Progressive Memory Banks for Incremental Domain Adaptation

Nabiha Asghar

Collaborators:
Lili Mou, Kira Selby, Kevin Pantasdo, Pascal Poupart, Xin Jiang
Motivation

- **Domain Adaptation (DA):** Transfer knowledge from one domain to another (in a machine learning system; especially neural networks)

- **Incremental Domain Adaptation (IDA):** Sequentially incoming domains
 - Only have access to data of current domain
 - Build a unified model that performs well on all domains

- **Use-cases of IDA**
 1. Company loses a client and its data, but wants to preserve the ‘knowledge’ in the ML system
 2. Quickly adapt to new domain/data without training from scratch
 3. Don’t know the domain of a data point during inference
Outline

- Prevalent and State-of-the-art DA & IDA methods in NLP
- Proposed Approach: Progressive Memory for IDA
- Theoretical Analysis
- Empirical Experiments
 - Natural Language Inference (Classification)
 - Dialogue Response Generation
- Conclusion
Related Work - DA & IDA

- **Multi-task learning**: Jointly train on all domains
 - Non-incremental DA
 - Expensive to add new domain; needs data for all domains
Related Work - DA & IDA

- **Multi-task learning**: Jointly train on all domains
 - Non-incremental DA
 - Expensive to add new domain; needs data for all domains

- **Finetuning**: Sequentially train on all domains
 - Catastrophic forgetting of old domains
Related Work - DA & IDA

- **Multi-task learning**: Jointly train on all domains
 - Non-incremental DA
 - Expensive to add new domain; needs data for all domains

- **Finetuning**: Sequentially train on all domains
 - Catastrophic forgetting of old domains

- **Progressive Neural Networks**: Training with network expansion and partial freezing
 - For prediction, need to know domain of input
Related Work - DA & IDA

- **Multi-task learning**: Jointly train on all domains
 - Non-incremental DA
 - Expensive to add new domain; needs data for all domains

- **Finetuning**: Sequentially train on all domains
 - Catastrophic forgetting of old domains

- **Progressive Neural Networks**: Training with network expansion and partial freezing
 - For prediction, need to know domain of input

- **Elastic Weight Consolidation (EWC)**: Finetuning with regularization
 - Control learning on weights important for older domains
 - keeps the weights in a neighborhood of one possible minimizer of the empirical risk of the first task
 - needs to store a large number of parameters
Related Work - Memory Networks

- **End-to-end memory network**
 - Assign a memory slot to an input sentence/sample
 - Assign a memory slot to one history

- **Neural Turing Machine**
 - Memory is not directly parameterized; read/written by neural controller
 - Serves as temporary scratch paper; does not store knowledge
Proposed Approach - Progressive Memory

- Incrementally increase model capacity (by increasing memory size)
- Memory slots store knowledge in distributed fashion
- We adopt key-value memory
Progressive Memory

At time step i:

The RNN state is given by $h_i = \text{RNN}(h_{i-1}, x_i)$

The memory mechanism computes an attention probability α_i by

$$\tilde{\alpha}_{i,j} = \exp \{ h_{i-1}^\top m_j^{(\text{key})} \}$$

$$\alpha_{i,j} = \frac{\tilde{\alpha}_{i,j}}{\sum_{j'=1}^N \tilde{\alpha}_{i,j'}}$$

$m_j^{(\text{key})}$: key vector of j'th memory slot (N in total)

Retrieve memory content by weighted sum (by attention probability) of all memory values:

$$c_i = \sum_{j=1}^N \alpha_{i,j} m_j^{(\text{val})}$$

$m_j^{(\text{val})}$: value vector of j'th memory slot

$$h_i = \text{RNN}(h_{i-1}, [x_i, c_i])$$
Progressive Memory

At time step i:

The RNN state is given by $h_i = \text{RNN}(h_{i-1}, x_i)$

The memory mechanism computes an attention probability α_i by

$$\tilde{\alpha}_{i,j} = \exp\{h_{i-1}^\top m_j^{(\text{key})}\}$$

$$\alpha_{i,j} = \frac{\tilde{\alpha}_{i,j}}{\sum_{j'=1}^{N} \tilde{\alpha}_{i,j'}}$$

$m_j^{(\text{key})}$: key vector of j'th memory slot (N in total)

