Part 1: Partial Redundancy Elimination (20 marks)

In this part of the assignment, you will perform partial redundancy elimination (the variation due to Drechsler and Stadel [1] that was presented in class) on the following program. See the lecture slides from the course web page for details.

```
1 read(a, b, c, d, e, f);
2 c = 1;
3 if (a < 0) goto L1;
4 a = c + 2;
5 d = a + b;
6 b = d - 3;
7 if (d < 0) goto L2;
8 goto L3;
9 L1:
10 if (c >= 10) goto L2;
11 e = a + b;
12 Z[i] = e;
13 c = c + 1;
14 goto L1;
15 L2:
16 f = a + b;
17 write(f);
18 L3:
```

1. Identify the basic blocks, and draw a basic block graph.

2. Determine which basic blocks are transparent for the expression a + b, and in which basic blocks the expression is locally available and locally anticipable.

3. At the beginning and end of each basic block, determine whether the expression a + b is (globally) available and (globally) anticipable.

4. Perform the earliest placement computation. For each edge in the basic block graph, state whether the edge is the earliest place in which the expression a + b should be computed.

5. Perform the latest placement computation. For each edge in the basic block graph, state whether the expression a + b could be computed ?later? on the edge.

6. Determine on which edges a computation of a + b should be inserted by PRE.
7. Determine from which basic blocks the first computation of \(a + b \) should be deleted by PRE.

8. Write the code that results after partial redundancy elimination.

Part 2: Register Allocation (15 marks)

In this part of the assignment, you will perform register allocation on the following program.

```
1  read ( a , b , c , d , e , f , g );
2  L1 :
3      c = a + b
4      d = c * b
5      e = c / d
6      f = e - d
7      a = e * f
8      b = a - f
9      g = g + b
10     if g < 10 goto L1;
11     write ( g );
```

1. Draw the control flow graph.

2. Determine the set of variables that are live before and after each instruction.

3. Draw the interference graph for the program.

4. Trace two possible runs of using Briggs’ register colouring algorithm to colour the interference graph with at most three registers, such that one run succeeds, and the other fails.

5. Is it possible to colour the interference graph with only two registers? If so, give such a colouring. If not, show why not.