Learning Dialogue Generation using Human Feedback

Nabiha Asghar
MAT-Lab Group Meeting, January 11th, 2017
Motivation

- Conversational Agents are all the rage these days
- 2016: Year of the Bots, Year of Conversational Commerce
- Generative Dialogue Models based on Deep Neural Networks
 - Recurrent Networks / LSTM Networks: language modeling (2010, 2012)
 - Sequence to Sequence Framework: machine translation, text summarization, dialogue (Google, 2014)
 - Memory Networks: question answering, language modeling, dialogue (Facebook AI, 2015)
- Limitations of Offline Supervised Learning
 - Short and dull responses, not interesting/engaging
 - Irrelevant, contextually inappropriate, incorrect (if domain-specific)
Goals

- Idea: learn conversational skills like humans, through continuous interaction/feedback
 - Reinforcement Learning, Active Learning with humans in the loop
 - no need to label/annotate huge datasets
 - avoid explicit incorporation of interestingness, relevance, diversity in responses

- Need to explore different types of human involvement/feedback as well as learning strategies
 - “Dialog-based Language Learning”, Jason Weston (Facebook AI), NIPS, December 2016
 - “Dialogue Learning with Human-In-The-Loop”, Li et al. (Facebook AI), submitted to ICLR 2016
 - Simple QA on short passages or a set of facts
10 Modes of Supervision (Weston, 2016)

Task 1: Imitating an Expert Student
- Mary went to the hallway.
- John moved to the bathroom.
- Mary travelled to the kitchen.
- Where is Mary? **A:** kitchen
- Where is John? **A:** bathroom

Task 2: Positive and Negative Feedback
- Mary went to the hallway.
- John moved to the bathroom.
- Mary travelled to the kitchen.
- Where is Mary? **A:** playground
- No, that’s incorrect.
- Where is John? **A:** bathroom
- Yes, that’s right! (+)

Task 3: Answers Supplied by Teacher
- Mary went to the hallway.
- John moved to the bathroom.
- Mary travelled to the kitchen.
- Where is Mary? **A:** bedroom
- No, the answer is kitchen.
- Where is John? **A:** bathroom
- Correct! (+)

Task 4: Hints Supplied by Teacher
- Mary went to the hallway.
- John moved to the bathroom.
- Mary travelled to the kitchen.
- Where is Mary? **A:** bathroom
- No, they are downstairs.
- Where is John? **A:** kitchen
- No, they are upstairs.
10 Modes of Supervision (cont’d)

<table>
<thead>
<tr>
<th>Task 5: Supporting Facts Supplied by Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary went to the hallway.</td>
</tr>
<tr>
<td>John moved to the bathroom.</td>
</tr>
<tr>
<td>Mary travelled to the kitchen.</td>
</tr>
<tr>
<td>Where is Mary? A:kitchen</td>
</tr>
<tr>
<td>Yes, that’s right! (+)</td>
</tr>
<tr>
<td>Where is John? A:hallway</td>
</tr>
<tr>
<td>No, because John moved to the bathroom.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 6: Partial Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary went to the hallway.</td>
</tr>
<tr>
<td>John moved to the bathroom.</td>
</tr>
<tr>
<td>Mary travelled to the kitchen.</td>
</tr>
<tr>
<td>Where is Mary? A:kitchen</td>
</tr>
<tr>
<td>Yes, that’s right!</td>
</tr>
<tr>
<td>Where is John? A:hallway</td>
</tr>
<tr>
<td>Yes, that’s correct! (+)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 7: No Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary went to the hallway.</td>
</tr>
<tr>
<td>John moved to the bathroom.</td>
</tr>
<tr>
<td>Mary travelled to the kitchen.</td>
</tr>
<tr>
<td>Where is Mary? A:kitchen</td>
</tr>
<tr>
<td>Yes, that’s right!</td>
</tr>
<tr>
<td>Where is John? A:hallway</td>
</tr>
<tr>
<td>Yes, that’s correct!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 8: Imitation and Feedback Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary went to the hallway.</td>
</tr>
<tr>
<td>John moved to the bathroom.</td>
</tr>
<tr>
<td>Mary travelled to the kitchen.</td>
</tr>
<tr>
<td>Where is Mary? A:kitchen</td>
</tr>
<tr>
<td>Where is John? A:bathroom</td>
</tr>
<tr>
<td>That’s right! (+)</td>
</tr>
</tbody>
</table>
10 Modes of Supervision (cont’d)

Task 9: Asking For Corrections
Mary went to the hallway.
John moved to the bathroom.
Mary travelled to the kitchen.
Where is Mary? A:kitchen
Yes, that’s right! (+)
Where is John? A:hallway
No, that’s not right. A:Can you help me?
Bathroom.