Retrieve memory content by weighted sum (by attention probability) of all memory values:

$$c_i = \sum_{j=1}^{N} \alpha_{i,j} m_j^{(\text{val})}$$

$m_j^{(\text{val})}$: value vector of j'th memory slot

For IDA:

Add M slots to original N slots

$$\alpha_{i,j}^{(\text{expand})} = \frac{\tilde{\alpha}_{i,j}}{\sum_{j'=1}^{N+M} \tilde{\alpha}_{i,j'}}$$

$$c_i^{(\text{expand})} = \sum_{j=1}^{N+M} \alpha_{i,j}^{(\text{expand})} m_j^{(\text{val})}$$
Algorithm

Algorithm 1: Progressive Memory for IDA

- **Input:** A sequence of domains D_0, D_1, \ldots, D_n
- **Output:** A model performing well on all domains
 - Initialize a memory-augmented RNN
 - Train the model on D_0
 - For D_1, \ldots, D_n do
 - Expand the memory with new slots
 - Load RNN weights and existing memory banks
 - Train the model by updating all parameters
 end
- **Return:** The resulting model
Training Considerations

- Freezing learned params *versus* Finetuning learned params
 - Empirical results are better for latter

- Finetuning w/o increasing memory *versus* Finetuning w/ increasing memory
 - increased model capacity helps to learn new domain with less overriding of the previously learned model. Empirical results confirm this.

- Expanding hidden states *versus* Expanding Memory
 - An alternate way of increasing model capacity
 - similar to the progressive neural network, except that all weights are fine-tuned and there are connections from new states to existing states.
 - Theoretical and empirical results show latter is better
Expanding hidden states vs Expanding Memory

Theorem 1. Let RNN have vanilla transition with the linear activation function, and let the RNN state at the last step h_{i-1} be fixed. For a particular data point, if the memory attention satisfies

$$\sum_{j=N+1}^{N+M} \tilde{\alpha}_{i,j} \leq \sum_{j=1}^{N} \tilde{\alpha}_{i,j},$$

then memory expansion yields a lower expected mean squared difference in h_i than RNN state expansion, under reasonable assumptions. That is,

$$\mathbb{E} \left[\| h_i^{(m)} - h_i \|^2 \right] \leq \mathbb{E} \left[\| h_i^{(s)} - h_i \|^2 \right]$$

where $h_i^{(m)}$ refers to the hidden states if the memory is expanded. $h_i^{(s)}$ refers to the original dimensions of the RNN states, if we expand the size of RNN states themselves.
To prove: \(\mathbb{E} \left[\| h_i^{(m)} - h_i \|^2 \right] \leq \mathbb{E} \left[\| h_i^{(s)} - h_i \|^2 \right] \)

Suppose the original hidden state \(h_i \) is \(D \)-dimensional. We assume each memory slot is \(d \)-dimensional, and that the additional RNN units when expanding the hidden state are also \(d \)-dimensional. We further assume every variable in the expanded memory and expanded weights are iid with zero mean and variance \(\sigma^2 \). Finally, every variable in the learned memory slots, i.e., \(m_{jk} \), follows the same distribution (zero mean, variance \(\sigma^2 \)). This assumption may not be true after the network is trained, but is useful for proving theorems.

\[
\mathbb{E} \left[\| h_i^{(s)} - h_i \|^2 \right] \\
= \mathbb{E} \left[\| \tilde{W} \cdot \tilde{h}_{i-1} \|^2 \right] \\
= \sum_{j=1}^{D} \sum_{i=1}^{d} \mathbb{E} \left[(\tilde{w}_{jk})^2 \right] \mathbb{E} \left[(\tilde{h}_{i-1}[k])^2 \right] \\
= D \cdot d \cdot \text{Var}(w) \cdot \text{Var}(h_i) \\
= D d \sigma^2 \sigma^2
\]

\[
\mathbb{E} \left[\| h_i^{(m)} - h_i \|^2 \right] \\
= \mathbb{E} \left[\| W(c) \Delta c \|^2 \right] \\
= D d \sigma^2 \text{Var}(\Delta c) \\
= D d \sigma^2 \sigma^2
\]

