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Abstract
If g and h are functions over some field, we can consider their composition
f = g(h). The inverse problem is decomposition: given f , determine the ex-
istence of such functions g and h. In this thesis we consider functional decom-
positions of univariate and multivariate polynomials, and rational functions
over a field F of characteristic p. In the polynomial case, “wild” behaviour
occurs in both the mathematical and computational theory of the problem
if p divides the degree of g. We consider the wild case in some depth, and
deal with those polynomials whose decompositions are in some sense the
“wildest”: the additive polynomials. We determine the maximum number of
decompositions and show some polynomial time algorithms for certain classes
of polynomials with wild decompositions. For the rational function case we
present a definition of the problem, a normalised version of the problem to
which the general problem reduces, and an exponential time solution to the
normal problem.
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Introduction.
A fundamental idea in computer science and mathematics is that of compo-
sition. One way to understand an object, whether it is abstract or concrete,
is to understand how it combines with other objects of the same type. A
converse problem to this also exists: Given an object, describe how it is
made up as the composition of other objects. This is decomposition. We
can introduce constraints on the decompositions we wish to examine. What
happens when we cannot further break down the object under considera-
tion given these constraints? We say it is indecomposable. A very natural
question to look at is how an object under consideration breaks down into
indecomposable pieces. And if we relax the constraints somewhat, do these
indecomposable objects decompose once again? In mathematics, and espe-
cially algebra, decomposition is a central concept. Decomposing matrices,
algebras and groups are all well explored areas. The factoring of polynomials
is a fundamental example of the decomposition in the ring of polynomials
under the usual operations of addition and multiplication. The computa-
tional aspects of factoring polynomials have been an extremely active area
of research over the last two decades. But polynomials can also be com-
posed functionally, and form a ring under addition and composition. What
does factorisation in this ring look like? Although this question has been ad-
dressed mathematically for at least six decades, many unresolved questions
still remain. Computationally the area is extremely new, having developed
only over the last decade or so. Applications of polynomial decomposition
within the areas of coding theory and cryptography exist (though will not
be dealt with here), and the problem is of computational interest in its own
right. Though some progress has been made in the (mathematically) well
understood cases, the problem in general appears to be difficult. We will
address ourselves to some of these difficulties.

If fm, fm−1, . . . , f1 are univariate polynomials over a field F of degrees
rm, rm−1, . . . , r1 ∈ N respectively, their functional composition

f = fm(fm−1(· · · (f2(f1)) · · ·)) ∈ F [x]

has degree n = rmrm−1 · · · r1, and can be computed in a straightforward
manner. In this thesis we examine a converse problem. Namely, given f
and rm, . . . , r1, determine if there exist polynomials fm, . . . , f1 ∈ F [x] such
that deg fi = ri for 1 ≤ i ≤ m and f = fm(fm−1(· · · (f2(f1)) · · ·)), and
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if so, compute them. We call this the polynomial decomposition problem.
When the problem is limited to decompositions into two composition factors
of given degree, we call this the bidecomposition problem. A polynomial is
considered to be indecomposable if there is no way to decompose it into non-
trivial (degree at least two) composition factors. We also consider decom-
positions into indecomposable composition factors, which we call complete
decompositions. Further questions arise when we consider decompositions
over arbitrary algebraic extension fields of the ground field, or absolute de-
compositions. All these issues concerning decompositions have been dealt
with mathematically since the seminal paper of Ritt[1922], which showed a
very strong, “well behaved” structure for decompositions of polynomials over
the complex numbers. Since then, the mathematical literature dealing with
the problem has been extensive, though far from complete. The difficulty in
the decomposition problem seems to be connected to the divisibility of the
degrees by the characteristic p of the ground field. The “tame” case, where
p = 0 or p - ri for 1 < i ≤ m is well understood. However, the “wild” case
where p|ri for some i > 1 is still largely a mystery. It is this case in which
we will be most interested.

For some special classes of polynomials, decompositions in the wild case
are well understood. One such class is the “additive” polynomials. These are
the polynomials where only exponents which are powers of the characteristic
p of the field have non-zero coefficients. In some sense they are the “wildest”
polynomials (see von zur Gathen[1988]). The theory of additive polynomi-
als was introduced in Ore[1933b], and will be presented here in some detail.
Kozen and Landau[1986] give an (exponential time) reduction of the general
decomposition problem to univariate factorisation, and give a formulation of
this problem in terms of the action of Galois groups. This turns out to be
somewhat simpler for decompositions of separable, irreducible polynomials
(over arbitrary fields) than in the general case. And for irreducible polyno-
mials over finite fields they give a complete description of the decomposition
structure.

Decompositions of multivariate polynomials have also been considered.
Evyatar and Scott[1972] show a structure very similar to the univariate case.
We consider decompositions of a multivariate polynomial f into a univariate
polynomial g and a multivariate polynomial h. Completely analogous tame
and wild cases exist, although even less is known about the wild case here
than for univariate polynomials.
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Computationally, polynomial decomposition has only been examined since
1976 by Barton and Zippel[1976,1985]. They give a general algorithm (for
both the tame and wild cases) which requires a factoring subroutine and an
exponential number of field operations in the degree of the input polynomial.
Over arbitrary (“computable”) fields, the decomposition problem is undecid-
able (see von zur Gathen[1988]). Kozen and Landau[1986] exhibit an algo-
rithm for the bidecomposition problem in the tame case which requires only
a polynomial number of field operations in the input degree. For multivari-
ate polynomials there is a similar situation. Fast algorithms which compute
decompositions do exist in the tame case (see Dickerson[1987] and von zur
Gathen[1987]). And in the wild case we present an algorithm to perform
multivariate decomposition (in an exponential number of field operations).
Some special classes of the wild case have also been dealt with: Kozen and
Landau[1986] give a decomposition algorithm for irreducible, separable poly-
nomials which requires a quasi-polynomial number of field operations in the
degree of the input, and for irreducible polynomials over finite fields, their
algorithm requires only a polynomial number of field operations in the input
degree.

This thesis is organised into six chapters. In chapter one we present a
mathematical definition of the univariate decomposition problem and five
different formulations of it. Each of these formulations has been used in the
mathematical or computational literature, in various forms. Some were de-
veloped for special cases, and some fall immediately from the problem defini-
tion. We generalise these formulations and put them in a consistent language
and context, showing their basic equivalence. We also define the multivariate
problem in a similar manner, showing two basic, equivalent formulations.

In chapter two, we present the computational approaches to polynomial
decomposition which have been developed for both the wild and tame cases.
These algorithms will be stated in terms of the formulation of the decompo-
sition problem used, as developed in chapter one. We show that for certain
“nice” families of polynomials (polynomials for which an efficient algorithm
for decomposition into two composition factors of given degree exists, and
for which such decompositions are unique) the problem of decomposing a
polynomial into an arbitrary number of factors of given degree is reducible
to the bidecomposition problem. Using a structure theorem of Evyatar and
Scott[1972], we also exhibit an algorithm for decomposing multivariate poly-
nomials (in both the tame and wild cases) over any field supporting a fac-



Functional Decomposition of Polynomials 9

toring algorithm.
In chapters three through five we introduce the additive polynomials, a

class of polynomials with wild decompositions which are well understood.
In chapter three we develop the theory of these polynomials with respect
to the structure of their roots in their splitting fields. From this we gar-
ner quasi-polynomial lower bounds on the number of decompositions (both
decompositions into two factors and complete decompositions) of “simple”
additive polynomials. This shows that any algorithm which produces all de-
compositions of an arbitrary polynomial in the wild case cannot be expected
to work in a polynomial number of field operations. In fact, we determine ex-
actly the maximum number of decompositions of simple additive polynomials
of a given degree.

In chapter four the theory of Ore[1933a], which describes non-commutative
Euclidean rings, is developed for the additive polynomials. We extend this
theory by further developing the relationship between different complete de-
compositions of a given polynomial. We also show a number of results con-
cerning the uniqueness of decompositions. Combining this formal structure
with the algebraic structure from chapter three, we show a quasi-polynomial
upper bound on the number of possible complete decompositions of additive
polynomials in general.

In chapter five we make use of the two previous chapters to develop al-
gorithms for the decomposition of additive polynomials. We show that we
can determine indecomposability in a polynomial number of field operations,
and in fact can generate one complete decomposition. However, the only way
method we know to find a decomposition into an arbitrary number of factors
of given degrees is by finding all complete decompositions. Using the upper
bound from chapter four, we get an algorithm requiring a quasi-polynomial
number of field operations. Two large subclasses of the additive polynomials
show more favourable results: the completely reducible additive polynomials
and the similarity free additive polynomials. Decomposition algorithms re-
quiring a polynomial number of field operations are shown in each case. We
also show a quasi-polynomial time algorithm for the absolute decomposition
of additive polynomials. This algorithm may well run in a polynomial num-
ber of field operations, subject to a conjectured (but unproven) upper bound
on the degrees of splitting fields of additive polynomials. This conjecture
follows immediately from a much stronger (and also unproven) conjecture of
Ore[1933b].
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In chapter six we define the rational function decomposition problem. We
show a normalisation of this problem to a more a more uniquely defined form.
We then show that the rational function decomposition problem is reducible
to this normal rational function decomposition problem. Finally, we present
an algorithm for solving the normal problem (in an exponential number of
field operations in the input degree).

In summary the main original results of this thesis are:

(1) five equivalent formulations of the univariate decomposition problem
and two formulations of the multivariate decomposition problem,

(2) a reduction from the general problem of finding decompositions into
an arbitrary number of factors of given degree to the bidecomposition
problem, for certain “nice” families of polynomials,

(3) an exponential time algorithm for decomposing multivariate polyno-
mials (in both the tame and wild cases) over any field supporting a
factoring algorithm,

(4) a precise determination of the maximum number of decompositions of
an additive polynomial (which is super-polynomial in the degree), giv-
ing a super-polynomial lower bound on the number of decompositions
of a given polynomial in the wild case,

(5) a polynomial time algorithm for the complete decomposition of additive
polynomials, and hence an algorithm for determining indecomposabil-
ity,

(6) a quasi-polynomial time algorithm for the decomposition of an additive
polynomial into factors of given degrees,

(7) polynomial time algorithms for the decomposition of two special classes
of additive polynomials, the completely reducible additive polynomials
and the similarity free additive polynomials,

(8) a quasi-polynomial time algorithm for the absolute decomposition of
additive polynomials, which could well run in polynomial time, subject
to an unproven conjecture of Ore[1933b],

(9) a definition of the rational function decomposition problem, as well as
a normalised form of this problem, and a reduction from the general
problem to the normal problem,
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(10) a computational solution to the normal rational function decomposition
problem, requiring an exponential number of field operations.

Results 5 through 8 assume the existence of a polynomial time algorithm for
factoring univariate polynomials.
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1 Polynomial Decomposition
1.1 Definition of the Problem
Let F be an arbitrary field and K an extension field of F . A decomposition
of a polynomial f ∈ F [x] is an ordered sequence of polynomials fi ∈ K[x]
for 1 ≤ i ≤ m such that

f = fm(fm−1(· · · (f2(f1)) · · ·)
= fm ◦ fm−1 ◦ · · · ◦ f2 ◦ f1.

If K = F then the decomposition is said to be rational. The polynomial f is
considered to be (rationally) indecomposable if for any (rational) decompo-
sition, all but one of the composition factors has degree one. If this is even
true when K is allowed to be an algebraic closure of F , then f is absolutely
indecomposable.

Assume f = g ◦ h where f ∈ F [x] and g, h ∈ K[x]. Assume also that a
and c are the leading (high order) coefficients of f and h respectively. Then

f

a
= (

1

a
g(cx+ h(0))) ◦ h− h(0)

c

is a decomposition of a monic polynomial into two monic polynomials, the
second of which has constant coefficient zero. Thus, without loss of generality,
we can assume for any decomposition f = g◦h that f, g, and h are monic and
h(0) = 0. Similarly, if f = fm ◦ fm−1 ◦ · · · ◦ f1, we can assume that f ∈ F [x]
and fi ∈ K[x] for 1 ≤ i ≤ m are monic and fi(0) = 0 for 1 ≤ i < m. Call
any decomposition of this form a normal decomposition.

Define the rational normal decomposition problem as follows. For any
n,m ∈ N, an ordered factorisation of n of length m is an m-tuple

℘ = (rm, rm−1, . . . , r1)

where ri ∈ N and ri ≥ 2 for 1 ≤ i ≤ m and∏
1≤i≤m

ri = n.

Let m ∈ N \ {0} and let F be any field of characteristic p, where p is a prime
number. Let PF = {f ∈ F [x] : f monic}. Define

DECF
℘ =

(f, (fm, fm−1, . . . , f1)) ∈ PF × (PF )m
∣∣∣∣∣
f = fm ◦ fm−1 ◦ · · · ◦ f1

where deg fi = ri and

fi(0) = 0 for 1 ≤ i < m

 .
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The computational problem is, given f ∈ PF and ℘ as above, to decide
whether there exist any

(fm, fm−1, . . . , f1) ∈ (PF )m

such that

(f, (fm, fm−1, . . . , f1)) ∈ DECF
℘ ,

and in the affirmative case, to compute one or all of them.

The rational normal bidecomposition problem is a restriction of the above
problem to ordered factorisations ℘ = (r2, r1) of length two. Mathematically,
this problem addresses many of the same questions as the general problem
since we can always look at decompositions into two parts, and then continue
recursively on the composition factors obtained. This problem has been ex-
amined extensively in the literature, but many unresolved questions remain.
Two basic cases emerge in the mathematical behaviour of the bidecomposi-
tion problem. The “tame” case, when p - r2, is as its name might suggest,
well behaved. Kozen and Landau[1986] observed that there exists at most
one decomposition for any given f and ℘ (this also follows from Fried and
MacRae[1969a]). Furthermore, they showed it can be determined in poly-
nomial time. As well, any normal decomposition of f will be rational in
this case. This was shown for the case F = C by Ritt[1922], for all fields of
characteristic zero by Levi[1942], and for the general “tame” case by Fried
and MacRae[1969a].

The “wild” case, when p|r2, is much harder to deal with, both mathe-
matically and computationally. Fields are exhibited over which the problem
is undecidable in von zur Gathen[1988]. Decompositions are not necessar-
ily unique as the following example shows (other examples can be found in
Ore[1933b]). Let F = GF (5). Then

f = x53 + x52 + x5 + x = (x52 + 3x5 + 2x) ◦ (x5 + 3x)

= (x52 + 4x5 + 3x) ◦ (x5 + 2x)

= (x52 + x) ◦ (x5 + x).

Here f has 3 distinct decompositions in DECF
(52,5). Also, in the “wild” case

decompositions may not be rational. With F as above consider the polyno-
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mial

f = x52 + x5 + x

= (x5 + αx) ◦ (x5 + βx)

= x52 + (β5 + α)x5 + αβx.

It follows that α + β5 = αβ = 1, and the polynomial f has a decomposition
of this form if and only if β is a root of ϕ = x6− x+ 1 ∈ F [x]. But ϕ has no
roots in F , and hence f has monic normal decompositions only in algebraic
extensions of F . It will be seen that even in small finite fields the number of
bidecompositions of a given polynomial of degree n can be super-polynomial
in n. Polynomial time decomposition algorithms for rational decompositions
and for decompositions in algebraic extensions are known to exist only for
certain classes of polynomials.

The ring of polynomials F [x] under addition and composition is obviously
without zero divisors. It is not a (left or right) Euclidean ring however, as
right or left division with remainder of f ∈ F [x] by g ∈ F [x] makes sense
only when the degree of g divides the degree of f .

Let F = GF (4), and let ω ∈ F be a primitive cube root of unity. Consider
the polynomial

f = (x4 − x)3 ∈ F [x].

Dorey and Whaples[1974] show

f = (x4 − x3 − x2 + x) ◦ (x3 + ωαx+ αω2)

for any α ∈ F . Hence left (compositional) division of f by (x4 − x3 −
x2 + x) is not unique. A somewhat stronger statement can be made about
(compositional) right division. Let F be an arbitrary field andK an extension
field of F .

Lemma 1.1. If f, h ∈ F [x] and g ∈ K[x] are nonzero of degrees n, r and s
respectively, and f = g ◦ h, then

(i) g is uniquely determined by f and h, and

(ii) g ∈ F [x].

Proof.



Functional Decomposition of Polynomials 15

(i) Assume g′ ∈ K[x] is such that f = g′ ◦ h. Then

0 = g ◦ h− g′ ◦ h
= (g − g′) ◦ h,

and as F [x] under composition has no zero divisors, this implies that
g = g′.

(ii) The coefficients of f are K-linear combinations of the coefficients of hi

for 1 ≤ i ≤ r. The coefficients of f and hi are in F , so the coefficients
of g are a solution to a system of linear equations over F . Since such a
system has a solution in F if it has one over K, and g is unique by (i),
the coefficients of g are in F and g ∈ F [x]. �

Further structure can be derived about the fields over which decomposi-
tions exist. Let F be a field and let F̄ be a fixed algebraic closure of F .

Lemma 1.2. Let f, g, h ∈ F [x] have degrees n, r, and s respectively and
f = g ◦h. Assume f has splitting field K ⊆ F̄ . Then g splits over K and for
each root α ∈ K of g, h− α splits over K.

Proof. Assume

g =
∏

1≤i≤r
(x− βi)

where βi ∈ F̄ for 1 ≤ i ≤ r. Then

f =
∏

1≤i≤r
(h− βi).

Let γ = βi for some i ∈ N with 1 ≤ i ≤ r. If α ∈ F̄ is a root of h− γ, then α
is a root of f . Hence α ∈ K and h− γ splits over K. Since γ is the product
of the roots of h− γ, γ ∈ K. Therefore, g splits over K as well. �

This theorem implies a number of interesting facts about decompositions
over extensions of the ground field.

