Partial Redundancy Elimination

Motivation

```c
if() {
    a = x + y;
}
b = x + y;
```

Motivation

```c
while(c) {
    a = x + y;
}
```
Assumption

Assume that at any statement of the form $a = x + y$, the current value of $x + y$ must be placed in a. That is, the computation of $x + y$ cannot be deferred until a later point where a is actually used.
Desired Transformation

Introduce a temporary t_{x+y}. Change every statement of the form $a = x + y$ into $a = t_{x+y}$. Insert computations of the form $t_{x+y} = x + y$ at some subset S of program points (nodes and edges) such that the same values are assigned to a as in the original program. [Safe]
Desired Transformation

Introduce a temporary t_{x+y}. Change every statement of the form $a = x + y$ into $a = t_{x+y}$. Insert computations of the form $t_{x+y} = x + y$ at some subset S of program points (nodes and edges) such that the same values are assigned to a as in the original program. [Safe]

Goals for S

1. Suppose S' is also safe. No execution path should contain more occurrences of $t_{x+y} = x + y$ in S than in S'. [Computationally Optimal]

2. Suppose S' is also safe and computationally optimal. At every program point where t_{x+y} is live under S, it should also be live under S'. [Lifetime Optimal]
Variations of PRE

Note: this is not an exhaustive list.

Summary of Properties

- Local properties
 - transparent
 - computed
 - locally anticipable

- Global node properties
 - available
 - anticipable

- Global edge properties
 - earliest
 - later

- Final results
 - insert (on edge)
 - delete (from node)
Definition
A basic block b is **transparent** for expression e if none of e’s operands are defined in b.

Definition
An expression e is **computed** (aka downward exposed aka locally available) in basic block b if it contains a computation of e, and does not define e’s operands after the last computation of e.

Definition
An expression e is **locally anticipable** (aka upward exposed) in basic block b if it contains a computation of e, and does not define e’s operands before the first computation of e.
Definition

An expression e is available at program point p if on every path from the start node to p, e is computed, and e’s operands are not defined after the last computation of e.

Compute using dataflow analysis:

1. Forward or Backward?
Definition

An expression \(e \) is available at program point \(p \) if on every path from the start node to \(p \), \(e \) is computed, and \(e \)'s operands are not defined after the last computation of \(e \).

Compute using dataflow analysis:

1. Forward or Backward? \textbf{forward}
2. Domain?
Availability and Anticipability

Definition

An expression e is available at program point p if on every path from the start node to p, e is computed, and e's operands are not defined after the last computation of e.

Compute using dataflow analysis:

1. Forward or Backward? forward
2. Domain? $(\text{Exprs, } \supseteq)$
3. Merge Operator?
Definition

An expression e is available at program point p if on every path from the start node to p, e is computed, and e’s operands are not defined after the last computation of e.

Compute using dataflow analysis:

1. Forward or Backward? forward
2. Domain? $(\text{Exprs}, \supseteq)$
3. Merge Operator? \cap
4. Flow Equation?
Availability and Anticipability

Definition

An expression e is **available** at program point p if on every path from the start node to p, e is computed, and e’s operands are not defined after the last computation of e.

Compute using dataflow analysis:

1. Forward or Backward? *forward*
2. Domain? ($\text{Exprs, } \supseteq$)
3. Merge Operator? \cap
4. Flow Equation?

 $\text{out}(s) = \text{computed}(s) \cup (\text{in}(s) \cap \text{transparent}(s))$
5. $\text{out}(\text{Start})$?
Definition

An expression e is **available** at program point p if on every path from the start node to p, e is computed, and e's operands are not defined after the last computation of e.

Compute using dataflow analysis:

1. **Forward or Backward?** forward
2. **Domain?** $(\text{Exprs}, \supseteq)$
3. **Merge Operator?** \cap
4. **Flow Equation?**

 $$\text{out}(s) = \text{computed}(s) \cup (\text{in}(s) \cap \text{transparent}(s))$$
5. **out(Start)?** empty set
6. **Bottom Element?**
Definition

An expression e is available at program point p if on every path from the start node to p, e is computed, and e’s operands are not defined after the last computation of e.

