Loops

Definition

A **back edge** is a CFG edge whose target dominates its source.

Definition

A **natural loop** for back edge $t \rightarrow h$ is a subgraph containing t and h, and all nodes from which t can be reached without passing through h.
Example
Loops

Definition

The loop for a header h is the union of all natural loops for back edges whose target is h.

Property

Two loops with different headers $h_1 \neq h_2$ are either

- disjoint ($\text{loop}(h_1) \cap \text{loop}(h_2) = \{\}$), or
- nested within each other ($\text{loop}(h_1) \subset \text{loop}(h_2)$).
Loops

Definition
A subgraph of a graph is strongly connected if there is a path in the subgraph from every node to every other node.

Property
Every loop is a strongly connected subgraph. (Why?)
Example

Is \{2, 3\} a strongly connected subgraph?
Is \{2, 3\} a loop?
Example

Is \{2, 3\} a strongly connected subgraph?
Is \{2, 3\} a loop?

Definition
A CFG is **reducible** if every strongly connected subgraph contains a unique node (the header) that dominates all nodes in the subgraph.
A definition \(c = a \ op \ b \) is loop-invariant if \(a \) and \(b \)

1. are constant,
2. have all their reaching definitions outside the loop, OR
3. have only one reaching definition (why?) which is loop-invariant.
read i;
x = 1;
y = 2;
t = 2;
while(i<10) {
 t = y - x;
 i = i + t;
}
print t;
read i;
x = 1;
y = 2;
t = 2;
t = y - x;
while(i<10) {
 i = i + t;
}
print t;
read i;
if (cond) {
 x = 1;
} else {
 x = 2;
}
y = 3;
t = 2;
while (i<10) {
 t = y - x;
 i = i + t;
}
print t;
read i;
if (cond) {
 x = 1;
} else {
 x = 2;
}
y = 3;
t = 2;
t = y - x;
while(i<10) {
 i = i + t;
}
print t;
It is safe to move a computation $\ell : c = a \ op \ b$ to just before the header of the loop if

1. it is loop-invariant,
2. it has no side-effects,
3. c is not live immediately before the loop header,
4. ℓ is the only definition of c in the loop, and
5. ℓ dominates all exits from the loop at which c is live.

Note: 3 and 4 imply 5.
while(false) {
 i = 2 / 0;
}

Side Effects: Guard using a condition

while(condition) {
 i = 2 / 0;
 body;
}

if(condition) {
 i = 2 / 0;
 do {
 body;
 } while(condition)
}
while(c) {
 body;
}

if(c) {
 do {
 body;
 } while(c)
}

if(!c) goto L2;
body;
goto L1;
L2:
if(!c) goto L2;
L1:
body;
if(c) goto L1;
L2:
Loop inversion

```
while(c) {
    body;
}
```

```
if(c) {
    do {
        body;
    } while(c)
}
```

```
L1:
if(!c) goto L2;
body;
goto L1;
L2:
```

```
if(!c) goto L2;
L1:
body;
if(c) goto L1;
L2:
```
for(i = 0; i < 100; i++) {
 A[i] = 2*i;
}
i = 0;
L1:
if (i >= 100) goto L2;
t1 = i * 4;
t2 = t1 + A;
t3 = 2 * i;
*t2 = t3;
i = i + 1;
goto L1;
L2:
Definition

Variable i is a **basic induction variable** if all its definitions in the loop are of the form $i = i + c$, where c is loop-invariant.

Definition

Variable j is a **derived induction variable in the family of i** if i is a basic induction variable, and $j = c*i + d$ at every use of j in the loop, where c and d are loop-invariant.
Identifying Derived Induction Variables

IF

• i is a basic induction variable,
• there is only one definition of k, AND
• it has the form k=i*c or k=i+c, where c is loop-invariant

THEN k is a derived induction variable in the family of i.
Identifying Derived Induction Variables

IF
- i is a basic induction variable,
- there is only one definition of k, AND
- it has the form $k = i \times c$ or $k = i + c$, where c is loop-invariant

THEN k is a derived induction variable in the family of i.

IF
- j is a derived induction variable in the family of i,
- there is only one definition of k,
- it has the form $k = j \times c$ or $k = j + c$, where c is loop-invariant, AND
- there is no def of i on any path from the def of j to the def of k

THEN k is a derived induction variable in the family of i.
What the second condition really means

//a, b, c, d, e, f are loop invariant
while (cond){

i = i + a;

j = c * i + d;
 //Code Block A
 k = e * j + f;
}

i: Basic Induction Variable
j: Derived Induction Variable in the family of i
k: Derived Induction Variable in the family of i as long as there is no definition of i in Code Block A
i = i + a; // < i, 1, a >
j = c * i + d ; // < i, c, d >
k = e * j + f ; // < j, e, f >

Since k is a derived Induction Variable in the family of i, we can write the tuple in terms of i

k = e * j + f
 = e * (ci + d) + f
 = eci + ed + f
 = ec * i + (ed + f) ; // < i , ec , ed + f >

Initialize k to eci + ed + f. Every time i is incremented by a, increment k by e*c*a (constant)
Assume \(j \) is a DIV in the family of \(i \), such that \(j = c \cdot i + d \).