Task 10: Asking For Supporting Facts
Mary went to the hallway.
John moved to the bathroom.
Mary travelled to the kitchen.
Where is Mary? A:kitchen
Yes, that’s right! (+)
Where is John? A:hallway
No, that’s not right. A:Can you help me?
A relevant fact is John moved to the bathroom.
Memory Networks

Hop #1:
\[o_1 = \sum_i p_1^i m_i, \quad p_1^i = \text{Softmax}(q^T m_i). \]
\[u_1 = R_1(o_1 + q) \]

Hop #2:
\[o_2 = \sum_i p_2^i m_i, \quad p_2^i = \text{Softmax}(u_1^T m_i) \]
\[u_2 = R_2(o_2 + u_1) \]

Final output:
\[\hat{a} = \text{Softmax}(u_2^T A y_1, \ldots, u_2^T A y_C) \]
Learning Models

➢ Imitation Learning
 ▪ Essentially supervised learning (message-context-response triples, cross entropy loss function)
Learning Models

➢ Imitation Learning
 ○ Essentially supervised learning (message-context-response triples, cross entropy loss function)

➢ Reward-based Imitation (RBI)
 ○ Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest
Learning Models

➢ Imitation Learning
 ○ Essentially supervised learning (message-context-response triples, cross entropy loss function)

➢ Reward-based Imitation (RBI)
 ○ Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest

➢ Forward Prediction (FP)
 ○ Given an utterance x from Speaker #1 and answer α by the Learner, predict the response \bar{x} of Speaker #1
Forward Prediction

Hop #1:
\[o_1 = \sum_i p_i^1 m_i, \quad p_i^1 = \text{Softmax}(q^\top m_i). \]
\[u_1 = R_1(o_1 + q) \]

Hop #2:
\[o_2 = \sum_i p_i^2 m_i, \quad p_i^2 = \text{Softmax}(u_1^\top m_i) \]
\[u_2 = R_2(o_2 + u_1) \]

Hop #3:
\[o_3 = \sum_i p_i^3 (Ay_i + \beta^*[a = y_i]), \quad p_i^3 = \text{Softmax}(u_2^\top Ay_i) \]
\[u_3 = R_3(o_3 + u_2) \]

Final output:
\[\hat{x} = \text{Softmax}(u_3^\top A\bar{x}_1, \ldots, u_3^\top A\bar{x}_C) \]
Forward Prediction

Hop #1:
\[o_1 = \sum_i p_i^1 m_i, \quad p_i^1 = \text{Softmax}(q^\top m_i). \]
\[u_1 = R_1(o_1 + q) \]

Hop #2:
\[o_2 = \sum_i p_i^2 m_i, \quad p_i^2 = \text{Softmax}(u_1^\top m_i) \]
\[u_2 = R_2(o_2 + u_1) \]

Hop #3:
\[o_3 = \sum_i p_i^3 (Ay_i + \beta^*[a = y_i]), \quad p_i^3 = \text{Softmax}(u_2^\top Ay_i) \]
\[u_3 = R_3(o_3 + u_2) \]

Final output:
\[\hat{x} = \text{Softmax}(u_3^\top A\tilde{x}_1, \ldots, u_3^\top A\tilde{x}_C) \]

d-dim vector, represents in \(o_3 \) the action that was actually selected
Forward Prediction

Hop #1:
\[o_1 = \sum_i p_{1i} m_i, \quad p_{1i} = \text{Softmax}(q^T m_i). \]
\[u_1 = R_1(o_1 + q) \]

Hop #2:
\[o_2 = \sum_i p_{2i} m_i, \quad p_{2i} = \text{Softmax}(u_1^T m_i) \]
\[u_2 = R_2(o_2 + u_1) \]