Corollary 1.3. Let F be an arbitrary field and L ⊇ F an extension field.
Let f ∈ F [x] be monic of degree n with splitting field K. Then, if f is
indecomposable in K, f is indecomposable in L.
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Proof. Suppose f = g ◦ h for some g, h ∈ L[x] whose degrees are at least
two. Then, by lemma 1.2, g splits in K, so g ∈ K[x]. Let γ ∈ K be a root
of g. Then h− γ splits over K (also by lemma 1.2) and h ∈ K[x]. But f is
indecomposable over K and we get a contradiction. �

Decomposition over an arbitrary field extension (or decomposition in the
splitting field as just shown) is called absolute decomposition. We will see in
theorem 2.8 that over many fields F there are polynomials f ∈ F [x] whose
splitting fields are of degree exponential in n over F . Over infinite fields F
von zur Gathen [1987a] showed that there exist polynomials of degree n such
that the coefficients of an absolute decomposition generate a field extension
of degree exponential in n over F . It is conjectured that such examples exist
over finite fields as well.

1.2 Decomposition and the Subfields of F (x).
The decompositions of a polynomial f ∈ F [x] have a strong correspondence
with the lattice of subfields between F (f) and F (x), where F (x) is an al-
gebraic extension over F (f) of the same degree as the degree of f (see van
der Waerden[1970] section 10.2). This was first examined by Levi[1942] and
later by Fried and MacRae[1969a,b]. Let n ∈ N and ℘ = (rm, rm−1, . . . , r1)
be an ordered factorisation of n. Let L be the set of all subfields of F (x).
Define

FIELDSF℘ =

(f, (Fm, . . . , F1)) ∈ PF × Lm
∣∣∣∣∣
Fm = F (f), F0 = F (x),

Fm ⊆ Fm−1 ⊆ · · · ⊆ F1 ⊆ F0,

[Fi−1 : Fi] = ri, 1 ≤ i ≤ m


where [Fi−1 : Fi] is the algebraic degree of Fi−1 over Fi.

Let f ∈ F [x] be of degree n. Also, let (f, (fm, fm−1, . . . , f1)) ∈ DECF
℘

and for 1 ≤ i ≤ m let hi = fi ◦ fi−1 ◦ · · · f1 and Fi = F (hi), the field F with
hi adjoined. Define ΓD

F : DECF
℘ → FIELDSF℘ by (f, (fm, fm−1, . . . , f1)) 7→

(f, (Fm, Fm−1, . . . , F1)). This is a map into FIELDSF℘ by the fact that [Fi−1 :
Fi] = ri.

Theorem 1.4. ΓD
F is a bijection.

Proof. Different decompositions give rise to different chains of fields because
for any hi, h

′
i ∈ F [x], F (hi) = F (h′i) if and only if hi = ah′i + b for some
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a, b ∈ F , a 6= 0. If hi, h
′
i ∈ F [x] are monic with hi(0) = h′i(0) = 0, this

implies hi = h′i. Thus ΓD
F is injective.

Showing that ΓD
F is surjective is somewhat less trivial. Let f ∈ F [x] be

monic of degree n. Then F (x) is a finite extension of F (f) of degree n. Let
L be a field such that F (f) ⊆ L ⊆ F (x). Then L = F (h) for some h ∈ F (x).
Since h generates L over F and f ∈ L, f = g ◦ h for some g ∈ F [x]. Thus h
is a root of f − g(y) ∈ F (x)[y]. Since f − g(y) is also in F [x, y], all roots in
F (x) must be in F [x] (see van der Waerden[1970] section 5.4) and h ∈ F [x].
As F (ah+ b) = F (h) for a, b ∈ F and a 6= 0, we can assume h is monic with
h(0) = 0. Assume h′ ∈ F [x] is also monic with h′(0) = 0 and L = F (h′).
We know h′ and h have the same degree, that is [F (x) : L], and because
h′ ∈ F (h), h′ = ch + d for some c, d ∈ F , c 6= 0. But both are monic with
constant coefficient zero, so h = h′ and h is unique. Assume h has degree
s. The field L is an algebraic extension of F (f) of degree r = n/s, and the
degree of g ∈ F [x] is r.

Now assume (f, (Fm, Fm−1, . . . , F1)) ∈ FIELDSF℘ . Let hi ∈ F [x] with
hi(0) = 0 be the unique monic generator of Fi as above. Because F (hi−1) ⊇
F (hi), we know hi = fi ◦ hi−1, for some (unique) fi ∈ F [x], for 1 ≤ i <
m. The degree of F (hi−1) over F (hi) is ri, so the degree of fi is ri. Be-
cause f may have a non-zero constant term, f = hm + c, where c ∈ F
is the constant term of f . As before, F (hm−1) ⊇ F (hm) so there ex-
ists a unique f̄m of degree rm such that hm = f̄m ◦ hm−1. Letting fm =
f̄m + c, it follows that (f, (fm, fm−1, . . . , f1)) ∈ DECF

℘ . It is easily seen that
ΓD
F (f, (fm, fm−1, . . . , f1)) = (f, (Fm, Fm−1, . . . , F1)) and so ΓD

F is surjective
and hence bijective. �

Let f ∈ F [x] be separable of degree n (ie. ∂
∂x
f 6= 0). In the separable

case we can study the lattice of fields between F (f) and F (x) by looking at
the Galois group of F (x) relative to F (f). This was first done in Dorey and
Whaples[1974] for the set of additive polynomials (a subset of F [x] which
will be dealt with in detail in a later section). As F (x) is not necessarily a
normal, separable, extension of F (f), we construct the splitting field Ω of
the minimal polynomial of x over F (f). This minimal polynomial is

Φf (y) = f(y)− f ∈ F (f)[y] ⊆ F (x)[y] ,

since we know that x has degree n over F (f) and x satisfies Φf which also has
degree n. Because f is separable, Φf is separable, so the field Ω is a normal,
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separable, extension of F (f) containing F (x). Let Gf = Gal(Ω/F (f)), the
Galois group of Ω relative to F (f), and let Gx ⊆ Gf be the subgroup fixing
F (x) pointwise. Let G be the set of all subgroups of Gf . For n ∈ N and
℘ = (rm, rm−1, . . . , r1), an ordered factorisation of n, define

GROUPSF℘ =

(f, (Gm, . . . ,G1)) ∈ PF × Gm
∣∣∣∣∣
Gm = Gf , G0 = Gx
Gm ⊇ Gm−1 ⊇ · · · ⊇ G1 ⊇ G0

(Gi : Gi−1) = ri, 1 ≤ i ≤ r


where (Gi : Gi−1) is the index of Gi−1 in Gi.

Let f ∈ F [x] be separable of degree n and let (f, (Fm, Fm−1, . . . , F1)) ∈
FIELDSF℘ . As above, let Ω be the splitting field of Φf and let Gf =
Gal(Ω/F (f)). For 1 ≤ i ≤ m let Gi ⊆ GF be the group of automorphisms
fixing Fi pointwise. Define ΓF

G : FIELDSF℘ → GROUPSF℘ by

(f, (Fm, Fm−1, . . . , F1)) 7→ (f, (Gm,Gm−1 . . . ,G1)).

This map is simply the one described in the fundamental theorem of Galois
theory (see van der Waerden[1970] section 8.1-8.3).

Theorem 1.5. If f is separable then ΓF
G is a bijection.

Proof. By the fundamental theorem of Galois theory, there is an inclusion
inverting bijection between fields between F (x) and F (f) and groups between
Gx and Gf . An automorphism group H such that Gx ⊆ H ⊆ Gf corresponds
to the field L such that F (x) ⊇ L ⊇ F (f) which it leaves fixed pointwise.
Thus each chain of fields

F (f) = Fm ⊆ Fm−1 ⊆ · · · ⊆ F1 ⊆ F (x)

corresponds uniquely to a tower of groups

Gf = Gm ⊇ Gm−1 ⊇ · · · ⊇ G0 = Gx.

Also by the fundamental theorem, (Gi : Gi−1) = [Fi−1 : Fi] = ri. As ΓF
G is

exactly this Galois mapping, the fact that it is a bijection follows immedi-
ately. �
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1.3 Separated Polynomials
From the correspondence between decompositions and fields between F (f)
and F (x) we get a useful structural result. This was originally due to
Fried and MacRae[1969b] and was later extended to the multivariate case
by Evyatar and Scott (this will be dealt with in a subsequent section).
Fried and MacRae[1969b] introduce a more general version of the polyno-
mials Φf = f(y) − f(x) ∈ F (f)[y] and Φh = h(x) − h(y) ∈ F (h)[y] pre-
viously described. Let F be an arbitrary field with independent indetermi-
nates x and y over F . A polynomial Υ ∈ F [x, y] is said to be separated if
Υ(x, y) = f1(x)− f2(y) where f1, f2 ∈ F [x]. They then showed the following
theorem linking separated polynomials with the simultaneous bidecomposi-
tion of two polynomials with a common left composition factor:

Fact 1.6. Let f1, f2, h1, h2 ∈ F [x]. Then h1(x) − h2(y)|f1(x) − f2(y) if and
only if there exists a polynomial g ∈ F [x] such that f1 = g◦h1 and f2 = g◦h2.

If we let f1 = f2 and h1 = h2 we immediately have the following corollary:

Corollary 1.7. Let f, h ∈ F [x] be monic of degrees n and s respectively
with h(0) = 0. The following are equivalent:

(i) There exists a g ∈ F [x] such that f = g ◦ h.

(ii) Φh|Φf .

We can now apply this theorem to get another formulation of general
decompositions. Let S = {h(x) − h(y) ∈ F [x, y] : h ∈ PF}. Let n ∈ N and
℘ = (rm, rm−1, . . . , r1), an ordered factorisation of n. Also, let di =

∏
1≤j≤i rj.

Define

SEP F
℘ =

{
(f, (Φm,Φm−1 . . . ,Φ1)) ∈ PF × Sm

∣∣∣ degx Φi = di, Φm = Φf

Φi|Φi+1 for 1 ≤ i < m

}
.

Let (f, (fm, fm−1, . . . , f1)) ∈ DECF
℘ and, for 1 ≤ i ≤ m, let

ui = fi ◦ fi−1 ◦ · · · ◦ f1(x)− fi ◦ fi−1 ◦ · · · ◦ f1(y) ∈ F [x, y].

By corollary 1.7, ui|ui+1. Define the map ΓD
S : DECF

℘ → SEP F
℘ by

(f, (fm, fm−1, . . . , f1)) 7→ (f, (um, um−1 . . . , u1)).
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Theorem 1.8. ΓD
S is a bijection.

Proof. As distinct decompositions will give a distinct sequences of ui’s for
1 ≤ i ≤ m, this is an injective mapping from DECF

℘ to SEP F
℘ .

Now assume (f, (vm, vm−1, . . . , v1)) ∈ SEP F
℘ where vi(x, y) = gi(x)−gi(y)

for 1 ≤ i ≤ m. By corollary 1.7, we know that for 1 < i ≤ m, gi = fi ◦ gi−1

for some fi ∈ F [x] of degree ri. Thus (f, (fm, fm−1, . . . , f3, f2, g1)) ∈ DECF
℘ .

Each member of SEP F
℘ will be mapped to a different member of DECF

℘ so
there is an injection from SEP F

℘ to DECF
℘ . This is obviously the inverse of

ΓD
S , and so ΓD

S is a bijection. �

1.4 Multidimensional Block Decompositions

Kozen and Landau[1986] developed another formulation of the bidecomposi-
tion of a polynomial f ∈ F [x] based on its Galois group Gf , and this group’s
action on the roots of f in its splitting field. The roots are partitioned by
Gf into blocks or systems of imprimitivity (see van der Waerden[1970], sec-
tion 7.9). A necessary and sufficient condition in terms of these blocks is
given for there to be a corresponding bidecomposition of f . We extend this
formulation to general decompositions of f corresponding to a given ordered
factorisation ℘.

Let U be a set. A multiset S over U is any map S : U → N. An element
α ∈ U is an element of S (α ∈ S) if and only if S(α) > 0. A multiset can be
viewed as an extension of the characteristic function of a set. A multiset T
is a submultiset of a multiset S (T ⊆ S) if for all α ∈ U , T (α) ≤ S(α). If
σ : U → U is a map, we consider the multiset σS to be defined such that for
all α ∈ U

(σS)(α) =
∑
β∈S
σβ=α

S(β).

The cardinality of a multiset S is

|S| =
∑
α∈S

S(α).

At first reading, the reader is encouraged to think of multisets as sets S ⊆ U
(or equivalently, as the characteristic functions of sets); if the polynomial f
to be decomposed is squarefree, indeed only such sets will occur.
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We will see that decompositions into, say, three composition factors, cor-
respond in a natural way to certain “multisets of multisets of multisets of
roots”. We introduce these “typed” objects over some set U as follows. A
multiset with one level over U is a multiset over U and, for i > 1, a multiset
with i levels over U is a multiset over the set of multisets with i − 1 levels
over U . Let B be a multiset with m levels over U . A multiset C is a level k
member of B if

C ∈ Bk−1 ∈ · · · ∈ B1 ∈ B.

Notice that the structure of B implies that C must be a multiset with m− k
levels. C also has a natural multiplicity within B, namely

B(B1) ·B1(B2) · · ·Bk−2(Bk−1) ·Bk−1(C).

This allows us to “flatten” the top k levels of B and speak of the multiset of
all multisets at level ` in B. We denote this multiset with m − k + 1 levels
as B[`].

Let m ∈ N and ℘ = (rm, rm−1, . . . , r1) ∈ Nm. A multiset B with m levels
over U is a ℘-block if either

(i) m = 1 and B is a multiset over U of cardinality r1, or

(ii) m > 1 and B is a multiset with cardinality rm of (rm−1, rm−2, . . . , r1)-
blocks over U .

Let BF be the set of all multisets with i levels over F̄ for all i > 0, where F̄
is a fixed algebraic closure of F . Define the set

BLOCKSF℘ =

(f,B) ∈ PF × BF
∣∣∣∣∣

B is a ℘-block over F̄ such that

f =
∏

α∈B[m]

(x− α)B
[m](α)

 .
Let f ∈ F [x] be of degree n with splitting field K ⊆ F̄ and Galois group
Gf = Gal(K/F ) and let ℘ = (rm, rm−1, . . . , r1) be an ordered factorisation
of n. A ℘-block B over K is a ℘-block decomposition of f if

(i) f =
∏

α∈B[m]

(x− α)B
[m](α), and

(ii) for any α, β ∈ B[m] and σ ∈ Gf such that σα = β, and for 1 ≤ ` < m
and any C,D over K with C,D ∈ B[m−`] such that α ∈ C [`] and β ∈ D[`],
it is true that σC [`] = D[`].
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A ℘-block decomposition is said to be functional if there exist monic poly-
nomials h1, h2, . . . , hm−1 ∈ F [x] such that for 1 ≤ ` < m, h`(0) = 0 and for
all C ∈ B[m−`] there exists a γC ∈ K such that

∏
α∈C[`]

(x− α)C
[`](α) = h` + γC.

Define

FBLOCKSF℘ =

{
(f,B) ∈ PF × BF

∣∣∣ B is a functional ℘-block

decomposition of f

}
.

Note that FBLOCKSF℘ ⊆ BLOCKSF℘ .
We now give an example of a ℘-block decomposition. Let p ∈ N be prime

and let F = GF (p). Let f ∈ F [x] be irreducible of degree n = 12 with
splitting field K = F [z]/(f) and Galois group Gf = Gal(K/F ) = {σj :

x → xp
i

for 0 ≤ j < 12}. We will exhibit a block decomposition of f in
BLOCKSF℘ , where ℘ is the ordered factorisation (2, 3, 2). Since F is finite

and f is irreducible, f has roots {α, αp, αp2 , . . . , αp11} ⊆ K. First, we find
a block decomposition B of f in BLOCKSF(6,2). Let B = {C0, C1, . . . , C5},
where Ci = {αpi , αpi+6} for 0 ≤ i < 6. Condition (i) of the definition of a
℘-block trivially holds. If, for 0 ≤ i, j, k < 12, σkα

pi = αp
i+k

= αp
j
, then

i + k ≡ j mod 12 and σkα
pi+6

= αp
i+6+k

= αp
j+6

for 0 ≤ i, j, k < 12 since
i+ 6 + k ≡ j + 6 mod 12. Thus, condition (ii) in the definition holds as well.
In a similar way we find that A = {D0, D1} where Di = {α2j+i : 0 ≤ j < 5}
for 0 ≤ i < 2 is a decomposition of f in BLOCKSF(2,6). Combining these two
decomposition, it follows that

E =
{
{{α, αp6}, {αp2 , αp8}, {αp4 , αp10}} , {{αp, αp7}, {αp3 , αp9}, {αp5 , αp11}}

}
is a block decomposition of f in BLOCKSF(2,3,2).

We now proceed to describe a bijective map ΓD
B fromDECF

℘ to FBLOCKSF℘ .
We first define ΓD

B from DECF
℘ to BLOCKSF℘ . We then show it is a map to

FBLOCKSF℘ , and finally that it is bijective.
Once again, let n,m ∈ N and ℘ = (rm, rm−1, . . . , r1), an ordered factori-

sation of n. Also, let (f, (fm, fm−1, . . . , f1)) ∈ DECF
℘ , where f ∈ F [x] has

splitting field K. We define the map ΓD
B recursively as follows. If m = 1, let
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B be the multiset of roots of f . It follows immediately that B is a ℘-block
of the roots of f in K, so we let ΓD

B(f, (f)) = (f,B).
Now assume m > 1. We know f = fm ◦ hm−1 where h` = f`−1 ◦ f`−2 ◦

· · · ◦ f1 ∈ F [x] for 1 ≤ ` ≤ m. Let Dm be the multiset of roots of fm in K
(we know they are in K by lemma 1.2). Then

f =
∏

α∈Dm
(hm−1 − α)Dm(α).