1. After each definition \(i = i + e \), insert \(j' = j' + c \cdot e \).
2. Replace definition of \(j \) with \(j = j' \).
3. Insert \(j' = c \cdot i + d \) immediately before loop header.

Do copy propagation afterwards.
i = 0;
L1:
if (i >= 100) goto L2;
t1 = i * 4;
t2 = t1 + A;
t3 = 2 * i;
*t2 = t3;
i = i + 1;
goto L1;
L2:

i = 0;
t1' = i * 4;
t2' = i * 4 + A;
t3' = i * 2;
L1:
if (i >= 100) goto L2;
t1 = t1';
t2 = t2';
t3 = t3';
*t2 = t3;
i = i + 1;
t1' = t1' + 4;
t2' = t2' + 4;
t3' = t3' + 2;
goto L1;
L2:
i = 0;
t1' = i * 4;
t2' = i * 4 + A;
t3' = i * 2;
L1:
 if (i >= 100) goto L2;
t1 = t1'
t2 = t2'
t3 = t3'
*t2 = t3;
i = i + 1;
t1' = t1' + 4;
t2' = t2' + 4;
t3' = t3' + 2;
goto L1;
L2:

i = 0;
t1' = i * 4;
t2' = i * 4 + A;
t3' = i * 2;
L1:
 if (i >= 100) goto L2;
t1 = t1'
t2 = t2'
t3 = t3'
*t2' = t3';
i = i + 1;
t1' = t1' + 4;
t2' = t2' + 4;
t3' = t3' + 2;
goto L1;
L2:
Definition

An induction variable is **useless** if

- it is dead at the loop exits, **AND**
- it is used only in its own definition.

Definition

An induction variable is **almost useless** if

- it is dead at the loop exits,
- it is used only in its own definition and in comparisons with loop constants, **AND**
- some other variable in the same family is not useless.
i = 0;
t1' = i * 4;
t2' = i * 4 + A;
t3' = i * 2;
L1:
if(i >= 100) goto L2;
*t2' = t3';
i = i + 1;
t1' = t1' + 4;
t2' = t2' + 4;
t3' = t3' + 2;
goto L1;
L2:

i = 0;
t2' = i * 4 + A;
t3' = i * 2;
L1:
if(i >= 100) goto L2;
*t2' = t3';
i = i + 1;
t2' = t2' + 4;
t3' = t3' + 2;
goto L1;
L2:
Almost Useless Induction Variables

\[
i = 0;
\]
\[
t1' = i \times 4;
\]
\[
t2' = i \times 4 + A;
\]
\[
t3' = i \times 2;
\]
\[
L1:
\]
\[
\text{if}(i \geq 100) \text{ goto } L2;
\]
\[
*t2' = t3';
\]
\[
i = i + 1;
\]
\[
t2' = t2' + 4;
\]
\[
t3' = t3' + 2;
\]
\[
goto L1;
\]
\[
L2:
\]

\[
i = 0;
\]
\[
t2' = i \times 4 + A;
\]
\[
t3' = i \times 2;
\]
\[
L1:
\]
\[
\text{if}(t3' \geq 200) \text{ goto } L2;
\]
\[
*t2' = t3';
\]
\[
t2' = t2' + 4;
\]
\[
t3' = t3' + 2;
\]
\[
goto L1;
\]
\[
L2:
\]
for (i = 0; i < 100; i++) {
 A[i] = 2*i;
}

i = 0;
L1:
if (i >= 100) goto L2;
t1 = i * 4;
t2 = t1 + A;
t3 = 2 * i;
*t2 = t3;
i = i + 1;
goto L1;
L2:
t2 = A;
t3 = 0;
L1:
if (t3 >= 200) goto L2;
*t2 = t3;
t2 = t2 + 4;
t3 = t3 + 2;
goto L1;
L2:
while(i < c) {
 body;
 i = i + 1;
}

while(i < c) {
 body;
 i = i + 1;
 if(i >= c) break;
 body;
 i = i + 1;
}
Loop unrolling

while(i < c) {
 body;
 i = i + 1;
}

while(i < c) {
 body;
 i = i + 1;
 if(i >= c) break;
 body;
 i = i + 1;
}

- Increases code size
- More chance for optimizations within basic block
Loop unrolling

while(i < c) {
 body;
 i = i + 1;
 if(i >= c) break;
 body;
 i = i + 1;
}

while(i < c-1) {
 body;
 body;
 i = i + 2;
}
while(i < c) {
 body;
 i = i + 1;
}