Hop #3:
\[o_3 = \sum_i p_{3i} (Ay_i + \beta^*[a = y_i]), \quad p_{3i} = \text{Softmax}(u_2^T Ay_i) \]
\[u_3 = R_3(o_3 + u_2) \]

Final output:
\[\hat{x} = \text{Softmax}(u_3^T A\bar{x}_1, \ldots, u_3^T A\bar{x}_\mathcal{C}) \]

\(d\)-dim vector, represents in \(o_3\) the action that was actually selected

a way to compare the most likely answers to \(x\) with the given ans ‘a’
Learning Models

➢ Imitation Learning
 ○ Essentially supervised learning (message-context-response triples, cross entropy loss function)

➢ Reward-based Imitation (RBI)
 ○ Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest

➢ Forward Prediction (FP)
 ○ Given an utterance \mathbf{x} from Speaker #1 and answer \mathbf{a} by the Learner, predict the response $\bar{\mathbf{x}}$ of Speaker#1
 ○ Cross-entropy loss between $\bar{\mathbf{x}}$ and $\hat{\mathbf{x}}$.
Learning Models

➢ Imitation Learning
 ○ Essentially supervised learning (message-context-response triples, cross entropy loss function)

➢ Reward-based Imitation (RBI)
 ○ Supervised learning (with cross entropy loss) only on rewarded actions. Discard the rest

➢ Forward Prediction (FP)
 ○ Given an utterance \(x \) from Speaker #1 and answer \(a \) by the Learner, predict the response \(\tilde{x} \) of Speaker#1
 ○ Cross-entropy loss between \(\tilde{x} \) and \(\hat{x} \).

➢ Reward-based Imitation + Forward Prediction (RBI+FP)
 ○ Mixture of 2 and 3. Shared weights. Use both criteria for gradient descent.
Data

- **bAbI dataset**: short stories from a simulated world followed by questions

- For each of the 10 supervision tasks, consider a fixed policy for answering questions which gets questions correct with probability π_{acc}.
Evaluation on bAbI dataset

<table>
<thead>
<tr>
<th>Supervision Type</th>
<th>MemN2N imitation learning</th>
<th>MemN2N reward-based imitation (RBI)</th>
<th>MemN2N forward prediction (FP)</th>
<th>MemN2N RBI + FP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\pi_{acc} =$ 0.5</td>
<td>0.1</td>
<td>0.01</td>
<td>0.5</td>
</tr>
<tr>
<td>1 - Imitating an Expert Student</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2 - Positive and Negative Feedback</td>
<td>79</td>
<td>28</td>
<td>21</td>
<td>99</td>
</tr>
<tr>
<td>3 - Answers Supplied by Teacher</td>
<td>83</td>
<td>37</td>
<td>25</td>
<td>99</td>
</tr>
<tr>
<td>4 - Hints Supplied by Teacher</td>
<td>85</td>
<td>23</td>
<td>22</td>
<td>99</td>
</tr>
<tr>
<td>5 - Supporting Facts Supplied by Teacher</td>
<td>84</td>
<td>24</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>6 - Partial Feedback</td>
<td>90</td>
<td>22</td>
<td>22</td>
<td>98</td>
</tr>
<tr>
<td>7 - No Feedback</td>
<td>90</td>
<td>34</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>8 - Imitation + Feedback Mixture</td>
<td>90</td>
<td>89</td>
<td>82</td>
<td>99</td>
</tr>
<tr>
<td>9 - Asking For Corrections</td>
<td>85</td>
<td>30</td>
<td>22</td>
<td>99</td>
</tr>
<tr>
<td>10 - Asking For Supporting Facts</td>
<td>86</td>
<td>25</td>
<td>26</td>
<td>99</td>
</tr>
<tr>
<td>Number of completed tasks ($\geq 95%$)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1: Test accuracy (%) on the Single Supporting Fact bAbI dataset for various supervision approaches (training with 1000 examples on each) and different policies π_{acc}. A task is successfully passed if $\geq 95\%$ accuracy is obtained (shown in blue).
Evaluation on bAbI dataset