For each α ∈ Dm, let Eα = ΓD
B(hm−1 − α, (fm−1 − α, fm−2, fm−3, . . . , f1)),

an (rm−1, rm−2, . . . , r1)-block over K of the roots in K of hm−1 − α by the
recursive definition. For each (rm−1, rm−2, . . . , r1)-block C over K, define the
multiset B such that

B(C) =

{
Dm(α) if C = Eα for some α ∈ Dm,

0 otherwise.

B is the multiset of the Eα’s (for all α ∈ Dm) with appropriate multiplicity.
This is a ℘-block over K of the roots of f and hence (f,B) ∈ BLOCKSF℘ .
We therefore define ΓD

B(f, (fm, fm−1, . . . , f1)) = (f,B). We have completely
described the map ΓD

B : DECF
℘ → BLOCKSF℘ .

Lemma 1.9. ΓD
B is a map from DECF

℘ to FBLOCKSF℘ .

Proof. Let (f, (fm, fm−1, . . . , f1)) ∈ DECF
℘ and let (f,B) be its image in

BLOCKSF℘ under ΓD
B . It follows immediately that (f,B) is functional from

the definition of ΓD
B . We must also show that condition (ii) in the definition

of ℘-block decomposition holds for (f,B).
Assume α, β ∈ B[m] and σ ∈ Gf such that σα = β. Let ` ∈ N such that

1 ≤ ` < m and let C,D ∈ B[m−`]. We know∏
a∈C[`]

(x− a)C
[`](a) = h` + γ,

∏
b∈D[`]

(x− b)D[`](b) = h` + δ,

for some γ, δ ∈ K by the definition of ΓD
B . Since

0 = σ(h`(α) + γ)

= h`(σα) + σγ

= h`(β) + σγ
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and h`(β) + δ = 0, we also know δ = σγ. Furthermore, since

σ(h` + γ) = σ
∏

a∈C[`]

(x− a)C
[`](a)

=
∏

a∈C[`]

(x− σa)C
[`](a),

and
σ(h` + γ) = h` + δ

=
∏

b∈D[`]

(x− b)D[`](b),

there is a bijection between the linear factors (over K) of h` + γ and h` + δ.
As there is a trivial bijection between the linear factors of a polynomial over
its splitting field and the multiset of roots of that polynomial, σC [`] = D[`].
Therefore ΓD

B is a map from DECF
℘ to FBLOCKSF℘ . �

Theorem 1.10. ΓD
B is a bijection.

Proof. ΓD
B is an injection since each different decomposition gives a different

sequence h1, h2, . . . , hm, and hence a different block decomposition. We now
show it is also surjective by induction on m. Let (f,B) ∈ FBLOCKSF℘ . If
m = 1 then B is simply the multiset of roots of f and ΓD

B(f, (f)) = (f,B).
Assume m is greater than one. Then

f =
∏

α∈B[m]

(x− α)B
[m](α)

=
∏
D∈B

(
∏

α∈D[m−1]

(x− α)D
[m−1](α))B(D)

=
∏
D∈B

(hm−1 − γD)B(D)

=
∏
D∈B

(x− γD)B(D) ◦ hm−1

for some γD ∈ K for each D ∈ B. It follows that there exists a polynomial
fm ∈ K[x] such that

fm =
∏
D∈B

(x− γD)B(D)
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and f = fm ◦ hm−1. By lemma 1.1, fm ∈ F [x] and this fm is unique. Now
let C ∈ B[m−`] for any ` with 1 < ` < m. Then∏

α∈C[`]

(x− α)C
[`](α) = h` − δ for some δ ∈ K

=
∏
D∈C

(
∏

α∈D[`−1]

(x− α)D
[`−1](α))C(D)

=
∏
D∈C

(h`−1 − γD)C(D)

=
∏
D∈C

(x− γD)C(D) ◦ h`−1

for some γD ∈ K for each D ∈ C. So there exists a polynomial g` ∈ K[x]
such that

g` =
∏
D∈C

(x− γD)C(D)

and h` − δ = g` ◦ h`−1. Rearranging this, h` = (g` + δ) ◦ h`−1 and by lemma
1.1, f` = g` + δ ∈ F [x] and this f` is unique. This shows h` = f` ◦ h`−1 for
some uniquely determined f` ∈ F [x] for 1 < ` < m.

It follows that f = fm◦fm−1◦· · ·◦f3◦f2◦h1 where fi ∈ F [x] is monic of de-
gree ri for 1 < i ≤ m and deg h1 = r1. Therefore (f, (fm, fm−1, . . . , f3, f2, h1)) ∈
DECF

℘ and ΓD
B(f, (fm, fm−1, . . . , f3, f2, h1)) = (f,B). This means that ΓD

B is
surjective and hence bijective. �

1.5 Chebyshev Polynomials
The Chebyshev polynomials, Ti ∈ C[x] for i ∈ N, are usually defined over the
complex numbers by the identity

Ti(cos θ) = cos iθ.

From the trigonometric identity

cos θ1 + cos θ2 = 2 cos

(
θ1 + θ2

2

)
cos

(
θ1 − θ2

2

)
,

we get
cos iθ + cos((i− 2)θ) = 2 cos((i− 1)θ) cos θ
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and

Ti(cos θ) + Ti−2(cos θ) = 2 cos θTi−1(cos θ).

This gives the defining recurrence relation

T0 = 1,

T1 = x,

Ti = 2xTi−1 − Ti−2, (i > 1)

so that
T2 = 2x2 − 1,

T3 = 4x3 − 3x,

T4 = 8x4 − 8x2 + 1,

...

Note that Ti ∈ Z[x] for all i ∈ N, so Chebyshev polynomials are in fact
well defined (by this recurrence) in arbitrary fields of arbitrary characteris-
tic, and have coefficients in the prime field of this characteristic. We will
prove a number of useful theorems concerning Chebyshev polynomials over
arbitrary fields. Obviously, no analytic properties of trigonometric functions
have meaning in fields of positive characteristic, so we will not make use of
any of these.

If F has characteristic two, then

T0 = 1,

T1 = x,

Ti = Ti−2 for i > 2.

Therefore Ti = 1 if i is even and Ti = x if i is odd.
Let F be any field of characteristic p 6= 2, and for i ∈ N, let Ti be the

ith Chebyshev polynomial. A quick examination of the defining recurrence
reveals that deg Ti = i.

Theorem 1.11.

Ti

(
x+ x−1

2

)
=
xi + x−i

2
.
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Proof. We will proceed by induction on i. Easily, the theorem holds for T0

and T1. Assume it holds for Tj with 0 ≤ j < i. Then

Ti

(
x+ x−1

2

)
= 2 · x+ x−1

2
· Ti−1

(
x+ x−1

2

)
− Ti−2

(
x+ x−1

2

)

= (x+ x−1)

(
xi−1 + x−(i−1)

2

)
− xi−2 + x−(i−2)

2

=
xi + x−i

2

and the theorem holds for all Ti, i ∈ N. �

Using theorem 1.11, we can show the following fact about the composition
of Chebyshev polynomials over arbitrary fields F of characteristic p.

Theorem 1.12. For i, j ∈ N, Ti ◦ Tj = Tij = Tj ◦ Ti.

Proof. If F has characteristic two, then the theorem holds trivially. If the
characteristic p of F does not equal two then,

Ti ◦ Tj
(
x+ x−1

2

)
= Ti

(
xj + x−j

2

)

=
xij + x−ij

2

= Tij

(
x+ x−1

2

)

From this identity in F (x), we conclude that Ti ◦ Tj = Tij. �

In fields of characteristic p > 2, a useful theorem can be shown about the
Chebyshev polynomials of degree pi for i ≥ 1.

Theorem 1.13. Let F be any field of characteristic p > 2. For i ∈ N,
Tpi = xp

i
.

Proof. By theorem 1.12,

Tpi =

i times︷ ︸︸ ︷
Tp ◦ Tp ◦ · · · ◦ Tp
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so it is sufficient to show Tp = xp. We know

Tp

(
x+ x−1

2

)
=
xp + x−p

2

=

(
x+ x−1

2

)p
.

From this identity in F (x), we conclude that Tp = xp. �

1.6 Complete Rational Decompositions

A complete rational decomposition of a polynomial f ∈ F [x] is of the form

f = fm ◦ fm−1 ◦ · · · ◦ f2 ◦ f1

where each fi ∈ F [x] is indecomposable and nontrivial (ie. with degree
greater than one). A natural question to ask concerns the uniqueness of such
decompositions. As we do not want to worry about affine linear transfor-
mations of composition factors, we consider only complete rational normal
decompositions where f is monic and fi ∈ F [x] are monic for 1 ≤ i ≤ m and
fi(0) = 0 for 1 ≤ i < m.

Two types of ambiguous decompositions emerge. If u ∈ F [x], then (xm ·
ur)◦xr = xr◦(xm ·u(xr)) for m, r ∈ N. Call this an exponential ambiguity. As
seen in the previous section, the Chebyshev polynomials Ti ∈ F [x] for i ∈ N
have the property that Ti ◦Tj = Tj ◦Ti. Call this a trigonometric ambiguity.
Ritt[1922] showed that if F = C, all complete normal decompositions differ
only by ambiguities of these two forms. Engstrom[1941] showed that in fields
F of characteristic zero that

(i) polynomials indecomposable over F are indecomposable over any alge-
braic extension of F (ie. all decompositions are rational), and

(ii) all complete normal decompositions differ only by trigonometric and
exponential ambiguities.

These two theorems are known as Ritt’s first and second theorems. Fried
and MacRae[1969a] showed them true when the characteristic of F is greater
than the degree of the polynomial.
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For an arbitrary field F of characteristic p this is not necessarily true.
Dorey and Whaples[1974] give the following example of two complete rational
decompositions of the polynomial f ∈ F [x]:

f = xp
3+p2 − xp3+1 − xp2+p + xp+1

= xp+1 ◦ (xp + x) ◦ (xp − x)

= (xp
2 − xp2−p+1 − xp + x) ◦ xp+1.

The composition factor xp
2−xp2−p+1−xp +x is indecomposable because the

composition of two polynomials of degree p can never have a term of degree
p2 − p+ 1.

The various equivalent formulations to polynomial decompositions can
be extended to complete decompositions in the obvious manner. Let ℘ be
an ordered factorisation of n of length m. Let cDECF

℘ ⊆ DECF
℘ be the set

of complete decompositions of polynomials corresponding to ordered factori-
sation ℘. The image of cDECF

℘ in FIELDSF℘ , GROUPSF℘ , SEP F
℘ , and

FBLOCKSF℘ under the bijections described in this chapter will be called,
respectively, cFIELDSF℘ , cGROUPSF℘ , cSEP F

℘ and cBLOCKSF℘ . Obvi-
ously, any member of any one of these sets will correspond to a complete
rational normal decomposition.

The sets cFIELDSF℘ and cGROUPSF℘ have useful characterisations in
their own right. If (f, (Fm, Fm−1, . . . , F1)) ∈ cFIELDSF℘ , then

F (f) = Fm ⊆ Fm−1 ⊆ · · · ⊆ F1 ⊆ F (x)

is a maximal chain of fields. If a field did exist between Fi and Fi+1 then fi+1,
the i + 1’st composition factor from the corresponding element
(f, (fm, fm−1, . . . , f1)) ∈ cDECF

℘ , would be decomposable. In a similar fash-
ion, if (f, (Gm,Gm−1, . . . ,G1)) ∈ cGROUPSF℘ , then

Gx ⊆ G1 ⊆ · · · ⊆ Gm−1 ⊆ Gm = Gf

is a maximal tower of groups.
When dealing with complete decompositions of a polynomial f ∈ F [x],

we often wish to deal with all decompositions of f regardless of the ordered
factorisations to which they correspond. With this in mind we define

cDECF
∗ =

⋃
℘∈T

cDECF
℘ .
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where T is the set of all finite tuples of integers greater than one. Similarly we
can define cFIELDSF∗ , cGROUPSF∗ , etc, and restate Ritt’s second theorem
in this context: For any monic f ∈ F [x], all decompositions of f in cDECF

∗
are equivalent up to trigonometric and exponential ambiguities.

1.7 The Number of Indecomposable Polynomials
It can shown that “most” polynomials over an arbitrary field F are indecom-
posable. This can be done using an algebraic dimension argument over an
algebraically closed field and by a counting argument over a finite field.

Let F be a field, and M ⊆ F [x] be the set of monic polynomials with
constant coefficient zero. Also, for n ∈ N, let Mn = {f ∈ M | deg f = n}
and for r, s ∈ N with rs = n and g ∈ Mr and h ∈ Ms, define α(r,s) : Mr ×
Ms → Mrs by α(r,s)(g, h) = g ◦ h (ie. the composition function). Assume
f =

∑
0≤i≤n aix

i ∈ Mn where ai ∈ F for 0 ≤ i ≤ n. We define the map
λn : Mn → F n−1 by λn(f) = (an−1, an−2, . . . , a1). This is obviously a bijective
map from Mn to F n−1. Assume r and s are at least two and define β(r,s) :
F r−1×F s−1 → F n−1 by β(r,s) = λn◦α(r,s)◦(λ−1

r ×λ−1
s ). This is the composition

map in F n−1. Let

D(r,s) = {β(r,s)(A,B) ∈ F n−1 |A ∈ F r−1, B ∈ F s−1}

be the image of β(r,s) in F n−1. We will show that the “size” of F n−1 is “much
larger” than the “size” of

D =
⋃
rs=n

D(r,s),

the set of all decomposable polynomials in Mn. Because we can normalise
any decomposition, this is in fact a general statement about the number of
indecomposable polynomials in F [x].

Consider the case where F is an algebraically closed field. For r, s ∈ N
with rs = n and r > 1, D̄(r,s) (the Zariski closure of D(r,s)) is an algebraic
set of dimension at most r + s− 2. Therefore

D̄ =
⋃
rs=n
r,s>1

D̄(r,s)

has dimension at most

max{dim D̄(r,s) : rs = n, r, s > 2} ≤ n

2
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and this is less than the dimension n−1 of F n−1. Therefore, over an arbitrary
infinite field, “most” polynomials are indecomposable even over an algebraic
closure of that field, in a strong algebraic sense.

Turning to the case F = GF (q) where q = pi for some prime number p and
i ∈ N, we can make a counting argument to show that only an exponentially
small number of polynomials in F [x] of degree n are decomposable. For any
ordered factorisation (r, s) of n with s > 1, we know #D(r,s) ≤ qr−1qs−1 =
qr+s−2. Summing over all possible ordered factorisation (r, s) of n where
s > 1, we get

#D ≤
∑
rs=n

qr+s−2

≤ d(n)q2+n/2−2

≤ d(n)qn/2

.

where d(n) is the number of divisors of n. From Hardy and Wright[1960]
(theorem 317) we get d(n) ≤ cεn

ε for any ε > 0 and some cε > 0 (depending
on ε). Fixing an ε > 0,

#D ≤ cεq
n
2

≤ cεq
ε logq n+n

2

≤ kq2n/3.

for some k > 0. This shows that only an exponentially small fraction of the
polynomials of degree n over GF (q) are decomposable.

1.8 Multivariate Decomposition
Let F be an arbitrary field and let x, x1, . . . , x`, y, y1, . . . , y` be algebraically
independent indeterminates over F for ` ∈ N \ {0}. For convenience we write
the sequences x1, . . . , x` and y1, . . . , y` as ~x and ~y respectively. For f ∈ F [~x],
let deg f be the total degree of f . We will simply refer to this as the degree of
f . For f ∈ F [~x] of degree n, a decomposition of f is a pair (g, h) ∈ F [x]×F [~x]
such that f = g ◦ h. Note that if g has degree r and h has degree s, then f
has degree n = rs. For any α ∈ F , we have f = [g ◦ (x + α)] ◦ [(x− α) ◦ h]
so we can assume h(0, . . . , 0) = 0. Let (r, s) be an ordered factorisation of n.
For any positive integer `, define the set

MDECF,`
(r,s) =

{
(f, (g, h)) ∈ F [~x]× (F [x]× F [~x])

∣∣∣ f = g ◦ h, deg g = r,

deg h = s, h(0, . . . , 0) = 0

}
.
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If (f, (g, h)) ∈MDECF,`
(r,s) then for any α ∈ F , (f, (g(αx), α−1h)) ∈MDECF,`

(r,s).

We say the two decompositions (f, (g, h)), and (f, (g(αx), α−1h)) are linearly
equivalent. Removing linearly equivalent decompositions from MDECF,`

(r,s)

and choosing a canonical representative from each equivalence class is not
as natural as in the univariate case and will not be attempted here. Two
different approaches to this problem will be presented when dealing with
multivariate decompositions algorithmically. As in the univariate case we
define the tame case to be when p - r. In von zur Gathen [1987b] it is shown
that in the tame case for any f ∈ F [x] of degree n and any ordered factori-
sation (r, s) of n, all decompositions of f (if any) in MDECF,`

(r,s) are linearly
equivalent.

Evyatar and Scott[1972] show the following multivariate generalisation
of the Fried and MacRae[1968a] theorem concerning separated polynomials
(see section 1.C).

Fact 1.14. If f, h ∈ F [~x] then there exists a g ∈ F [x] such that f = g ◦ h if
and only if h(~x)− h(~y)|f(~x)− f(~y).