\(W(c) \) is the weight matrix connecting attention content to RNN states.
It remains to show that $\text{Var}(\Delta c_k) \leq \sigma^2$

\[
\Delta c = c' - c
= \sum_{j=1}^{N} (\alpha'_j - \alpha_j) m_j + \sum_{j=N+1}^{N+M} \alpha'_j m_j = \sum_{j=1}^{N+M} \beta_j m_j
\]

\[
\beta_j \overset{\text{def}}{=} \begin{cases}
-\frac{\tilde{\alpha}_j \tilde{\alpha}_{N+1} + \cdots + \tilde{\alpha}_{N+M}}{\tilde{\alpha}_1 + \cdots + \tilde{\alpha}_{N+M}}, & \text{if } 1 \leq j \leq N \\
\frac{\tilde{\alpha}_j}{\tilde{\alpha}_1 + \cdots + \tilde{\alpha}_{N+M}}, & \text{if } N+1 \leq j \leq N + M
\end{cases}
\]

\[
\text{Var}(\Delta c_k) = \mathbb{E}[(c'_k - c_k)^2] \quad \forall 1 \leq k \leq d
\]

\[
= \frac{1}{d} \mathbb{E} \left[\|c' - c\|^2 \right]
= \frac{1}{d} \mathbb{E} \left[\sum_{k=1}^{d} \left(\sum_{j=1}^{N+M} \beta_j m_{jk} \right)^2 \right]
\leq \sigma^2 \mathbb{E} \left[\sum_{j=1}^{N+M} (\alpha'_j)^2 \right]
\leq \sigma^2
\]

Figure 3: Attention probabilities before and after memory expansion.
Competing Methods

- Multi-task learning (Non-IDA)
- Finetuning with fixed memory
- **Finetuning with increasing memory**
- Finetuning with expanding hidden states
- Progressive Neural Network
- Elastic Weight Consolidation (EWC)
Competing Methods

- Multi-task learning (Non-IDC)
- Finetuning with fixed memory*
- Finetuning with increasing memory*
- Finetuning with expanding hidden states*
- Progressive Neural Network
- Elastic Weight Consolidation (EWC)

* with and without additional vocabulary
Experiment I - Natural Language Inference

- Classification Task
 - Determine the relationship between two sentences (entailment, contradiction or neutral)

- Dataset: MultiNLI Corpus (~400K labelled samples)
 - 5 domains: Fiction, Government, Slate, Telephone, Travel

- Base Model: BiLSTM network with pretrained GloVe embeddings
Experiment I - Results

<table>
<thead>
<tr>
<th>#Line</th>
<th>Model</th>
<th>Trained on/by</th>
<th>% Accuracy on</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RNN</td>
<td>S</td>
<td>65.01†</td>
</tr>
<tr>
<td>2</td>
<td>RNN</td>
<td>T</td>
<td>56.46†</td>
</tr>
<tr>
<td>3</td>
<td>RNN + Mem</td>
<td>S</td>
<td>65.41†</td>
</tr>
<tr>
<td>4</td>
<td>RNN + Mem</td>
<td>T</td>
<td>56.77†</td>
</tr>
<tr>
<td>5</td>
<td>RNN + Mem</td>
<td>S+T</td>
<td>66.02†</td>
</tr>
<tr>
<td>6</td>
<td>RNN + Mem</td>
<td>S→T (F)</td>
<td>65.62†</td>
</tr>
<tr>
<td>7</td>
<td>RNN + Mem</td>
<td>S→T (F+M)</td>
<td>66.23</td>
</tr>
<tr>
<td>8</td>
<td>RNN + Mem</td>
<td>S→T (F+M+V)</td>
<td>67.55</td>
</tr>
<tr>
<td>9</td>
<td>RNN + Mem</td>
<td>S→T (F+H)</td>
<td>64.09†</td>
</tr>
<tr>
<td>10</td>
<td>RNN + Mem</td>
<td>S→T (F+H+V)</td>
<td>63.68†</td>
</tr>
<tr>
<td>11</td>
<td>RNN + Mem</td>
<td>S→T (EWC)</td>
<td>66.02†</td>
</tr>
<tr>
<td>12</td>
<td>RNN + Mem</td>
<td>S→T (Progressive)</td>
<td>64.47†</td>
</tr>
</tbody>
</table>

For the statistical test (compared with Line 8), †, ‡: \(p < 0.05 \) and ‡, ‥: \(p < 0.01 \).
Experiment I - Results