Interesting Result: Forward Prediction (predicting the teacher’s feedback) works nicely, even though it doesn’t use human-labeled rewards

<table>
<thead>
<tr>
<th>Supervision Type</th>
<th>MemN2N imitation learning</th>
<th>MemN2N reward-based imitation (RBI)</th>
<th>MemN2N forward prediction (FP)</th>
<th>MemN2N RBI + FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Imitating an Expert Student</td>
<td>100 100 100</td>
<td>100 100 100</td>
<td>23 30 29</td>
<td>99 99 100</td>
</tr>
<tr>
<td>2 - Positive and Negative Feedback</td>
<td>79 28 21</td>
<td>99 92 91</td>
<td>93 54 30</td>
<td>99 92 96</td>
</tr>
<tr>
<td>3 - Answers Supplied by Teacher</td>
<td>83 37 25</td>
<td>99 96 92</td>
<td>99 96 99</td>
<td>99 100 98</td>
</tr>
<tr>
<td>4 - Hints Supplied by Teacher</td>
<td>85 23 22</td>
<td>99 91 90</td>
<td>97 99 66</td>
<td>99 100 100</td>
</tr>
<tr>
<td>5 - Supporting Facts Supplied by Teacher</td>
<td>84 24 27</td>
<td>100 96 83</td>
<td>98 99 100</td>
<td>100 99 100</td>
</tr>
<tr>
<td>6 - Partial Feedback</td>
<td>90 22 22</td>
<td>98 81 59</td>
<td>100 100 99</td>
<td>99 100 99</td>
</tr>
<tr>
<td>7 - No Feedback</td>
<td>90 34 19</td>
<td>20 22 29</td>
<td>100 98 99</td>
<td>98 99 99</td>
</tr>
<tr>
<td>8 - Imitation + Feedback Mixture</td>
<td>90 89 82</td>
<td>99 98 98</td>
<td>28 64 67</td>
<td>99 98 97</td>
</tr>
<tr>
<td>9 - Asking For Corrections</td>
<td>85 30 22</td>
<td>99 89 83</td>
<td>23 15 21</td>
<td>95 90 84</td>
</tr>
<tr>
<td>10 - Asking For Supporting Facts</td>
<td>86 25 26</td>
<td>99 96 84</td>
<td>23 30 48</td>
<td>97 95 91</td>
</tr>
<tr>
<td>Number of completed tasks (≥ 95%)</td>
<td>1 1 1</td>
<td>9 5 2</td>
<td>5 5 4</td>
<td>10 8 8</td>
</tr>
</tbody>
</table>

Table 1: Test accuracy (%) on the Single Supporting Fact bAbI dataset for various supervision approaches (training with 1000 examples on each) and different policies π_{acc}. A task is successfully passed if $\geq 95\%$ accuracy is obtained (shown in blue).
“Dialogue Learning with Human-In-The-Loop”, Li et al. 2016

- Use Reinforcement Learning policy instead of fixed policies π_{acc}

- Online and incremental learning (i.e. weights updated after each reward is received)
“Dialogue Learning with Human-In-The-Loop”, Li et al. 2016

- Use Reinforcement Learning policy instead of fixed policies \(\pi_{acc} \)

- Online and incremental learning (i.e. weights updated after each reward is received)

- Consider Task 6 (“partial feedback”) only: the teacher replies with positive textual feedback (6 possible templates) when the bot answers correctly, and positive reward is given only 50% of the time. When the bot is wrong, the teacher gives textual feedback containing the answer.
“Dialogue Learning with Human-In-The-Loop”, Li et al. 2016

- Use Reinforcement Learning policy instead of fixed policies π_{acc}

- Online and incremental learning (i.e. weights updated after each reward is received)

- Consider Task 6 ("partial feedback") only: the teacher replies with positive textual feedback (6 possible templates) when the bot answers correctly, and positive reward is given only 50% of the time. When the bot is wrong, the teacher gives textual feedback containing the answer.

- Learning Models: RBI, FP, and REINFORCE (0 and 1)

- Difference between RBI and REINFORCE: former imitates correct behaviour only, latter leverages incorrect behaviour too
“Dialogue Learning with Human-In-The-Loop”, Li et al. 2016