Define the set W` = {h(~x)− h(~y)|h ∈ F [~x]}. Also define

MSEP F,`
(r,s) =

{
(f, (Φ,Ψ)) ∈ F [~x]× (W`)

2
∣∣∣ Φ = f(~x)− f(~y), Ψ|Φ,

deg Φ = rs, deg Ψ = r

}
.

Considering fact 1.14, there is a map ΓMD
MS : MDECF,`

(r,s) → MSEP F,`
(r,s).

Namely, for (f, (g, h)) ∈ MDECF,`
(r,s), (f, (g, h)) 7→ (f, (f(~x) − f(~y), h(~x) −

h(~y))).

Theorem 1.15. ΓMD
MS is a bijection.

Proof. Assume f, h ∈ F [~x] and g, g′ ∈ F [x] where h 6= 0 and f = g ◦ h =
g′ ◦ h. Then g ◦ h − g′ ◦ h = (g − g′) ◦ h = 0 and g − g′ = 0. Thus
g is uniquely determined by f and h and ΓMD

MS is injective. Conversely, if
(f, (f(~x)− f(~y), h(~x)− h(~y))) ∈MSEP F,`

(r,s), then by fact 1.14 there exists a
g ∈ F [x] such that f = g ◦h and the inverse map is also injective. Therefore,
ΓMD
MS is a bijection. �
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2 Decomposition Algorithms

The development of algorithms for the decomposition of polynomials has oc-
curred relatively recently. Although related problems for power series were
examined by Brent and Kung[1976,1977], polynomial decomposition algo-
rithms (for univariate polynomials) were not truly examined until Barton
and Zippel[1976,1985]. Their algorithms require an exponential number of
field operations (in the degree of the input polynomial) and work over any
field which supports a factoring algorithm. Alagar and Thanh[1986] showed
a similar algorithm which also requires an exponential number of field op-
erations. The breakthrough came when Kozen and Landau[1986] developed
a decomposition algorithm for the tame case which required a polynomial
number of field operations (in the degree of the input polynomial) as well
as giving a fast parallel algorithm. In von zur Gathen[1987] this result for
the tame case was improved, and a very fast parallel algorithm was devel-
oped. Kozen and Landau[1986] also show a decomposition algorithm for the
general univariate case based on block decomposition, for fields supporting a
polynomial factorisation algorithm. This algorithm requires an exponential
number of field operations in the degree of the input polynomial, plus the
cost of factoring the input polynomial. For separable irreducible polynomials
over arbitrary fields their algorithm is shown to work in a quasi-polynomial
number of field operations. And for irreducible polynomials over finite fields,
their algorithm requires only a polynomial number of field operations. All
this is reported in von zur Gathen, Kozen, and Landau[1987]. Complete de-
compositions are dealt with in the tame case in von zur Gathen[1987]. We
also consider computing decompositions of polynomials corresponding to a
given ordered factorisation of their degrees.

Multivariate polynomial decomposition in the tame case was examined by
Dickerson[1987] and von zur Gathen[1987]. Both showed algorithms requiring
a polynomial number of field operations (in the size of the input polynomial):
Dickerson[1987] for the “monic” tame case and von zur Gathen[1987] for the
tame case in general. We present an algorithm for multivariate decomposition
over any field supporting a univariate polynomial factoring algorithm, based
on the theorem of Evyatar and Scott[1982] and the univariate algorithm of
Barton and Zippel[1985]. In general, it will require an exponential number
of field operations.



34 Mark Giesbrecht

2.1 The Model of Computation

The model of computation used is the “arithmetic Boolean circuit” (see von
zur Gathen [1986]). This model uses inputs x1, x2, . . . , xn from a field F .
Operations are the arithmetic (field) operations +, −, ×, /, and Boolean
operations ∧, ∨, and ¬. The connection between the arithmetic and Boolean
parts of the circuit is provided by two types of gates. The zero test gate
gives a Boolean indication of whether or not an input field value is zero. The
selection gate outputs one of two input field values depending upon the value
of a third, Boolean, input. The cost of algorithms will be measured in the
number of field operations performed. Often, the input will be a polynomial
f ∈ F [x] and the number of field operations will be counted in terms of the
degree n of f and the characteristic p of F . If F = GF (pe) for some e ≥ 1,
we will also consider the cost of computation over the prime field Zp, and
hence in terms of e as well.

Assume we can factor an arbitrary univariate polynomial f ∈ F [x] of
degree n into irreducible factors in O(SF (n)) field operations. Then we can
also factor a multivariate polynomial g ∈ F [x1, x2, . . . , x`] of total degree

n into irreducible factors. Assume this can be accomplished in O(S
(`)
F (n))

field operations (where S
(`)
F (n) is a function of the size (n + 1)` of a dense

representation of the input). Let M(n) be such that the product of two
polynomials of degree at most n can be computed in O(M(n)) field opera-
tions. We can choose M(n) = n log n log log n (Schönhage[1977], Cantor and
Kaltofen[1987]), and M(n) = n log n if F supports a Fast Fourier Transform.
Also, assume two n× n matrices can be multiplied in O(nµ) field operations
for some µ > 2. Coppersmith and Winograd[1987] show µ < 2.38.

In some of our algorithms we use P(S) to denote the set of all subsets
(the power set) of a set S, and S∗ to denote the set of finite sequences of
elements of S.

2.2 Computing Right Division

Given f, h ∈ F [x] of degrees n and s respectively with s|n, we would like to
determine if there is a g ∈ K[x] , where K is some algebraic extension of F ,
such that f = g ◦ h. Lemma 1.1 shows us that if such a g ∈ K[x] exists it
will be in F [x]. We find g by the usual divide and conquer approach, which
is used in von zur Gathen [1987b].
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RightDivide: F [x]× F [x]→ F [x]
Input: - f, h ∈ F [x] of degrees n and s respectively,

with s|n.
Output: - g ∈ F [x] of degree r such that f = g ◦ h

if such a g exists.

If deg f ≤ 0
then return f ∈ F.

Else if 0 < deg f < deg h
then Quit (there is no solution).

Else if deg h ≤ deg f,
1) Let t := dr/2e.
2) Let v := ht.
3) Find Q,R ∈ F [x] such that

f = Qv +R with degR < deg v.
4) Recursively call RightDivide on (R, h) yielding

g0 ∈ F [x] and (Q, h) yielding g1 ∈ F [x].
5) Return g1x

t + g0.

This algorithm requires O(M(n) log n) field operations, with step two the
dominant step at each recursive stage of the algorithm. We have the follow-
ing:

Theorem 2.1. Given f, h ∈ F [x], we can determine if there exists a g ∈ F [x]
such that f = g ◦ h and if so, find it in O(M(n) log n) field operations.

2.3 Univariate Decomposition using Separated Polynomials
The algorithm of Barton and Zippel[1985] exploits the relationship between
separated polynomials and polynomial decompositions described in section
1.C. Let F be an arbitrary field of characteristic p. Let f ∈ F [x] be of degree
n and let (r, s) ∈ N2 be an ordered factorisation of n. We present a modified
version of the Barton and Zippel[1985] algorithm conforming to our definition
of the problem.

SepBidecomp : F [x]× N2 → DECF
∗

Input: - f ∈ F [x] monic of degree n.
- (r, s) ∈ N2, an ordered factorisation of n.

Output: - (g, h) ∈ F [x] such that (f, (g, h)) ∈ DECF
(r,s)

if such a decomposition exists.
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1) Factor f(x)− f(0) = xq1(x)q2(x) · · · qm(x)

where each qi ∈ F [x] is irreducible for 1 ≤ i ≤ m.

2) For each subset S of {1, . . . ,m},

2.1) Let h = x
∏
i∈S
qi ∈ F [x].

2.2) If deg h = s, attempt to compute g ∈ F [x] such

that

f = g◦h using RightDivide. If such a g is found,

then goto step 4.

3) Quit, f has no decomposition in DECF
(r,s).

4) Return (f, (g, h)) ∈ DECF
(r,s).

By theorem 1.6, for any polynomials f, h ∈ F [x], there exists a g ∈
F [x] such that f = g ◦ h if and only if h(x) − h(y)|f(x) − f(y). Thus,
h(x) − h(0)|f(x) − f(0). By looking at all factors h of f(x) − f(0), we are
guaranteed to find all possible right composition factors. Since there are
2n subsets which must be checked for separation in step 2, the algorithm
requires O(SF (n) + 2nM(n) log n) field operations. It does, however, work
over any field for which a factorisation algorithm exists (in both the tame
and wild cases).

2.4 Univariate Decomposition in the Tame Case

Kozen and Landau [1986] present an algorithm for univariate decomposition
in the tame case over an arbitrary field, which uses a polynomial number of
field operations in the degree of the input polynomial. For f ∈ F [x] of degree
n, they look at the decompositions of f into (g, h) as solutions to systems of
n+ 1 non-linear equations for the coefficients of f in terms of the coefficients
of g and h.

Specifically, for u ∈ F [x] and i ∈ N, let coeff(u, i) ∈ F be the coefficient
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of xi in u. Let

f =
∑

0≤i≤n
aix

i ∈ F [x] with ai ∈ F for 0 ≤ i ≤ n,

g =
∑

0≤i≤r
bix

i ∈ F [x] with bi ∈ F for 0 ≤ i ≤ r,

h =
∑

1≤i≤s
cix

i ∈ F [x] with ci ∈ F for 1 ≤ i ≤ s,

µk =
∑

s−k+1≤i≤s
cix

i ∈ F [x] with ci ∈ F for s− k + 1 ≤ i ≤ s and 1 ≤ k ≤ s.

If f = g ◦ h, the following facts are easily seen to be true:

(i) coeff(hr, n− e)= coeff(f, n− e) = an−e for 0 < e < s,
(ii) coeff(hr, n− e)= coeff(µrk, n− e) for e < k ≤ s.

This implies an−e = coeff(f, n − e) = coeff(µrk, n − e) for e < k ≤ s. For
1 ≤ k < s, we know µk+1 = µk + cs−kx

s−k. By binomial expansion we get

µrk+1 = (µk + cs−kx
s−k)r

= µrk + rcs−kx
s−kµr−1

k + ϕ,

where ϕ ∈ F [x] and degϕ ≤ rs − 2k. Thus coeff(µrk+1, rs − k) = ars−k =
coeff(µrk, rs− k) + rcs−k. This gives the simple recurrence

cs−k =
ars−k − coeff(µrk, rs− k)

r
,

which allows the computation of cs, cs−1, . . . , c1 in turn, and hence the calcu-
lation of h. Note that it is at this point, and only this point, that we require
that p - r. This distinguishes the tame and wild cases.

This system of equations uniquely determines an h ∈ F [x] but a g ∈ F [x]
such that f = g ◦ h may or may not exist. We can determine the existence
of such a g, and if it exists, find it, using RightDivide as described earlier.
Kozen and Landau[1986] show that a decomposition can be computed in
O(n3) field operations in general and O(n2 log n) field operations in a field
which supports a Fast Fourier Transform. In fact, the algorithm works over
any ring in which r is a unit.

In von zur Gathen[1987], an improvement of the result of Kozen and
Landau[1986] is shown. Given a monic f ∈ F [x] of degree n and (r, s) an
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ordered factorisation of n with p - r, his algorithm determines if there exists
a decomposition of f in DECF

(r,s) and, if so, finds it, in O(M(n) log n) field
operations. The number of field operations required is dominated by the cost
of RightDivide to obtain g from f and h. Von zur Gathen[1987] uses this
algorithm for decomposition to obtain the set of separated factors of a given
polynomial f ∈ F [x] of degree n in polynomial time in the tame case.

A very fast parallel algorithm is also presented by von zur Gathen[1987]
for univariate bidecomposition in the tame case. He shows that over any field
F , given f ∈ F [x] and (r, s), an ordered factorisation of n such that p - r,
it can be determined if there exists a decomposition of f in DECF

(r,s), and if
so, it can be found, with a depth O(log n) circuit over F .

2.5 Decomposition using Block Decomposition

As seen in section 1.D, the polynomial decomposition problem can be refor-
mulated as one of finding functional block decompositions. Let f ∈ F [x] be
monic of degree n, and (r, s) an ordered factorisation of n. Kozen and Lan-
dau[1987] adapt the techniques from Landau and Miller[1983] to construct
all block decompositions of dimension two of f in BLOCKSF(r,s). They then
check each such decomposition to see if it is functional. In general, however,
their algorithm requires a number of field operations exponential in n. If
f is separable and irreducible over F , they show that there can be at most
nlogn block decompositions in BLOCKSF(r,s), and that each block decomposi-
tion can be constructed in a polynomial number of field operations. Testing
a block decomposition to see if it is functional requires only a polynomial
number of field operations, but we may have to check all of them. Therefore,
for separable irreducible polynomials f ∈ F [x], it can be determined if f has
a decomposition in DECF

(r,s), and if so, this decomposition can be found, in

a quasi-polynomial number (nO(logn)) of field operations over F .
The block decompositions of irreducible polynomials over a finite field

F = GF (q) (where q = pe for some e ≥ 1) have a stronger structure. Let
f ∈ F [x] of degree n be irreducible with splitting field K = F [x]/(f), and
let (r, s) be an ordered factorisation of n. The roots of f in K have the
form {α, αq, αq2 , . . . , αqn−1} for any one root α ∈ K of f . The Galois group
of K relative to F is the set of automorphisms {σi : 0 ≤ i < r} with
σiγ = γq

i
for any γ ∈ K. Kozen and Landau[1986] note that the only

possible block decomposition of f has the form B = {Ci|0 ≤ i < r} where
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Ci = {αqi+jr |0 ≤ j < s} for 0 ≤ i < r. It is functional (and hence corresponds
to a polynomial decomposition) if and only if there exists an h ∈ F [x] such
that for 0 ≤ i < r, there exists a γi ∈ K such that∏

0≤j<s
(x− αqi+jr) = h− γi.

The splitting field K of f is an algebraic extension of degree n over F , so we
can easily compute a representation of these roots (in K), and check if this
block decomposition is functional in a polynomial number of field operations.
Kozen and Landau[1986] show that in this case, it can be determined if a
polynomial f has a bidecomposition inDECF

(r,s), and if so, this decomposition

can be found, with a circuit of depth O(log epn log2 n) and size (epn)O(1). We
show the sequential analysis of this algorithm in the following theorem.

Theorem 2.2. Let F = GF (q) for some q, p, e ∈ N with p prime and q = pe,
and let f ∈ F [x] be irreducible of degree n. If (r, s) is an ordered factorisation
of n we can determine if there exists a decomposition of f in DECF

(r,s), and

if so, find it, in O(n2M(n) log q) field operations over F .

Proof. Let K = F [z]/(f) and let α ≡ z mod f ∈ K. Multiplication in K
requires O(M(n)) field operations in F . We can therefore compute αq

ri
for

all i with 0 ≤ i < s with ∑
0≤i<s

ri log q = O(rs2 log q)

= O(n2 log q)

field operations over K or O(n2M(n) log q) field operations over F . We then
check if

∏
0≤i<s(x−αq

ri
) = h+c where h ∈ F [x] and c ∈ K. If so, there exists

a g such that (f, (g, h)) ∈ DECF
(r,s) and this can be found in O(M(n) log n)

field operations by theorem 2.1. We can compute
∏

0≤i<s(x− αq
ri

) in O(n2)
field operation over K or O(n2M(n)) field operation over F . Therefore the
bidecomposition problem can be solved sequentially for irreducible polyno-
mials over finite fields with O(n2M(n) log q) field operations over F . �

2.6 A Lower Bound on the Degrees of Splitting Fields
Let F be a field such that for any m ∈ N, there exists an algebraic extension of
F of degree m over F . We will now show that in any such field, for any n ∈ N,



40 Mark Giesbrecht

there exist polynomials of degree n over F with splitting fields of degree
exponential in n over F . Note in particular that finite fields are included in
this theorem. One implication of this is that we cannot construct a standard
representation of elements of such a splitting field in a polynomial number of
field operations. It has been known for a long time that over the rationals and
some other infinite fields that for any n, there exist polynomials of degree
n whose Galois groups are Sn. The splitting fields of these polynomials
are of algebraic degree n! over their ground fields. In general however, such
polynomials do not exist (see van der Waerden section 8.10, Jacobson section
4.10). We instead make the following construction in an arbitrary field F .
Let pi ∈ N be the ith smallest rational prime. Also define

ϑ(`) =
∑

p prime
p≤`

log p the Chebyshev ϑ function,

π(`) =
∑

p prime
p≤`

1

(where all logarithms here and throughout this section are natural). Let
fi ∈ F [x] be an irreducible polynomial of degree pi. The splitting field Ki

of fi has degree at least pi over F . If F is a finite field, [Ki : F ] = pi.
The polynomial hi = f1f2 . . . fi will have splitting field Li generated by the
elements of K1 ∪ K2 ∪ · · · ∪ Ki. This is a field of algebraic degree at least
p1p2 . . . pi over F . Let

S(`) =
∑

p prime
p≤`

p,

R(`) =
∏

p prime
p≤`

p.

Note that R(`) = exp(ϑ(`)).

Let n ∈ N. If k = max{i| pi ≤ `}, then hk has a splitting field of degree
R(`) over F . We will show that if ` ≤ 0.77

√
n log n, then deg hk = S(`) ≤

n. It follows that R(0.77
√
n log n) is exponential in n. If f ∈ F [x] is any

polynomial of degree n with divisor hk, we show that f has a splitting field
of degree at least exp(0.5

√
n log n) over F . We will use the following bounds

from Rosser and Schoenfeld[1962]:
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Fact 2.3.

(i) pk < 1.4k log k for k ≥ 6;

(ii) π(`) ≤ 1.26`/ log ` for ` ≥ 17;

(iii) `(1− 1/ log `) < ϑ(`) for n ≥ 41.

