Definition

In a CFG, node a **dominates** b if every path from the start node to b passes through a. Node a is a **dominator** of b.

Property

The dominance relation is a partial order.

Definition

Node a **strictly dominates** b if $a \neq b$ and a dominates b.

Theorem

IF a and b both dominate c, THEN either a dominates b or b dominates a.
Theorem
IF a and b both dominate c, THEN either a dominates b or b dominates a.

Corollary
Every node n has at most one immediate dominator $\text{idom}(n)$ such that
- $\text{idom}(n) \neq n$
- $\text{idom}(n)$ dominates n, and
- $\text{idom}(n)$ does not dominate any other dominator of n.
Dominator Example
As a dataflow analysis

1. Forwards
2. Lattice is \((\mathcal{P}(Stmts), \supseteq) \)
3. \(\cap \)
4. \(\text{out}_\ell = \text{in}_\ell \cup \{\ell\} \)
5. Start node value is \(\{\} \)
6. \(\bot = \{\text{all statements}\} \)
Computing Dominators

As a dataflow analysis

- Forwards
- Lattice is \((\mathcal{P}(Stmts), \supseteq)\)
- \(\cap\)
- \(\text{out}_\ell = \text{in}_\ell \cup \{\ell\}\)
- Start node value is \(\{\}\)
- \(\bot = \{\text{all statements}\}\)

More efficient approaches

- Lengauer-Tarjan: see Appel book section 19.2
A node w is in the dominance frontier of x if:
- x does not strictly dominate w, and
- x dominates a predecessor of w.
\(DF_{\text{local}}(x) \): the successors of \(x \) not strictly dominated by \(x \).
\(DF_{\text{up}}(y) \): nodes in \(DF(y) \) not strictly dominated by \(\text{idom}(y) \).
\[DF(x) = DF_{\text{local}}(x) \cup \bigcup \{ y \mid \text{idom}(y) = x \} \ DF_{\text{up}}(y). \]
Algorithm \(\text{DF}(x) \):

1. \(S = \{\} \)
2. for all nodes \(w \in \text{succ}(x) \) do
3. \quad if \(\text{idom}(w) \neq x \) then
4. \quad \quad \(S \cup = \{w\} \)
5. \quad /* \(S \) is now \(\text{DF}_{\text{local}}(x) \) */
6. for all nodes \(y \) for which \(\text{idom}(y) = x \) do
7. \quad /* below we compute \(\text{DF}_{\text{up}}(y) \) */
8. \quad for all nodes \(w \in \text{DF}(y) \) do
9. \quad \quad if \(x \) does not dominate \(w \) or \(x = w \) then
10. \quad \quad \quad \(S \cup = \{w\} \)
11. return \(S \)
Restatement of definition of DF

\[w \in DF(x) \] for every \(x \) that dominates a predecessor of \(w \), but does not strictly dominate \(w \).

Algorithm \texttt{COMPUTE DFS}():

1. \texttt{for all} nodes \(w \) \texttt{do}
2. \texttt{for all} \(p \in \text{preds}(w) \) \texttt{do}
3. \hspace{1em} \(x = p \)
4. \hspace{1em} \texttt{while} \(x \neq \text{idom}(w) \) \texttt{do}
5. \hspace{2em} \(DF(x) \cup = \{ w \} \)
6. \hspace{1em} \(x = \text{idom}(x) \)