware, and the microcode level for software. It should
also be possible, to move in the other direction and compose parts for reusability or



to look at higher levels of abstraction. This is also the direction verification would
take after a level has been given more details.

Does it have a formal model of time? A major difference in these two methods is

the way time passes. Statecharts are good at specifying required reactions to events,
whereas STAs give a more precise idea of how many time units will pass. In real-
time systems, both these elements are essential. It should be possible to state that
the time it takes for a system to react to an event will satisfy a predicate on time.
We might also want to say that the time it takes a particular process to complete
its execution is limited by a certain time. Notice, that these statements do not say
“within” a limited time since there may be cases requiring a minimum amount of
time before the system should react. The ideas of timed transition systems [11] and
timed statecharts [15] will be explored to see if these modifications of statecharts
provide a sufficiently clear model of time which can be used to describe the operation
of the system at all levels.

Can it integrate data and control descriptions? This is an area where neither of

the methods score particularly highly. Statecharts can really only describe control of
the system with a limited ability for assignment to variables. The tool STATEMATE
completely separates control and data descriptions, although data process can be
associated with being in a particular state. STAs integrate the two aspects of the
system by having predicates on the state which are really predicates on the variables
at the current time in the system. Any kind of large data description would become
unmanageable in this notation. The argument against STATEMATE’s division of
interests is that the line between what is control information and what is data is
not clear in most systems and each developer would make a different division.

Is it a visual notation? To make specification and accompanying verification more

8

8.1

amenable to industry, a specification technique should use a meaningful, compact,
visual notation in which modularity and concurrency can be represented, and which
it is possible to animate.

Future Work

A Specification Formalism

Looking beyond statecharts and STATEMATE in particular, examining these two nota-
tions has provided many ideas for what needs to be in a formal specification notation
used for verification. A formalism satisfying these conditions will probably combine ideas
from both statecharts and STAs. In particular, this notation should be able to express:

e Hierarchy of states

e Concurrency of operation

These first two points should be represented visually.



e Operation so the specifications would be executable (this includes having default
states and history states or some form of memory, although these are really just a
notational convenience). A benefit of taking the operational approach is that more
automatic techniques such as symbolic simulation or model checking can be applied
to the specification to test conditions, particularly timing conditions.

e Events and conditions to trigger transitions

e Communication - ideally both broadcast and some form of local communication or
the ability to hide internal events in a module. Local communication would make
it possible to combine specifications, worrying only about the interface between the
two, rather than also having to consider if the same names are used for local events
or variables.

e Timing conditions and constraints
e Data and control specifications
e Axiomatic proof rules for composition

It should be possible to develop a notation which includes all these ideas. Given the
two possible ways of indicating where time passes, the notation should be able to be used
in either form (ie where time passes within a state or where time passes on a transition).
The two notations would be complete duals and have the same semantic meaning.

8.2 Embedding the Formalism within HOL

The semantics of this formalism can be developed using HOL as a research tool to check
their preciseness, and to check certain properties to ensure that the semantics give the
correct meaning. Later it can be used to verify mechanically that lower level descriptions
imply the same behaviour as a more abstract view of the system.

The ability to quantify over functions in higher order logic makes it possible to use
functions in the predicates constraining the system, like those used in STAs. The type of
hierarchy of states used in statecharts can also be represented using higher order functions.
This could be particularly useful in data process specifications. It would also be possible
to take advantage of inductive proofs in cases where there are multiple instances of a type
of object in the system. Another benefit to using a theorem prover is to link this type of
“control” specification with more detailed data specifications. Finally, given that we have
chosen to use an operational system description, it will be within the theorem-prover that
we can look at constraints which must apply at more than one state within the system,
such as the predicate on “any state” given in the STA of the example.

9 Summary

The main goal of this work is to integrate a more readable specification language with
formal verification. Accomplishing this will make it possible for verification to start earlier
in the system development process. We present in this paper a study of two existing



notations from the two areas which we are trying to connect, to determine what some
of the issues are in working towards this main goal. We showed that statecharts offer
the advantages of readability which we desire and the availability of a commercial tool
to support the notation, however, their model of operation and timing is different from
STAs which have the primary purpose of verification.

We can conclude by saying that several issues which need to be examined when working
towards a specification formalism for verification are:

e Does it express operation or assertions?
e Can it handle complete system description at any level?

Does it have a formal model of time?

e (Can it integrate data and control descriptions?
o [s it a visual notation?

Combining a readable front-end specification formalism with a theorem- prover and pos-
sibly other verification tools will make formal methods more appealing to industry.

10 Acknowledgements

This work was completed while I was funded by a National Science and Engineering
Research Council Post Graduate Scholarship and was written up while working at SRI
International, Cambridge. I am indebted to the Integrated Systems Design Laboratory
at UBC, the Hardware Verification Group at Cambridge, and my colleagues at SRI for
interesting discussions where many of these ideas originated.

References

[1] Victor A. Carreno. Specification of real time reactive systems using state transition
assertions. a research proposal. Computer Laboratory, Cambridge, UK.

[2] Paul C. Clements, Carolyn E. Gasarch, and Ralph D. Jeffords. Evaluation criteria
for real-time specification languages. Technical Report NRL Memorandum Report

6935, Naval Research Laboratory, February 1992.

[3] Derek Coleman, Fiona Hayes, and Stephan Bear. Introducing objectcharts or how
to use statecharts in object-oriented design. [EEE Transactions on Software Engi-
neering, 18(1):9-18, January 1992.

[4] Mike Gordon. A formal method for hard real-time programming. Computer Labo-
ratory, Cambridge, UK.

[5] Mike Gordon. A proof generating system for higher-order logic. Technical Report
No. 103, University of Cambridge Computer Lab, January 1987.



[6]

7]

3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics of stat-
echarts. In Proceedings of the 2nd IEEE Symposium on Logic in Computer Science,
pages b4—64, Ithaca, New York, June 1987.

David Harel. Statecharts: A visual formalism for complex systems. Science of Com-

puting, 8:231-274, 1987.

David Harel. On visual formalisms. Communications of the ACM, 31(5):514-530,
May 1988.

David Harel. Biting the silver bullet. [EEE Computer, 25(1):8-20, January 1992.

David Harel and et al H. Lachover. Statemate: A working environment for the devel-
opment of complex reactive systems. [FEFE Transactions on Software FEngineering,

16(4):403-414, April 1990.

Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems.
Technical Report TR 92-1263, Department of Computer Science, Cornell University,
Jaunary 1992.

i-Logix Inc., Burlington, MA. The Semantics of Statecharts, January 1991.

Victoria Stavridou Jonathon Bowen. Safety-critical systems, formal methods and
standards. Technical Report No. PRG-TR-5-92, Oxford University Computing Lab-
oratory, 1992.

Jeffrey Joyce. Multi-Level Verification of Microprocessor Based Systems. PhD thesis,
University of Cambridge Computer Laboratory, 1989.

Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their textual represen-
tation. Weizmann Institute of Science.

Place, Good, and Tudball. Survey of formal specification techniques for reactive
systems. Technical Report CMU/SEI 90-TR-5, Carnegie Mellon University /Software
Engineering Institute, May 1990.

P.J. Windley. The Formal Verification of Generic Interpreters. PhD thesis, Univer-
sity of California, Davis, 1990.