First, we show an upper bound on the function σ(k) = S(pk) =
∑

1≤i≤k pi,
the sum of the first k primes, for k ∈ N.

Lemma 2.4. For k ≥ 6, σ(k) ≤ 0.86k2 log k

Proof.

σ(k) ≤ 2 + 3 + 5 + 7 + 11 + 1.4
∑

6≤i≤k
i log i

≤ 28 + 1.4
∫ k

6
(i+ 1) log(i+ 1)di

≤ 28 + 1.4(0.5(i+ 1)2 log(i+ 1)− 0.25(i+ 1)2
∣∣∣k
6
)

≤ 0.86k2 log k �

Lemma 2.5. For any n ≥ 109, S(0.77
√
n log n) ≤ n.

Proof. Applying lemma 2.4 to the the upper bound on the number of primes
less than ` provided by fact 2.3(ii),

S(`) ≤ 0.86

(
1.26`

log `

)2

log

(
1.26`

log `

)

≤ 0.86(1.26)2 `2

(log `)2
(log(1.26`)− log log `)

≤ 1.37
`2

(log `)2
(log `+ log 1.26− log log `)

≤ 1.7`2

log `

for ` ≥ 17. For n ≥ 109 this gives us

S(0.77
√
n log n) ≤ 1.7(0.77

√
n log n)2

log(0.77
√
n log n)

≤ n

log(0.77
√
n log n)

≤ n,

and the lemma follows. �
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Theorem 2.6. For n ≥ 109 there exists a polynomial f ∈ F [x] of de-
gree n such that the splitting field of f has degree over F greater than
exp(0.5

√
n log n).

Proof. By lemma 2.5, if ` ≤ 0.77
√
n log n, then S(`) ≤ n. Let ` =

b0.77
√
n log nc. Let k = max{i| pi ≤ `}. The polynomial hk has a split-

ting field Lk with degree at least R(`). By definition

R(`) = exp(ϑ(`))

≥ exp(`(1− 1/ log `))

≥ exp(0.77
√
n log n(1− 1/ log(0.77

√
n log n)))

≥ exp(0.5
√
n log n),

for n ≥ 109. Therefore hk has a splitting field of degree at least exp(0.5
√
n log n).

Let f be any polynomial of degree n such that hk divides f (hk has de-
gree less than n). The polynomial f has a splitting field of degree at least
exp(0.5

√
n log n) over F . �

2.7 Decompositions Corresponding To Ordered Factorisations
Let f ∈ F [x] be of degree n and let ℘ = (rm, rm−1, . . . , r1) be an ordered
factorisation of n. A natural generalisation of the computational bidecompo-
sition problem is to compute the decompositions of f in DECF

℘ (if any). Let
GenericBidecomp be an algorithm such that given f ∈ F [x] of degree n, and
(r, s) ∈ N2, an ordered factorisation of n, it will find the (possibly empty) set
B of decompositions of f in DECF

(r,s) using D(n) field operations. Consider
the following algorithm:

OrdFactDecomp: F [x]×P(N)→ P(DECF
∗ )

Input: - f ∈ F [x] of degree n,
- ℘ = (rm, rm−1, . . . , r1), an ordered factorisation of n.

Output: - the set of decompositions of f in DECF
℘ .

If m = 1
then return (f, (f))
else

1) Find the set B of bidecompositions

(f, (g, h)) ∈ DECF
(t2,r1)
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where t2 =
∏

2≤i≤m ri,
using GenericBidecomp.

2) Let T := ∅.
3) For each decomposition (f, (g, h)) ∈ B,

3.1) Recursively attempt to

find a decomposition

(g, (gm, gm−1, . . . , g2)) ∈ DECF
(rm,rm−1,...,r2).

3.2) If such a decomposition of g is found

add (f, (gm, gm−1, . . . , g2, h)) to T.
4) Return T.

This is simply a recursive application of the bidecomposition algorithm,
and can easily be seen to return the set of decompositions of f in DECF

℘ .
We now define a ℘-easy family of polynomials, a family in which such de-

compositions can be computed quickly. For 1 ≤ i ≤ m, let ℘i = (rm, rm−1, . . . , ri)
and ti =

∏
i≤j≤m rj. A set F℘ ⊆ F [x] is ℘-easy if

(i) for any i with 1 ≤ i < m, any f ∈ F℘ of degree d has at most one
decomposition in DECF

(ti+1,ri)
,

(ii) it can be determined if such a decomposition exists, and if it does, it
can be found with O(D(d)) = dO(1) field operations, and

(iii) if f ∈ F℘ and (f, (g, h)) ∈ DECF
(ti+1,ri)

then g ∈ F℘.

If F℘ ⊆ F [x] is a ℘-easy family of polynomials, then the bidecompositions
of f ∈ F℘ in step 1 can be found in D(n) field operations. Thus, com-
puting OrdFactDecomp on f ∈ F℘ with ordered factorisation ℘ requires
O(
∑

1≤i<mD(ti)) field operations. Let ` = dlog2 ne and let κ = (e`, e`−1, . . . , e1),
where ei = 2i for 1 ≤ i ≤ `. Noting that n ≤ ` < 2n, it follows immediately
that e`−j ≥ fm−j for 0 ≤ j < m. Therefore

∑
1≤i<mD(ti) ≤

∑
1≤i<`D(ei).

Since D is polynomially bounded,
∑

1≤i<`D(ei) = O(D(n)). We have shown
the following theorem:

Theorem 2.7. Let n ∈ N and let ℘ be an ordered factorisation of n. Also,
let F℘ ⊆ F [x] be ℘-easy. Then, for any f ∈ F℘, we can determine if there
exists a decomposition of f in DECF

℘ , and if so, find it, in O(D(n)) field
operations.
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This theorem says that the general problem of computing the set of de-
compositions of a polynomial with a given ordered factorisation is Cook re-
ducible to the bidecomposition problem for ℘-easy families of polynomials.

Two ℘-easy families present themselves immediately. If F is an arbitrary
field and p - ri for 1 < i ≤ m then F [x] is a ℘-easy family of polynomials. This
follows because all the bidecompositions performed in step 1 are tame. From
von zur Gathen[1987] and theorem 2.7 above, it can be determined whether
a decomposition of f ∈ F [x] exists in DECF

℘ and if so such a decomposition
can be found in O(M(n) log n) field operations.

If F = GF (q) and F℘ is the set of polynomials irreducible over F , then
F℘ is ℘-easy. This follows since, if f ∈ F℘ and (f, (g, h)) ∈ DECF

∗ , then g
is also irreducible over F . By theorem 2.2 and theorem 2.7, a decomposition
of any f ∈ F℘ can be found in O(n2M(n) log q) field operations.

2.8 Computing Complete Univariate Decompositions

The following method for computing complete decompositions was suggested
in von zur Gathen[1987] for the tame case and can be applied whenever we
can do bidecomposition. Let D(n) be the number of field operations required
to find a bidecomposition of f ∈ F [x] corresponding to an ordered factorisa-
tion (r, s) of n. The following algorithm computes a complete decomposition
of f in DECF

∗ .

CompleteDecomposition: PF → cDECF
∗

Input: - f ∈ F [x].
Output: - (f, (fm, fm−1, . . . , f1)) ∈ cDECF

∗ .

1) Compute the integer factorisation n = pe11 p
e2
2 · · · pekk of n.

2) Let d(n) = (e1 + 1) · · · (ek + 1) be the number of divisors

of n and 1 = r1 < r2 < · · · < rd(n) = n be the divisors of n.
3) Let j > 1 be the smallest number such that f has a

decomposition (f, (g, h)) ∈ DECF
(rj ,n/rj)

.

4) If j = d(n) then f is indecomposable; otherwise

decompose h recursively (g is indecomposable

since any left composition factor of g is a

composition factor of f of smaller degree than g).

The number of field operations required by this algorithm is O(D(n)d(n)).
Hardy and Wright[1960] (theorem 317) show that d(n) = O(nε) for all ε >
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0. Therefore, we can compute complete decompositions in O(D(n)nε) field
operations for any ε > 0. This algorithm finds the lexicographically first
complete decomposition of f .

2.9 Decomposing Multivariate Polynomials in the Tame
Case

Once again we denote the sequence of indeterminates x1, . . . , x` as ~x. We
define the set W(`)

F ⊆ F [~x] of monic polynomials in F [~x] as follows:

W(`)
F =

f = xd11 x
d2
2 · · ·x

d`
` + f̂

∣∣∣∣ f̂ ∈ F [~x], deg f̂ < deg f

di ∈ N \ {0}, degxi f̂ ≤ di for 1 ≤ i ≤ `


where deg f and deg f̂ are the total degrees of f and f̂ respectively. Dick-
erson[1987] uses much the same method as Kozen and Landau[1986] did for
the univariate case to decompose monic multivariate polynomials in the tame
case. Given a monic f ∈ F [~x] of degree n and r ∈ N, he shows how to find
a monic g ∈ F [x] of degree r and monic h ∈ F [~x] of degree r = n/s such
that f = g ◦ h. The computation requires O(n3`) field operations. From the
algorithm it is seen that if such a decomposition exists, it is unique. Note
that monic multivariate polynomials are a very special case of multivariate
polynomials. Just because they can be decomposed does not mean that mul-
tivariate polynomials can be decomposed in the tame case in general (though
it is possible a reduction from the general case exists).

In von zur Gathen[1987], the tame case for the decomposition of mul-
tivariate polynomials is dealt with completely. He first defines the set of
polynomials P(`)

F ⊆ F [~x] which are strongly monic in x1 as follows:

P(`)
F =

f =
∑

0≤i≤n
fix

i
1 ∈ F [~x]

∣∣∣∣ n ∈ N, f0, . . . , fn ∈ F [x2, . . . , x`]

fn = 1, deg f = n

 .
If f ∈ F [~x] is strongly monic and f = g ◦ h, then f(x1, 0, . . . , 0) = g ◦
h(x1, 0, . . . , 0). As we know f(x1, 0, . . . , 0) is of degree n (f is strongly monic),
the univariate decomposition of f(x1, 0, . . . , 0) in DECF

(r,s) completely deter-
mines g ∈ F [x] in the multivariate decomposition. Once g is computed, a
linearly convergent Newton iteration is used to compute h ∈ F [~x] in a num-
ber of field operations polynomial in the input size. Given f ∈ F [~x] and
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g ∈ F [x], the process of finding h ∈ F [~x] such that f = g ◦ h is a special
case of (multivariate) power series reversion. This is dealt with extensively
by Brent and Kung[1977,1978]. They show the problem is linearly equivalent
to power series composition when (∂g/∂x) 6= 0, which is true in the tame
case. Furthermore, they show that multivariate polynomial reversion can be
computed in O((n log n)

1
2M(n)`) field operations.

For an arbitrary f ∈ F [~x] we can use substitutions of the form σ(xi) =
xi + σix1 with xi ∈ F for 2 ≤ i ≤ m to make f strongly monic. For such
a substitution σ we write σf = f(x1, x2 + σ2x1, . . . , xm + σmx1). This sub-
stitution σ may be inverted by the substitution σ−1 = (−σ2,−σ3, . . . ,−σm)
and σσ−1f = f . For a suitably chosen substitution σ, f̄ = aσf is strongly
monic in x1 (where a ∈ F is chosen to make the highest order coefficient of
x1 in aσf one). If f̄ = ḡ ◦ h̄ for ḡ, h̄ ∈ F [x] then f = (a−1ḡ) ◦ (σ−1h̄) is a
corresponding decomposition of f .

For f ∈ F [~x] of total degree n, von zur Gathen[1987] shows how to
choose a substitution σ such that σf is strongly monic. This can be done in
a polynomial number of field operations in m,n, and k, where k is the number
of monomials in f . (the sparse representation of f has size O(km log n)). For
0 ≤ i ≤ n, let ui ∈ F [x2, . . . , xm] be the homogenous part of degree n− i of
the coefficient of xi1 in f . The homogenous part of degree n of f is therefore∑

0≤i≤n uix
i 6= 0, and by the homogeneity of the ui’s, u =

∑
0≤i≤n ui is also

nonzero, and of degree at most n. Let K be an extension field of F with
more than n points. K can be chosen as a field of degree O(log n) over F .
Now, for a substitution σ = (σ2, σ3, . . . , σm), degx1 σf = n if and only if

deg f(x1, σ2x1, . . . , σmx1) = deg[(σ)(x1, 0, . . . , 0)] = n.

This is true if and only if u(σ2, σ3, . . . , σm) 6= 0. To find σ2, . . . , σm we proceed
in stages i from 2 to m. At stage i we choose σi ∈ K such that

u(σ2, . . . , σi, xi+1, . . . , xm)

is nonzero. We do this by considering vi = u(σ2, . . . , σi−1, xi, . . . , xm) as a
polynomial in K(xi+1, . . . , xm)[xi] of degree in xi at most n. Thus vi has at
most n roots in K(xi+1, . . . , xm) and we can find a non-root σi ∈ K of vi
with at most n evaluations of vi at points in K. Assume f is the sum of at
most k monomials. Then u is also the sum of at most k monomials and σ can
be found in O(kmn log n) field operations over K or O(kmn log nM(log n))
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field operations over F . Decomposing multivariate polynomials is, therefore,
polynomial time (in the input degree and the size of the sparse representation)
reducible to decomposing strongly monic multivariate polynomials.

2.10 Multivariate Decomposition Using Separated Polynomials

Using theorem 1.15 we can generalise the algorithm of Barton and Zip-
pel[1985] to the multivariate case and obtain a multivariate decomposition
algorithm for any field supporting a factorisation algorithm. To do this we
must show a “right division” algorithm for the multivariate case. Namely,
given f, h ∈ F [~x], we must be able to find a g ∈ F [x] such that f = g ◦ h (if
such a g exists). We cannot use the “Taylor Expansion” method of the uni-
variate case directly. Instead we use the methods of von zur Gathen[1987] to
transform the problem to one involving strongly monic polynomials. Another
simple transformation yields a univariate problem such that the solution is
the same as in the original problem.

MultiRightDivide: F [~x]× F [~x]→ F [x]
Input: - f, h ∈ F [~x] of total degrees n and s respectively.

Output: - g ∈ F [x] of degree r = n/s such that f = g ◦ h
(if such a g exists).

1) Let K be an algebraic extension of F with

more than n elements.

Let σ = (σ2, σ3, . . . , σm) ∈ Km−1

be a substitution and a ∈ K such that

f̄ = aσf = f(x1, x2 + σ2x1, . . . , xm + σmx1) ∈ K[x]
is strongly monic (see previous section).

2) Let h̄ = σh.
3) Using RightDivide determine if there exists a ḡ ∈ K[x]

such that f̄(x, 0, . . . , 0) = ḡ ◦ h̄(x, 0, . . . , 0)
and if so find it. If no such ḡ exists, quit.

4) Return g = a−1ḡ.

In the previous section we saw that step 1 can be performed in
O(kmn log nM(log n)) field operations over F , where k is the number of
monomials in f . It follows that f = g ◦ h if and only if aσf = ag ◦ σh. Since
aσf is strongly monic, there exists a g ∈ F [x] such that aσf = ag ◦σh if and
only if aσf(x, 0, . . . , 0) = ag ◦ σh(x, 0, . . . , 0). Using RightDivide we can
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determine the existence of ḡ = ag, and if it exists find it, in O(M(n) log n)
field operations over K or O(M(n) log nM(log n)) field operations over F . If
ḡ exists we can immediately compute g, and the whole computation requires
O((kmn log n+M(n) log n)M(log n)) field operations over F

The algorithm for multivariate decomposition over any field supporting
a factorisation algorithm proceeds in much the same way as the Barton and
Zippel[1985] algorithm for the univariate case.

MultiSepDecomp : F [~x]× N2 →MDECF
∗

Input: - f ∈ F [~x] of degree n
- (r, s) ∈ N2, an ordered factorisation of n

Output: - (g, h) ∈ (F [x]× F [~x]) such that f = g ◦ h
if such a decomposition exists

1) Factor f(~x)− f(0, . . . , 0) = ~xq1(~x)q2(~x) · · · qm(~x)
where each qi ∈ F [~x] is irreducible for 1 ≤ i ≤ m

2) For each subset S of {1, . . . ,m}
2.1) Let h = ~x

∏
i∈S
qi ∈ F [~x].

2.2) If deg h = s, attempt to compute g ∈ F [x] such

that

f = g ◦ h using MultiRightDivide.

If such a g is found, then goto step 4.

3) Quit, f has no decomposition in MDECF
(r,s).

4) Return (f, (g, h)) ∈MDECF
(r,s).

The number of subsets of S is 2n. This algorithm can, therefore, be com-
pleted with O(SF (n) + 2n(kmn log n+M(n) log n)M(log n)) field operations
over F . It does, however, work in both the tame and wild cases over any
field supporting a polynomial factorisation algorithm.
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3 Additive Polynomials
3.1 Definition and Root Structure of Additive Polynomials
Let F be an arbitrary field of characteristic p greater than zero. Define a
polynomial f ∈ F [x] to be an additive polynomial if, for independent inde-
terminates x and y,

f(x+ y) = f(x) + f(y).

The non-zero additive polynomials in F [x] are exactly those of the form

f =
∑

0≤i≤ν
aix

pi

where ν ∈ N, ai ∈ F for 1 ≤ i ≤ ν, and aν 6= 0. The integer ν is called the
exponent of f , and we write “expn f = ν”. We denote the set of additive
polynomials over F as AF.