Compute using dataflow analysis:

1. Forward or Backward? forward
2. Domain? $(\text{Exprs}, \supseteq)$
3. Merge Operator? \cap
4. Flow Equation?
 \[
 \text{out}(s) = \text{computed}(s) \cup (\text{in}(s) \cap \text{transparent}(s))
 \]
5. out(Start)? empty set
6. Bottom Element? $\bot = \text{all expressions}$
Definition
An expression e is **anticipable** at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. Forward or Backward?
Definition

An expression e is **anticipable** at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. Forward or Backward? **backward**
2. Domain?
Definition

An expression e is **anticipable** at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. Forward or Backward? **backward**
2. Domain? $(\text{Exprs, } \supseteq)$
3. Merge Operator?
Definition

An expression e is **anticipable** at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. Forward or Backward? **backward**
2. Domain? \((\mathbf{Exprs}, \supseteq)\)
3. Merge Operator? \(\cap\)
4. Flow Equation?

\[
\text{in}(s) = \text{locally anticipable}(s) \cup (\text{out}(s) \cap \text{transparent}(s))
\]

5. **in(Exit)**? empty set
6. Bottom Element? $$= \text{all expressions}$$
Availability and Anticipability

Definition

An expression e is **anticipable** at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. Forward or Backward? **backward**
2. Domain? $(\text{Exprs, } \supseteq)$
3. Merge Operator? \cap
4. Flow Equation?

 $$\text{in}(s) = \text{locally anticipable}(s) \cup (\text{out}(s) \cap \text{transparent}(s))$$
5. $\text{in}(\text{Exit})$?
Definition

An expression e is **anticipable** at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. Forward or Backward? **backward**
2. Domain? (Exprs, \supseteq)
3. Merge Operator? \cap
4. Flow Equation?
 $\text{in}(s) = \text{locally anticipable}(s) \cup (\text{out}(s) \cap \text{transparent}(s))$
5. in(Exit)? **empty set**
6. Bottom Element?
Definition

An expression e is \textit{anticipable} at program point p if on every path from p to the end node, e is computed, and e’s operands are not defined before the first computation of e.

Compute using dataflow analysis:

1. Forward or Backward? backward
2. Domain? $(\text{Exprs, } \supseteq)$
3. Merge Operator? \cap
4. Flow Equation?
 $$\text{in}(s) = \text{locally anticipable}(s) \cup (\text{out}(s) \cap \text{transparent}(s))$$
5. in(Exit)? empty set
6. Bottom Element? $\bot = \text{all expressions}$
The edge \((i, j)\) is the earliest point where we should compute the expression \(e\) if

- \(e\) is needed on all paths from \(j\) to the end node,
- \(e\) is not available at the end of \(i\), and
 - a computation before \(i\) would get invalidated in \(i\), or
 - \(e\) is not needed on some other edge out of \(i\).

\[
\text{earliest}(i, j) = \text{anticipable}_\text{in}(j) \cap \text{available}_\text{out}(i) \cap (\text{transparent}(i) \cup \text{anticipable}_\text{out}(i))
\]
A computation of e can be moved from before a block b to after b, as long as it needs to be computed on all incoming edges of b, and e is not needed in b.

$$\text{later}(i, j) = \text{earliest}(i, j) \cup \left(\text{locally anticipable}(i) \cap \bigcap_{k \in \text{pred}(i)} \text{later}(k, i) \right)$$
The Transformation

Insert computation as late as possible:

\[\text{insert}(i, j) = \text{later}(i, j) \cap \bigcap_{k \in \text{pred}(j)} \text{later}(k, j) \]

\(e \in \text{insert}(i, j) \) means compute \(e \) in edge \((i, j)\).

Remove locally anticipable computations where value is already known:

\[\text{delete}(j) = \text{locally anticipable}(j) \cap \bigcap_{i \in \text{pred}(j)} \text{later}(i, j) \]

\(e \in \text{delete}(j) \) means remove first computation of \(e \) from \(j \).