<table>
<thead>
<tr>
<th>Group</th>
<th>Setting</th>
<th>Fic</th>
<th>Gov</th>
<th>Slate</th>
<th>Tel</th>
<th>Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-IDA</td>
<td>In-domain training</td>
<td>65.41</td>
<td>67.01</td>
<td>59.30</td>
<td>67.20</td>
<td>64.70</td>
</tr>
<tr>
<td>IDA</td>
<td>Fic + Gov + Slate + Tel + Travel (multi-task)</td>
<td>70.60</td>
<td>73.30</td>
<td>63.80</td>
<td>69.15</td>
<td>67.07</td>
</tr>
<tr>
<td></td>
<td>Fic \rightarrow Gov \rightarrow Slate \rightarrow Tel \rightarrow Travel (F+V)</td>
<td>67.24</td>
<td>70.82</td>
<td>62.41</td>
<td>67.62</td>
<td>68.39</td>
</tr>
<tr>
<td></td>
<td>Fic \rightarrow Gov \rightarrow Slate \rightarrow Tel \rightarrow Travel (F+Y+M)</td>
<td>69.36</td>
<td>72.47</td>
<td>63.96</td>
<td>69.74</td>
<td>68.39</td>
</tr>
<tr>
<td></td>
<td>Fic \rightarrow Gov \rightarrow Slate \rightarrow Tel \rightarrow Travel (EWC)</td>
<td>67.12</td>
<td>68.71</td>
<td>59.90</td>
<td>66.09</td>
<td>65.70</td>
</tr>
<tr>
<td></td>
<td>Fic \rightarrow Gov \rightarrow Slate \rightarrow Tel \rightarrow Travel (Progressive)</td>
<td>65.22</td>
<td>67.87</td>
<td>61.13</td>
<td>66.96</td>
<td>67.90</td>
</tr>
</tbody>
</table>
Experiment II - Dialogue Response Generation

- **Generation Task**
 - Given an input sentence, generate an appropriate output sentence

- **Datasets**
 - Source Domain: Cornell Movie Corpus (~220K labelled samples)
 - Target Domain: Ubuntu Dialogue Corpus (~15K labelled samples)

- **Base Model:** Seq2Seq with decoder-to-encoder-attention
Experiment II - Results

<table>
<thead>
<tr>
<th># Line</th>
<th>Model</th>
<th>Trained on/by</th>
<th>(\text{BLEU-2 on})</th>
<th>(\text{W2V-Sim on})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(S)</td>
<td>(T)</td>
</tr>
<tr>
<td>1</td>
<td>RNN</td>
<td>S</td>
<td>2.842(\uparrow)</td>
<td>0.738(\downarrow)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>T</td>
<td>0.795(\uparrow)</td>
<td>1.265(\uparrow)</td>
</tr>
<tr>
<td>3</td>
<td>RNN+Mem</td>
<td>S</td>
<td>3.074(\uparrow)</td>
<td>0.712(\downarrow)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>T</td>
<td>0.920(\uparrow)</td>
<td>1.287(\uparrow)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S+T</td>
<td>2.650(\uparrow)</td>
<td>0.889(\downarrow)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(S \rightarrow T) (F)</td>
<td>1.210(\uparrow)</td>
<td>1.101(\downarrow)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>(S \rightarrow T) (F+M)</td>
<td>1.435(\uparrow)</td>
<td>1.207(\uparrow)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>(S \rightarrow T) (F+M+V)</td>
<td>1.637</td>
<td>\textbf{1.652}</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>(S \rightarrow T) (F+H)</td>
<td>1.036(\uparrow)</td>
<td>1.606(\downarrow)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>(S \rightarrow T) (F+H+V)</td>
<td>1.257(\uparrow)</td>
<td>1.419(\downarrow)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>(S \rightarrow T) (EWC)</td>
<td>1.397(\uparrow)</td>
<td>1.382(\downarrow)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>(S \rightarrow T) (Progressive)</td>
<td>1.299(\uparrow)</td>
<td>1.408(\downarrow)</td>
</tr>
</tbody>
</table>
Conclusion

- Proposed progressive memory for IDA (Incremental Domain Adaptation)
- Outperforms other IDA approaches
- Empirical results show it avoids catastrophic forgetting
- Theoretical results show it is better than other ways of capacity expansion