The additive polynomials have a well understood decomposition struc-
ture which leads to a number of interesting results on decomposition in the
general case. This structure was first developed in Ore[1933b], who inves-
tigated the vector space structure of the roots of additive polynomials (as
well as investigating the ring structure of the additive polynomials under
composition – see chapter 4). This work was continued by Whaples[1954],
who examined the Galois groups of additive polynomials and characterised
additive polynomials in terms of these groups. In Dorey and Whaples, the
Galois group Gf of Φf = f − f(x) ∈ F (f)[y] (where f ∈ AF) is used (see sec-
tion 1.B) to show that all normal decompositions of additive polynomials are
decompositions into additive polynomials. We use this approach to develop
much of the structure of the roots of additive polynomials in terms of Gf .
Though the theorems in this section are for the most part known (with the
possible exception of theorem 3.2(i)), the extension of the approach of Dorey
and Whaples is of interest. For a given additive polynomial f ∈ AF, it serves
to illustrate the strong connection between the separated factors of Φf , the
Galois structure of f (which is the basis for block decompositions), and the
Galois structure of Φf . Not coincidentally, each of these three approaches
leads to at least one algorithm – the first being the separated polynomial
algorithms of Barton and Zippel and Alagar and Thanh, the second being
the block decomposition algorithm of Kozen and Landau, and the last be-
ing a number of algorithms specifically for additive polynomials, which are
presented in chapter 5.
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Theorem 3.1.

(i) Let f ∈ AF be monic, with exponent ν such that f is squarefree (a0 =
f ′(0) 6= 0). Let K be the splitting field of f . Then the roots of f in K
form a vector space Vf over Zp of dimension ν.

(ii) For each finite Zp-vector space V ⊆ F of dimension ν, there exists a
unique monic f ∈ AF with exponent ν such that the roots of f are
exactly the elements of V .

Proof.

(i) For α, β ∈ K such that f(α) = f(β) = 0, we see that

f(α + β) = f(α) + f(β) = 0,

f(kα) = kf(α) = 0 for any k ∈ Zp.

Since f ′(0) 6= 0, the greatest common divisor of f and f ′ is one, and
hence f has no multiple roots. Therefore Vf has pν distinct elements
and dimension ν.

(ii) Let (θ1, . . . , θν) be a basis for V in F over Zp. The polynomial

Ψ1 = xp − θp−1
1 x ∈ AF

has roots kθ1 for all k ∈ Zp. For i ≥ 2, define

Ψi = (xp −Ψi−1(θi)
p−1x) ◦Ψi−1 ∈ AF.

If Ψi−1(α) = 0 for α ∈ F then Ψi(α) = 0. Also,

Ψi(θi) = Ψi−1(θi)
p −Ψi−1(θi)

p−1Ψi−1(θi) = 0.

Since Ψi is additive, Ψi has roots consisting of all Zp-linear combinations
of {θ1, . . . , θi}. Thus the roots of Ψi are exactly the members of the
vector space with basis (θ1, . . . , θi). Let f = Ψn, which is monic and
additive. This f is also unique by virtue of being a monic interpolant
of degree pν of pν distinct points. Note also that f ′(0) 6= 0 as f has pν

distinct roots in f and degree pν .
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Call the Zp-vector space V of roots of an additive polynomial f ∈ F [x] the
kernel of f . Say an additive polynomial is simple if it is monic and f ′(0) 6= 0.
In this section we will deal almost exclusively with simple additive polyno-
mials. Non-simple monic additive polynomials are just simple polynomials
composed on the right with xp

`
for some ` > 0. Assume f ∈ AF is monic and

f = g ◦ xp` ∈ AF where g ∈ AF is simple and

g =
∑

0≤i≤σ
bix

pi

with σ ∈ N, bi ∈ F , and bσ 6= 0. Then

f =
∑

0≤i≤σ
bix

pi+`

= xp
` ◦

∑
0≤i≤σ

(bi)
1

p` xp
i

= xp
` ◦ ḡ

where
ḡ =

∑
0≤i≤σ

(bi)
1

p` xp
i ∈ AK

and K is an algebraic extension of F . So f has a kernel of dimension σ,
namely the kernel of ḡ. If F is perfect (and hence closed under pth roots) ḡ
will be in F [x] as well.

Let f ∈ AF be simple with exponent ν, splitting field K and kernel Vf ⊆
K. The structure of the kernel of f and that of the fields between K(f) and
K(x) (and hence the structure of the decompositions of f over its splitting
field) are closely linked. Let Φf = f(y) − f ∈ F (f)[y] ⊆ F (x)[y] with
splitting field Ω ⊇ F (f) and Galois group Gf = Gal(Ω/F (f)) as in theorem
1.5. Because ∂

∂y
Φf = ∂

∂y
f(y) 6= 0, Ω is a separable field extension of F (f).

Theorem 3.2.

(i) K(x) is the splitting field of Φf ,

(ii) Gf is the group {x 7→ x+α | α ∈ K, f(α) = 0} under composition, and

(iii) Vf ∼= Gf .
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Proof.

(i) For α ∈ Vf ,
Φf (x+ α) = f(x+ α)− f(x)

= f(x) + f(α)− f(x)

= 0.

Since Φf has degree pν over F (f), x + Vf is the complete set of roots
of Φf . We know that x ∈ x+ Vf and K is the smallest extension field
of F containing Vf , so Ω = K(x).

(ii) From (i), all roots of Φf are of the form x + α where α is a root of f
in K. Therefore, Gf contains the pν automorphisms {x 7→ x + α | α ∈
K , f(α) = 0}. Since [F (x) : F (f)] = pν , this is the entire Galois
group.

(iii) From (ii), Gf is isomorphic to a set of monic linear elements in K[x]
under composition. Trivially this is isomorphic to the group of constant
terms of these elements under addition. These constant terms are all
the roots of f in K, so Gf ∼= Vf . �

Theorem 3.3. Let f ∈ AF be simple of exponent ν. Let g, h ∈ F [x] be of
degrees r = pρ and s = pσ respectively such that (f, (g, h)) ∈ DECF

(r,s). Then

(i) g and h are additive and simple, and

(ii) h has kernel Vh ∼= Gh, where Gh ⊆ Gf is the subgroup fixing F (h) ⊆
F (x) pointwise.

Proof. By theorem 1.5, the automorphisms in Gf fixing F (h) form a group
Gh such that Gx ⊆ Gh ⊆ Gf , and the index of Gx in Gh is pσ. From theorem
3.2(i), K(x) is the splitting field of Φf , so Gx is the identity group, and the
cardinality of Gh is pσ. From the isomorphism between Gf and Vf , there
is a subspace W of Vf of dimension σ corresponding to the subgroup Gh.
Let h̄ ∈ K[x] be the simple additive polynomial with kernel W . For all
α ∈ W , h̄(x + α) = h̄(x) + h̄(α) = h̄(x). Thus F (h̄) is fixed by Gh. By
theorem 3.1, h̄ is unique, so h̄ = h. Now, for algebraically independent
indeterminates x and y, f = g(h(x + y)) = g(h(x) + h(y)) and since f is
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additive f = g(h(x)) + g(h(y)). Thus g is monic and additive. If g is not
simple then g = ḡ ◦ xp` for some simple additive polynomial ḡ ∈ K[x] and
` > 0. But then f = ḡ ◦ xp` ◦ h = ḡ ◦ hpl which is not simple. So g is simple
as well. �

3.2 Rationality and the Kernel
If f ∈ AF is simple with kernel Vf ⊆ K and splitting field K, a subspace
Vh ⊆ Vf is said to be rational if the simple polynomial h ∈ AK corresponding
to Vh is in AF. We would also like to formulate rationality in terms of the
structure of the kernel.

Theorem 3.4. A subspace Vh of Vf is rational if and only if Vh is invariant
(as a set) under Gf = Gal(K/F ).

Proof. Assume h ∈ AF. The coefficients of h are the values of the elementary
symmetric functions of the roots of h in K. The automorphisms in Gf leave
these coefficients fixed, and must therefore leave Vh invariant (as a set).

Conversely, if Vh is invariant under Gf then the values of the elementary
symmetric functions of the elements of Vh are fixed under Gf , and so are in
F . These are exactly the coefficients of h and so h ∈ AF. �

When dealing with a finite field F a somewhat stronger structure can be
shown.

Theorem 3.5. Let F = GF (q) where q = pe ∈ N for some p, e ∈ N with p
prime. Let K be an algebraic extension of F and f ∈ AK of exponent ν with
kernel Vf and splitting field L. Then f ∈ AF if and only if V q

f = Vf .

Proof. If f ∈ AF and α is a root of f in L, then so is αq. This follows
since, if g ∈ F [x] is the minimal polynomial of α, g|f and g(αq) = 0 (α and
αq are conjugates since F is finite). Thus V q

f ⊆ Vf . Since x → xq is an
automorphism of L over F , V q

f = Vf .
If V q

f = Vf then we must show that f ∈ F [x]. The group H of automor-
phisms of L over F is the group generated by the automorphism x → xq.
Thus Vf is invariant (as a set) under H. As the coefficients of f are symmet-
ric functions of the elements of Vf , they are fixed by H, and therefore must
be in F . Hence f ∈ AF. �

The preceding theorem gives the following alternative formulation of the
bidecomposition problem for additive polynomials:
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Let F = GF (q) where q, p, e ∈ N, p is prime, and q = pe. Let K be
an algebraic extension of F and let V ⊆ K be a Zp vector space of
dimension ν over Zp such that V q = V . For a given σ with 1 ≤ σ ≤ ν,
determine if there exists a σ dimensional subspace W of V such that
W q = W , and if so, give a basis for some predetermined number of
them.

Since V q = V , all the elements of V can be specified as the roots of a
single additive polynomial f ∈ AF of exponent ν. The found subspace W
(if it exists) will be the kernel of a right composition factor h ∈ AF of f of
exponent σ.

3.3 Rational Decompositions of Additive Polynomials
We can now talk about decompositions of simple additive polynomials in
general and their relationship to their kernels. For any n,m ∈ N, let

℘ = (rm, rm−1, . . . , r1)

= (pρm , pρm−1 , . . . , pρ1)

be an ordered factorisation of n. Define

APDECF
℘ =

{
(f, (fm, . . . , f1)) ∈ AF × (AF)

m
∣∣∣ f = fm ◦ · · · ◦ f1

and deg fi = ri = pρi

}
.

Similarly, for simple additive polynomials, define

SAPDECF
℘ =

{
(f, (fm, . . . , f1)) ∈ AF × (AF)

m

∣∣∣∣∣ f simple, f = fm ◦ · · · ◦ f1,

and deg fi = ri = pρi

}
.

Obviously SAPDECF
℘ ⊆ APDECF

℘ ⊆ DECF
℘ .

Let di =
∏

1≤j≤i

rj and V be the set of all finite Zp -vector spaces in F . Define

FLAGSF℘ =

(f, (Vm, . . . , V1)) ∈ AF × Vm
∣∣∣∣∣
f simple, Vm is the kernel of f,

Vm ⊇ Vm−1 ⊇ · · · ⊇ V1,

dimVi = di, for 1 ≤ i ≤ m

 .
The sequence Vm ⊇ Vm−1 ⊇ · · · ⊇ V1 is called a flag of vector spaces associ-
ated with f .
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Let f ∈ AF be simple. For any (f, (fm, . . . , f1)) ∈ SAPDECF
℘ let hi =

fi ◦ fi−1 ◦ · · · ◦ f1 ∈ AF and let Vi be the kernel of hi. Then by theorems
3.1 and 3.3 (f, (Vm, . . . , V1)) ∈ FLAGSF℘ . Therefore, we define the map
ΓSA
FL : SAPDECF

℘ → FLAGSF℘ by (f, (fm, . . . , f1)) 7→ (f, (Vm, . . . , V1)).

Theorem 3.6. ΓSA
FL is a bijection between SAPDECF

℘ and FLAGSF℘ .

Proof. ΓSA
FL is injective since distinct additive polynomials have distinct

kernels. If (f, (Vm, Vm−1, . . . , V1)) ∈ FLAGSF℘ , then by theorem 3.3 the
additive polynomial hi with kernel Vi has a factor hi−1 with kernel Vi−1.
Thus hi = fi ◦ hi−1 for some unique fi ∈ AF of degree di/di−1 = ri. Thus
(f, (fm, . . . , f1)) ∈ SAPDECF

℘ and this map from FLAGSF℘ to SAPDECF
℘

is injective and is in fact the inverse of ΓSA
FL. Thus ΓSA

FL is a bijection. �

3.4 The Number of Bidecompositions of a Polynomial
We will now compute the exact number of bidecompositions of a simple
additive polynomial f ∈ AF into two simple additive polynomials over its
splitting field K. Assume f has exponent ν. The number of simple additive
right composition factors of f in K[x] of exponent σ is exactly the number of
σ-dimensional subspaces of the kernel of f . This is calculated in the following
well-known lemma.

Lemma 3.7. The number of σ-dimensional subspaces of a ν-dimensional
vector space V over Zp is

Sνσ =

∏
0≤i<σ

(pν − pi)∏
0≤i<σ

(pσ − pi)
.

Proof. The number of linearly independent σ-tuples of vectors in V is∏
0≤i<σ

(pν − pi).

This is the number of all bases for all vector spaces of dimension σ. Each σ
dimensional vector space has

∏
0≤i<σ(pσ−pi) bases. The lemma follows. �

The desired cardinality theorem now follows immediately.
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Theorem 3.8. Let f ∈ AF be simple of exponent ν with splitting field K.
The number of bidecompositions of f in APDECK

(pν−σ ,pσ) is Sνσ .

This theorem gives a super-polynomial lower bound for the number of
decompositions of an arbitrary polynomial over an algebraic extension field.

Theorem 3.9. For any even ν ∈ N, there exist monic polynomials f ∈ F [x]
of degree n = pν with splitting field K such that there are at least nλ logn

decompositions of f in DECK
(
√
n,
√
n) where λ = (6 log p)−1.

Proof. Assume n = pν where ν is even and let f be a simple additive
polynomial of exponent ν. Then f has Sνν

2
decompositions in DECK

(
√
n,
√
n).

Sνν
2

=

∏
0≤i< ν

2

(pν − pi)
∏

0≤i< ν
2

(p
ν
2 − pi)

≥ (pν−1)
ν
2

(p
ν
2 )

ν
2

= p
ν2

4
− ν

2

≥ (pν)
ν
6

= nλ logn,

where λ = (6 log p)−1. �

3.5 Complete Decompositions of Additive Polynomials
Let n ∈ N and let ℘ be a length m ordered factorisation of n. Complete de-
compositions of additive polynomials with ordered factorisation ℘ will be con-
sidered in a straightforward manner. Define the set cAPDECF

℘ ⊆ cDECF
℘ to

be the set of complete rational decompositions of additive polynomials with
ordered factorisation ℘. By theorem 3.3 these will be decompositions into ad-
ditive polynomials. Similarly, define the set cSAPDECF

℘ ⊆ cAPDECF
℘ ⊆

cDECF
℘ to be the set of complete rational decompositions of simple addi-

tive polynomials with ordered factorisation ℘. The image of cSAPDECF
℘

in FLAGSF℘ will be called cFLAGSF℘ and it too corresponds to the set of
rational complete decompositions of simple additive polynomials. Members
of cFLAGSF℘ can also be characterised as those members of FLAGSF℘ whose
flags are maximal.
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3.6 The Number of Complete Rational Normal
Decompositions

In much the same way as we calculated the number of right composition
factors of given exponent of a polynomial in theorem 3.7, we calculate the
number of complete decompositions of a polynomial over an extension field.
Let f ∈ AF be simple with exponent ν and kernel Vf . The number of complete
decompositions Fν of f over its splitting field K is equal to the number of
maximal flags in Vf , and turns out to be dependent only on ν, not on f . As
all subspaces of Vf are rational in K, each maximal flag will have ν subspaces
and will have the form

Vf = Vν ) Vν−1 ) · · · ) V1

where dimVi = i. The corresponding complete decompositions will be into
exponent one, p-linear, composition factors.

Lemma 3.10. The number of σ-dimensional subspaces of a ν-dimensional
vector space V over Zp which contain a given (σ−1)-dimensional vector space
W is

T νσ =
pν − pσ−1

pσ − pσ−1

Proof. There are pν−pσ−1 vectors of V which are linearly independent with
W . A given σ-dimensional vector space containing W is generated by W
plus any one of pσ − pσ−1 vectors. The lemma follows. �

The following lemma gives bounds for Fν , and hence for the number of
complete decompositions of f over K.

Lemma 3.11. Let f ∈ AF be simple of exponent ν with splitting field K.
The maximum number Fν of distinct complete normal decompositions of f
over K is bounded by

p
ν2

2 ≤ Fν ≤ p
ν2

2
+ 3ν

2 .

Proof. The fact that there are Fν distinct complete normal decompositions
of f over K follows from the preceding discussion. We get the bounds as
follows:
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Fν =
∏

1≤i≤ν
T νi

=
∏

1≤i≤ν

pν − pi−1

pi − pi−1

≤
∏

1≤i≤ν
pν−i+1

≤ p
ν2

2
+ 3ν

2 ,

Fν =
∏

1≤i≤ν
T νi

=
∏

1≤i≤ν

pν − pi−1

pi − pi−1

≥
∏

1≤i≤ν
pν−i

≥ p
ν2

2 . �

Fν is at least nµ logn where µ = (2 log p)−1 and is super-polynomial in the
degree n of f , and so there is a super-polynomial number of different complete
normal decompositions of f over K. However, this does not guarantee that
these decompositions are inequivalent in the sense that Ritt[1922] considered
for the characteristic zero case. We now consider this question in the wild
case.

As we saw in section 1.F, in the tame case there are two types of ambigu-
ous decompositions. Recall that if u ∈ F [x] and m, r ∈ N, then (xm ·ur)◦xr =
xr ◦ (xm · u(xr)), an exponential ambiguity. If xm · ur and xmu(xr) are in-
decomposable and additive, then since they are necessarily squarefree, r and
m are at most one. In the case of additive polynomials therefore, exponen-
tial ambiguity is simply identity. The second kind of ambiguity in the tame
case are trigonometric ambiguities – ambiguities arising from the commu-
tative properties of the Chebyshev polynomials under composition. As we
saw in theorem 1.13, the Chebyshev polynomial Tpi = xp

i
, for i ∈ N, in

fields of characteristic p greater than two. In fields of characteristic p = 2,
Tpi = 1 if i is even and x if i is odd. Instead of restricting ourselves to
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equivalence under these two types of ambiguities, we define the more general
concept of a permutation ambiguity. Two complete normal decompositions
are permutation equivalent if the composition factors of one are a permuta-
tion of the composition factors of the other. Trigonometric ambiguities are
certainly encompassed in this definition. We now proceed to construct a class
of polynomials which have a super-polynomial number (in their degrees) of
permutation inequivalent decompositions over their splitting fields.

Theorem 3.12. Let p ∈ N be prime, ν ∈ N and F = GF (pν). Also, let K
be an algebraic extension of F of degree pν over F . Then there exist simple

additive polynomials f̂ ∈ K[x] of exponent ν which have Fν ≥ p
ν2

2 pairwise
permutation inequivalent complete normal decompositions in cSAPDECK

∗ .

Proof. Let (θ1, . . . , θν) be a basis for an algebraic extension F of Zp of degree
ν. Also, let f = xp

ν − x ∈ F [x], and ε ∈ F̄ (where F̄ is an algebraic closure
of F ) be algebraic of degree pν over F . Consider the polynomial f̂ with roots
consisting of all elements of K = F [ε] of the form εa for a ∈ F . The roots
of f̂ have a basis (εθ1, . . . , εθν) over Zp. As in the construction of theorem

3.1, we now describe complete decompositions of f and f̂ with respect to the
bases (θ1, . . . , θν) and (εθ1, . . . , εθν). Let

Ψ1 = xp − θp−1
1 x ∈ F [x], and

Ψ̂1 = xp − (εθ1)p−1x ∈ K[x].

For i > 1, define

Ψi = (xp −Ψi−1(θi)
p−1x) ◦Ψi−1 ∈ F [x], and

Ψ̂i = (xp − Ψ̂i−1(εθi)
p−1x) ◦ Ψ̂i−1 ∈ K[x].

Then

f = Ψν =(xp −Ψν−1(θν)
p−1x) ◦ · · · ◦ (xp − θp−1

1 x), and

f̂ = Ψ̂ν =(xp − Ψ̂ν−1(εθν)
p−1x) ◦ · · · ◦ (xp − (εθ1)p−1x).

Since, for 1 ≤ i ≤ ν,

Ψ̂i =
∏

(a1,...,ai)∈Zip

(x−
∑

1≤j≤i
ajθjε) ,
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we find that

Ψ̂i−1(εθi) =
∏

(a1,...,ai−1)∈Zi−1
p

(εθi −
∑

1≤j≤i−1

ajθjε)

= εp
i−1 ∏

(a1,...,ai−1)∈Zi−1
p

(θi −
∑

1≤j≤i−1

ajθj)

= εp
i−1

Ψi−1(θi).

Thus, in any decomposition of f̂ into p-linear components in K[x], for 1 ≤
i ≤ ν, the ith composition factor has the form

xp − aεpi−1(p−1)x

for some a ∈ F . If any non-identity permutation of a decomposition was also
a decomposition of f̂ , then

aεp
i−1(p−1) = bεp

j−1(p−1)

for some 1 ≤ i < j ≤ ν and a, b ∈ F . But then ε would satisfy a polynomial
in F [x] of degree less than pν , giving a contradiction. It follows that for the
class of polynomials just constructed there are Fν permutation inequivalent,
complete normal decompositions. �

The above theorem gives a super-polynomial lower bound on the number of
permutation inequivalent, complete normal decompositions possible for an
arbitrary polynomial.

Theorem 3.13. Let p be a prime number, ν ∈ N, and n = pν . There exist
fields K of algebraic degree at most n log n over Zp, and monic polynomials
of degree n in K[x] which have nµ logn decompositions in cDECK

∗ which
are inequivalent up to exponential and permutation ambiguities (where µ =
(2 log p)−1).

Proof. Let f ∈ AF be simple of degree n = pν as constructed in theorem
3.11. By lemma 3.11 we know f has at least

p
v2

2 = nµ logn

complete normal decompositions in K[x] (where µ = (2 log p)−1), and these
decompositions are inequivalent up to exponential and permutation ambigu-
ities. The field K in theorem 3.11 has degree νpν = O(n log n) over Zp. �
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Additive polynomials are certainly not the only class of polynomials which
potentially have a super-polynomial number (in their degrees) of inequiva-
lent decompositions. For example, let Q be a set of additive polynomials
which have a super-polynomial number of inequivalent decompositions in
their degrees (such as that defined in theorem 3.11). Define a new set of
polynomials

D = {g ◦ f ◦ g|f ∈ Q, g ∈ F [x], deg f = deg g = n}.

Each f ∈ D has a super-polynomial number of decompositions in its degree
and yet D is not a set of additive polynomials.
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4 The Ring of Additive Polynomials

4.1 Basic Ring Structure

Ore[1933a] considers rings of polynomials RF ⊆ F [x] under the usual poly-
nomial addition (+), and a (possibly non-commutative) multiplication (×).
The only further assumption he makes is the existence of a degree function
δ : RF \ {0} → N such that if f, g ∈ RF with δ(f) = r and δ(g) = s, then
δ(f × g) = r + s. In Ore[1933b] he applies this theory to the ring AF of ad-
ditive polynomials with composition as ring multiplication and exponent as
the degree function. In this chapter, in sections A-D we present a summary
of the theory of Ore as applied to additive polynomials. In section E we in-
vestigate the uniqueness properties of decompositions, and some properties
of the indecomposable composition factors. We also strengthen a theorem
of Ore[1933a] as applied to additive polynomials. In section F we use the
relationships between decompositions developed in the previous sections to
give an upper bound on the number of complete rational decompositions of
an arbitrary additive polynomial. In chapter 5 we will then use the theory
developed here to construct decomposition algorithms for additive polyno-
mials.

Recall from chapter 3 that if F is a field of characteristic p then f ∈ F [x]
is additive if f(x + y) = f(x) + f(y) for independent indeterminates x and
y. We denote the set of all additive polynomials over F as AF ⊆ F [x] and for
f ∈ AF,

f =
∑

0≤i≤ν
aix

pi

with ai ∈ F for 0 ≤ i ≤ ν and aν 6= 0. The integer ν ≥ 0 is called the
exponent of f and we write expn f = ν. It is easy to see that AF is a ring
without zero divisors. We will also show it has a right division algorithm (ie.
if f, g ∈ AF, with g 6= 0, then there exists Q,R ∈ AF such that f = Q ◦ g +R
and expnR < expn g), and is therefore a left-Euclidean ring (the terminology
is derived from the fact that the right division algorithm makes it a principal
left ideal ring). Let f, g ∈ AF with g 6= 0 and expn f = ν, and expn g = ρ.
Assume also that f and g have leading (high order) coefficients a ∈ F and
b ∈ F respectively. If ν < ρ then division is trivial. If ν ≥ ρ then with
f (ν) = f , define

h(ν) = ab−p
ν−ρ
xp

ν−ρ ∈ AF
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and
f (ν−1) = f (ν) − h(ν) ◦ g ∈ AF.

Then f (ν) = h(ν) ◦ g + f (ν−1) and f (ν−1) has exponent less than that of f (ν).
Iterating this process we get

f = (h(ν) + h(ν−1) + · · ·+ h(ρ)) ◦ g + f (ρ−1)

and the exponent of f (ρ−1) is less than the exponent of g. This gives a right
hand division algorithm for AF.

Let f, g, h ∈ AF. If f = g ◦ h, then we write h |◦ f , meaning h is a
right composition factor of f . We will write g = f /◦ h meaning g is the
compositional quotient after dividing f by h on the right (provided h does
divide f on the right). This quotient is unique because of the existence of
the division algorithm shown above (or by lemma 1.1). Finally, if h |◦ f − g,
then we write f ≡◦ g mod h. As an example, with F = Z3, let

f = x27 + 2x9 + x3 + 2x,

g = x9 + x3 + x.

Then
f = x3 ◦ g + x9 + 2x

= x3 ◦ g + x ◦ g + 2x3 + x

= (x3 + x) ◦ g + (2x3 + x).

4.2 The Euclidean Scheme
From the existence of a right division algorithm for AF follows the existence
of a right Euclidean algorithm. Given f1, f2 ∈ AF, we proceed with the
Euclidean scheme in the usual fashion (see van der Waerden [1970] pp. 55).
Assume expn f1 ≥ expn f2. At each stage i > 2, let fi be the remainder of
fi−2 divided on the right by fi−1. We get the following sequence:

f1 = Q1 ◦ f2 + f3,

f2 = Q2 ◦ f3 + f4,

f3 = Q2 ◦ f4 + f5,

...

fn−2 = Qn−2 ◦ fn−1 + fn,

fn−1 = Qn−1 ◦ fn,
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where Qi, fi ∈ AF and expn fi < expn fi−1. The number of steps n is at most
the exponent of f2. The polynomial afn ∈ AF, where a ∈ F is such that afn
is monic, is the greatest common (right compositional) divisor or meet of f1

and f2. We denote the meet f1 u f2. As an example, assume as before that
F = Z3 and

f1 = x27 + 2x9 + x3 + 2x,

f2 = x9 + x3 + x.

Following the Euclidean scheme,

f1 = (x3 + x) ◦ f2 + (2x3 + x),

f2 = (2x3 + x) ◦ (2x3 + x),

f3 = 2x3 + x.

Normalising to make the meet monic,

f1 u f2 = 2−1(2x3 + x)

= x3 + 2x.

The existence of a Euclidean algorithm means AF is a principal left ideal
ring. Let f1 and f2 be two additive polynomials, and let (f1) and (f2) be
the left ideals generated by them. The ideal D = (f1) + (f2) consists of all
sums of left multiples of f1 with left multiples of f2. Because AF is principal,
D = (u) for some unique monic u ∈ AF and this u is the meet of f1 and
f2. The set L = (f1) ∩ (f2) is also an ideal and consists of all common left
multiples of f1 and f2. Assume f1f2 6= 0. We must now show that L 6= (0).
Let D = f1 u f2. From the extended Euclidean scheme we know that there
exist A1, A2 ∈ AF such that A1 ◦f1 +A2 ◦f2 = D. If f2 = R2 ◦D for R2 ∈ AF,
then R2 ◦A1 ◦f1 +R2 ◦A2 ◦f2 = f2 and R2 ◦A1 ◦f1 = (x−R2 ◦A2)◦f2. Thus
f1 and f2 are both right factors of R2 ◦ A1 ◦ f1, and since this is nonzero,
L 6= (0). The ring AF is a principal left ideal ring, so L = (h) for some
unique monic h ∈ F [x]. This is the common left multiple of f1 and f2 of
least exponent, which we will call the join of f1 and f2. We denote the join
of f1 and f2 by f1 t f2. Some properties of the join are summarised in the
following lemma.
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Lemma 4.1. Let f, g, h ∈ AF.

(i) f t g = g t f ,
(ii) f t (g t h) = (f t g) t h (we will often write f t g t h),
(iii) g t (f ◦ g) = f ◦ g,
(iv) (g ◦ h) t (f ◦ h) = (g t f) ◦ h,
(v) if g |◦ f and h |◦ f then g t h |◦ f .

Proof. Let (f), (g), (h) be the left ideals generated by f , g, and h respec-
tively.

(i) The polynomial f t g is the unique monic generator of the ideal (f) ∩
(g) = (g) ∩ (f), and as intersection is commutative, so is the join.

(ii) The polynomial f t (g t h) is the unique monic generator of the ideal
(f) ∩ ((g) ∩ (h)) = ((f) ∩ (g)) ∩ (h) = (f) ∩ (g) ∩ (h) and by the
associativity of intersection, join is associative.

(iii) Since g |◦ f ◦ g, (f ◦ g) ⊆ (g) and (f ◦ g) ∩ (g) = (f ◦ g).

(iv) The polynomial (g ◦ h) t (f ◦ h) is the unique monic generator of the
ideal (f ◦ h) ∩ (g ◦ h) = {u ∈ AF |u = v ◦ h and v ∈ (f) ∩ (g)}, since
all common left multiples of f ◦ h and g ◦ h are also common multiples
of f and g, composed with h. Since (f) ∩ (g) has generator f t g, the
lemma follows.

(v) From the fact that (g) ⊇ (f) and (h) ⊇ (f) it follows that (g)∩(h) ⊇ (f)
and therefore that g t h |◦ f . �

The existence of a join does not give a construction for it. The standard
commutative construction of the product divided by the greatest common
divisor is not appropriate in a non-commutative ring. However, an extension
to the Euclidean scheme will provide a more concrete representation of the
join. We first require the following theorem.

Theorem 4.2. Let f, g, h ∈ AF. If f ≡◦ g mod h then

f t h = a((g t h) /◦ g) ◦ f,

where a ∈ F is such that the join is monic.

Proof. We know g t h = u ◦ g for some u ∈ AF. From the assumptions
f = g +Q ◦ h for some Q ∈ AF and u ◦ f = u ◦ g + u ◦Q ◦ h. Since h |◦ u ◦ g
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and h |◦ u ◦Q ◦ h, we know h |◦ u ◦ f . Because f |◦ u ◦ f as well, ht f |◦ u ◦ f
by lemma 4.1 (v). We now show that in fact h t f = a(u ◦ f) where a ∈ F
is such that a(u ◦ f) is monic. Suppose h t f = v ◦ f for some v ∈ AF. Then
htf = v ◦f = v ◦ g+ v ◦Q◦h and since h |◦ v ◦f and h |◦ v ◦Q◦h, it follows
that h |◦ v ◦ g as well. We know g |◦ v ◦ g, so g th |◦ v ◦ g. Since g th = u ◦ g,
expn v ≥ expnu. Therefore h t f = a(u ◦ f). By definition u = (g t h) /◦ g,
so h t f = a((g t h) /◦ g) ◦ f . �

The join of f1 and f2 can now be written as follows.

Theorem 4.3.

f1 t f2 = b(· · · (fn−1 /◦ fn) ◦ fn−2) /◦ fn−1) ◦ · · · ◦ f3) /◦ f4) ◦ f2) /◦ f3) ◦ f1

for some b ∈ F chosen to make the join monic (the alternation of ◦ and /◦
is similar to the alternation of + and · in Horner’s rule, and the difference
between successive indices (from left to right) is +1,−2,+1,−2,+1, . . . for
each of the 2n− 1 terms).

Proof. In the Euclidean scheme, fi ≡◦ fi+2 mod fi+1 for 1 ≤ i ≤ n− 1 (with
fn+1 = 0), where n is the length of the sequence of fi’s in the Euclidean
scheme. Also note that fn |◦ fn−1. From theorem 4.2 this implies that

fi t fi+1 = a((fi+1 t fi+2) /◦ fi+2) ◦ fi.

for some a ∈ F . We proceed by induction on n.
If n = 2 then f1 t f2 = f1 and the theorem holds immediately.
Now assume that the theorem holds for Euclidean schemes of length less than
n. If the Euclidean scheme has length n, then

f1 t f2 = a1([f2 t f3] /◦ f3) ◦ f1,

and by induction,

f1 t f2 = a1([a2(· · · (fn−1 /◦ fn) ◦ fn−2) /◦ · · · /◦ f5) ◦ f3) /◦ f4) ◦ f2] /◦ f3) ◦ f1

= b(· · · (fn−1 /◦ fn) ◦ fn−2) /◦ · · · /◦ f5) ◦ f3) /◦ f4) ◦ f2) /◦ f3) ◦ f1

for appropriate a1, a2, b ∈ F , and the theorem follows. �

Theorem 4.3 also allows us to calculate the exponent of the join.
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Theorem 4.4. expn(f1 t f2) = expn f1 + expn f2 − expn(f1 u f2)

Proof. Using the simple fact that expn f ◦ g = expn f + expn g and expn f /◦
g = expn f − expn g, for f, g ∈ AF, a quick examination of the formula for
join given in theorem 4.3 reveals that

expn f1 t f2 = expn f1 + expn f2 − expn fn

= expn f1 + expn f2 − expn(f1 u f2)

and the theorem is proved. �

Continuing with the previous example,

f1 t f2 = a((f2 /◦ f3) ◦ f1)

= a(((2x3 + x) ◦ (2x3 + x)) /◦ (2x3 + x)) ◦ f1

= a(2x3 + x) ◦ (x27 + 2x9 + x3 + 2x)

= a(2x81 + 2x27 + x9 + 2x3 + 2x)

= x81 + x27 + 2x9 + x3 + x.

For verification we check that indeed

x81 + x27 + 2x9 + x3 + x = (x9 + x) ◦ f2

= (x3 + 2x) ◦ f1.

If f, g, h ∈ AF with g 6= 0 and f = g ◦ h, then h is a multiplicative factor
as well as a right composition factor of f . Thus, if

f = Q ◦ g +R

where Q,R ∈ AF and expnR < expn g, then

f −R = Q ◦ g
= Q′g,

where Q′ = (f−R)/g ∈ F [x]. Therefore f = Q′g+R and usual multiplicative
division in F [x] yields the same remainder as compositional division in AF.
This means that the right-Euclidean algorithm for AF just described generates
the same sequence of fi’s as the usual multiplicative Euclidean algorithm
(though obviously a different sequence of Qi’s) and we have the following
theorem.
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Theorem 4.5. If f1, f2 ∈ AF, then f1uf2 is equal to the usual multiplicative
greatest common divisor of f1 and f2.

We can speak of f1 and f2 in AF as being composition-coprime if f1uf2 =
x, and this is equivalent to saying that the usual, multiplicative, greatest
common divisor of f1 and f2 is x.

4.3 The Structure of the Set of Decompositions
The set of all distinct complete rational normal decompositions of a given
additive polynomial has a very strong internal structure. Ore[1933a] devel-
ops this structure in the general context of non-commutative left-Euclidean
polynomial rings.

The central concept of Ore’s theory is that of transformation. Let f, g ∈
AF be monic. The monic polynomial

g . f = (g t f) /◦ g ∈ AF

is called the transformation of f by g. By theorem 4.4, we determine that

expn(g . f) = expn(g t f)− expn g

= expn g + expn f − expn(g u f)− expn g

= expn f − expn(g u f).

Obviously, if f and g are composition-coprime then expn(g . f) = expn f
(though g . f certainly does not have to equal f).

The properties of transformation will be developed in the following few
theorems. There does not seem to be an easy technique relating these prop-
erties to the familiar multiplicative identities, say over the integers. Once
might liken meet to integer greatest common divisor (gcd) and join to least
common multiple (lcm). In this case transformation becomes lcm divided by
gcd. But this is also a commutative construction, which is not the case for
transformation in the additive polynomials.

Theorem 4.6. Let f, g, h ∈ AF be monic. If f ≡◦ g mod h then f .h = g .h.

Proof. By theorem 4.2, f th = ((g th) /◦ g) ◦ f . Dividing both sides on the
right by f , we get (f t h) /◦ f = (g t h) /◦ g (the multiplying constant a ∈ F
from theorem 4.2 is one since f, g and h are assumed to be monic). Directly,
we have that f . h = g . h. �
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Theorem 4.7. Let f, g, h ∈ AF be monic. If h |◦ f ◦ g then

(i) (g . h) |◦ f , and

(ii) if f is indecomposable, g u h = x, and h 6= x, then g . h = f .

Proof.

(i) The polynomials g and h are both right factors of f ◦ g, so there exists
a u ∈ AF such that f ◦ g = u ◦ (g t h). Thus

f = (u ◦ (g t h)) /◦ g
= u ◦ (g . h).

(ii) As f is indecomposable and g u h = x, we know expn(g . h) = expnh.
From (i), (g . h) |◦ f and since expnh = expn(g . h) > 0 and f is
indecomposable, (g . h) = f . �

Two monic additive polynomials f, g ∈ AF are said to be similar if there
exists a u ∈ AF composition-coprime with g such that f = u . g. To denote
similarity we write f ∼ g. Note that if f and g are similar then expn f =
expn g. We will show that similarity is an equivalence relation. First, we
must prove a preliminary lemma.

Lemma 4.8. Let f, g, h ∈ AF be monic. Then (g ◦ h) . f = g . (h . f).

Proof.

(g ◦ h) . f = ((g ◦ h) t f) /◦ (g ◦ h)

= ((g ◦ h) t h t f) /◦ (g ◦ h)

= ((g ◦ h) t (h t f)) /◦ h) /◦ g
= (g t ((h t f) /◦ h)) /◦ g
= g . (h . f). �
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Theorem 4.9. Similarity is an equivalence relation.

Proof. Let f, g, h ∈ AF be monic.

(i) Similarity is reflexive since x . f = f .

(ii) Assume f ∼ g, so that f = u . g for some u ∈ AF such that u u g = x.
As u and g are composition-coprime, there exist Q, v ∈ AF such that

v ◦ u+Q ◦ g = x.

Therefore v ◦ u ≡◦ x mod g. We have

g = x . g = (v ◦ u) . g by theorem 4.6

= v . (u . g) by lemma 4.8

= v . f,

and g ∼ f , so similarity is symmetric.

(iii) Assume f ∼ g and g ∼ h. Then there exist u, v ∈ AF such that
u u g = x, f = u . g, v u h = x, and g = v . h. By lemma 4.8,

f = u . g

= u . (v . h)

= (u ◦ v) . h.

Because h and f have the same exponent, (u ◦ v) u h = x and h ∼ f .
Thus similarity is transitive.

By (i), (ii), and (iii) above, similarity is an equivalence relation. �

An interesting case is that of the additive polynomial xp, which has the
following property.

Lemma 4.10. The only additive polynomial similar to xp ∈ AF is xp.

Proof. Let u ∈ AF be monic and composition-coprime with xp. Thus, u is
simple (u is monic and u(0) = 0). Since utxp = w◦xp for some w ∈ AF, utxp
is not simple. We also know that u t xp = v ◦ u for some v = xp + ax ∈ AF

for some a ∈ F . As u is simple and v ◦ u is not simple, v = xp. Therefore
u t xp = xp ◦ u and u . xp = xp. �

A further property of transformation is that the transformation of a join is
simply the transformation of its components.
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Theorem 4.11. Let f, g, h ∈ AF be monic. Then h.(ftg) = (h.f)t(h.g).

Proof. We know

(h . (f t g)) ◦ h = ((h t (f t g)) /◦ h) ◦ h
= (h t (f t g))

= (h t f) t (h t g)

= (((h t f) /◦ h) t ((h t g) /◦ h)) ◦ h.

Dividing on the right by h we get

h . (f t g) = (h . f) t (h . g). �

Transformation will later be used to characterise the different decompo-
sitions of a given additive polynomial. It will be useful to know the effect of
transformation on a composition of additive polynomials.

Theorem 4.12. Let f, g, h ∈ AF be monic. Then h . (f ◦ g) = ((g . h) . f) ◦
(h . g).

Proof. We know that

h . (f ◦ g) = h . ((f ◦ g) t g)

= (h . (f ◦ g)) t (h . g) (by theorem 4.11)

= Q ◦ (h . g)

for some Q ∈ AF. This implies Q ◦ (h t g) = h t (f ◦ g) and

Q ◦ (g . h) = (h t (f ◦ g)) /◦ g
= (g t (h t (f ◦ g))) /◦ g
= g . (h t (f ◦ g))

= (g . h) t (g . (f ◦ g))

= (g . h) t ((g t (f ◦ g)) /◦ g)

= (g . h) t f.

Therefore, Q = (g . h) . f and the theorem follows. �

This theorem can be easily extended to consider the transformation of a
composition of many polynomials.
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Theorem 4.13. Let f ∈ AF be monic. Assume f = fm◦fm−1◦· · ·◦f1 where
fi ∈ AF are monic for 1 ≤ i ≤ m. Let h ∈ AF be monic and composition-
coprime with f . If hi ∈ AF is defined by

hi =
{ (fi−1 ◦ fi−2 ◦ · · · ◦ f1) . h for i > 1,

h for i = 1,

for 1 ≤ i ≤ m then
h . f = f̄m ◦ f̄m−1 ◦ · · · ◦ f̄1,

where f̄i = hi . fi.

Proof. We proceed by induction on m. If m = 1 then h . f1 = f̄1. Assume
the theorem is true if the number of factors is less than m and that m > 1.
From theorem 4.12,

h . f = h . ((fm ◦ fm−1 · · · ◦ f2) ◦ f1)

= ((f1 . h) . (fm ◦ · · · ◦ f2)) ◦ (h . f1).

Since h and f are composition-coprime, expnh . f = expn f . Therefore, by
computing the exponents of each side of the above equation, we have

expn(fm ◦ · · · ◦ f2) = expn((f1 . h) . (fm ◦ · · · ◦ f2)),

and (f1 . h) and fm ◦ · · · ◦ f2 must be composition-coprime. By induction,

(f1 . h) . (fm ◦ · · · f2) = f̄m ◦ f̄m−1 ◦ · · · ◦ f̄2

with f̄i = h̄i . fi for 2 ≤ i ≤ m where h̄i is defined by

h̄i =

{
(fi−1 ◦ fi−2 ◦ · · · ◦ f2) . (f1 . h) for i > 2

f1 . h for i = 2

= (fi−1 ◦ · · · ◦ f2) . h (by lemma 4.8),

and the theorem follows. �

The above theorems consider the transformations of arbitrary decompo-
sitions. What are the effects of transformation on complete decompositions?
We first need to know the relationship between the decompositions of similar
additive polynomials.
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Theorem 4.14. If f, g ∈ AF, f ∼ g and f is indecomposable, then g is
indecomposable.

Proof. Assume f = u . g for some u ∈ AF composition-coprime with g.
Suppose that g = g2 ◦ g1, where expn g2 > 0 and expn g1 > 0 (so g is
decomposable). By theorem 4.12, f = ((g1.u).g2)◦(u.g1). The polynomials
u and g1 are composition-coprime because u and g are composition-coprime
and g1 |◦ g. It follows that u . g1 ∼ g1 and expnu . g1 = expn g1. Therefore
expn((g1.u).g2) = expn g2 and f is decomposable, a contradiction. Therefore
g is indecomposable. �

From 4.13 and 4.14 we immediately get the following theorem.

Theorem 4.15. If (f, (fm, . . . , f1)) ∈ cAPDECF
∗ and g ∼ f (say g = u.f),

then there exists (g, (gm, . . . , g1)) ∈ cAPDECF
∗ where gi ∼ fi for 1 ≤ i ≤ m

(specifically, g1 = u . f1 for some u ∈ AF and gi = ((fi−1 ◦ · · · ◦ f1) . u) . fi
for 2 ≤ i ≤ m).

Proof. By theorem 4.13 we transform the composition, giving a decomposi-
tion of g. The fact that this is a complete decomposition follows from 4.14.

�

Transformation and similarity can be used to completely characterise the
relationship between decompositions. Let f, g ∈ AF be monic. If there exists
a monic f̄ ∈ AF such that f̄ ∼ f and f = g.f̄ , we say f and g are transmutable
or that they transmute. The additive polynomial f̄ is called a transmutation
of f by g. In this case,

f ◦ g = (g . f̄) ◦ g
= ((g t f̄) /◦ g) ◦ g
= g t f̄
= ((f̄ t g) /◦ f̄) ◦ f̄
= (f̄ . g) ◦ f̄
= ḡ ◦ f̄

where ḡ = f̄ . g ∈ AF. Because f ∼ f̄ , f and f̄ have the same exponent and
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so ḡ and g also have the same exponent. We know

expn(f̄ t g) = expn f̄ + expn g − expn(f̄ u g)

= expn(f ◦ g)

= expn(f̄ ◦ g)

= expn f̄ + expn g.

Thus expn f̄ u g = 0 and ḡ ∼ g.
There is no reason why there cannot exist an f̃ ∈ AF such that f̃ ∼ f , f̃ 6= f̄
and f = g . f̃ . The transmutation of f by g is not unique. Consider the
following example over an arbitrary field F of characteristic p.

f = xp + ax a ∈ F
g = xp + bx b ∈ F

Then f ◦ g = xp
2

+ (a+ bp)xp + abx. Assume f ◦ g = ḡ ◦ f̄ where

f̄ = xp + āx ā ∈ F
ḡ = xp + b̄x b̄ ∈ F

This implies b̄+ āp = a+ bp and ab = āb̄. Thus

0 = ab− āb̄
= ab− ā(−āp + a+ bp)

= ab+ āp+1 − aā− bpā
= a(b− ā)− ā(b− ā)p

= (b− ā)(a− ā(b− ā)p−1),

and either f = ḡ and f̄ = g, or ā is a root of ϕ = a− x(b− x)p−1 ∈ F [x] (ḡ
is uniquely determined as ḡ = (f ◦ g) /◦ f̄)). Noting that

f = (ḡ ◦ f̄) /◦ g
= (g t (ḡ ◦ f̄)) /◦ g since g |◦ ḡ ◦ f̄
= g . (ḡ ◦ f̄)

= g . ((ḡ ◦ f̄) t f̄)

= g . (ḡ ◦ f̄) t (g . f̄)

= f t (g . f̄),



Functional Decomposition of Polynomials 75

and expn f = expn g . f̄ = 1, it follows that f = g . f̄ , so f ∼ f̄ and
the transmutation of f by g is f̄ . Since the argument can be reversed, it
implies that the polynomial f can transmute by g in up to p different ways,
depending upon the roots of ϕ in F .

A point worth noting is that xp does not transmute by xp. By lemma
4.10, the only polynomial similar to xp is xp. If xp did transmute by xp, then
xp = xp . xp = (xp t xp) /◦ xp = x, a contradiction.

The set of all complete decompositions of f ∈ AF can be given structure
using transmutation and similarity. Let (f, (fm, fm−1, . . . , f1)) ∈ cAPDECF

∗ .
If fi and fi−1 ◦ fi−2 ◦ · · · ◦ f` transmute for some i, ` ∈ N with m ≥ i > ` ≥ 1
then we get another complete decomposition of f . As in theorem 4.13, this
is

(f, (fm, fm−1, . . . , fi+1, f̄i−1, . . . , f̄`, f̄i, f`−1, . . . , f1)) ∈ cAPDECF
∗ .

where f̄j ∼ fj for ` ≤ j ≤ i. We say these two decompositions are single-

transmutation equivalent. Letting (f, (f (0)
m , . . . , f

(0)
1 )) ∈ cAPDECF

∗ , if there
is a sequence

(f (0)
m , . . . , f

(0)
1 )

(f (1)
m , . . . , f

(1)
1 )

...

(f (t)
m , . . . , f

(t)
1 )

where (f, (f (i)
m , . . . , f

(i)
1 )) ∈ cAPDECF

∗ for 1 ≤ i ≤ t, and (f (i)
m , . . . , f

(i)
1 ) and

(f (i+1)
m , . . . , f

(i+1)
1 ) are single-transmutation equivalent for 1 ≤ i < t, we say

that f (0)
m , . . . , f

(0)
1 and f (t)

m , . . . , f
(t)
1 are transmutation equivalent. Transmu-

tation equivalence is the reflexive transitive closure of single-transmutation
equivalence.

Theorem 4.16. All complete rational normal decompositions of a monic
f ∈ AF are transmutation equivalent.

Proof. Let (f, (fm, . . . , f1)) = (f, (f (0)
m , . . . , f

(0)
1 )) and (f, (gr, . . . , g1)) for

r,m ∈ N be complete rational normal decompositions of f . We prove the
theorem by induction on m. If m = 1 then f is indecomposable and f1 = g1,
so the statement is true.
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Assume the theorem is true for complete decompositions of length less
than m. Let k ∈ N be the smallest number such that g1 |◦ (fk ◦fk−1 ◦ · · · ◦f1).
If k = 1 then f1 = g1 (they are both indecomposable), and by induction (f /◦
g1, (fm, . . . , f2)) and (f /◦ g1, (gr, . . . , g2)) ∈ cAPDECF

∗ are transmutation
equivalent. Therefore (f, (fm, . . . , f1)) and (f, (gr, . . . , g1)) are transmutation
equivalent.

If k > 1 then fk−1 ◦ fk−2 ◦ · · · ◦ f1 and g1 are composition-coprime. By
theorem 4.7(ii),

fk = (fk−1 ◦ fk−2 ◦ · · · ◦ f1) . g1,

fk ∼ g1, and fk and (fk−1 ◦ · · · ◦ f1) are transmutable. Therefore

fk ◦ fk−1 ◦ · · · ◦ f1 = (g1 . (fk−1 ◦ · · · ◦ f1)) ◦ g1

= f̄k−1 ◦ f̄k−2 ◦ · · · ◦ f̄1 ◦ g1

by theorem 4.13, where fi ∼ f̄i for 1 ≤ i ≤ k − 1. Thus

(f, (fm, fm−1, . . . , fk+1, f̄k−1, . . . , f̄1, g1))

and (f, (fm, . . . , f1)) are single-transmutation equivalent. Also, by the induc-
tive hypothesis, (f /◦ g1, (fm, fm−1, . . . , fk+1, f̄k−1, . . . , f̄1)) and (f /◦ g1, (gr, . . . , g2))
are transmutation equivalent. Therefore (f, (fm, . . . , f1)) and (f, (gr, . . . , g1))
are transmutation equivalent and the theorem follows. �

Any two single-transmutation equivalent decompositions have the same
number of indecomposable factors in any complete decomposition, and these
factors are similar in pairs. Since similarity is transitive, we immediately get
the following corollary.

Corollary 4.17. Any two complete decompositions of f ∈ AF have the
same number of factors and if (f, (fm, fm−1, . . . , f1)), (f, (gm, gm−1, . . . , g1)) ∈
cAPDECF

∗ for some m > 0, there exists a permutation σ of {1, . . . ,m} such
that gi ∼ fσi for 1 ≤ i ≤ m.

4.4 Completely Reducible Additive Polynomials
A monic additive polynomial is said to be completely reducible if it is the
join of a set of indecomposable additive polynomials. Completely reducible
additive polynomials have a number of nice properties which we will examine
mathematically and algorithmically.



Functional Decomposition of Polynomials 77

Lemma 4.18. A completely reducible polynomial f ∈ AF can be represented
in the form

f = hr t hr−1 t · · · t h1

where, for 1 ≤ i ≤ r, hi is indecomposable and no one of the hi’s is a right
composition factor of the join of the others. This is called an indecomposable
basis of f .

Proof. Let f ∈ AF be completely reducible and let u1, u2, . . . , um ∈ AF be the
indecomposable right factors of f . We know that f is the join of these right
factors by the definition of completely reducible, and that there is a finite
number of them since they are all multiplicative divisors of f . Consider the
following method for determining an indecomposable basis for f .

1) Let T := ∅
2) Let g(0) := x

3) For i from 1 to m

3.1) if ui u g(i−1) = x then

3.1.1) let g(i) := g(i−1) t ui
3.1.2) let T := T ∪ {ui}

else

3.1.3) let g(i) := g(i−1)

3.2) if g(i) = f, then quit, returning T

At step 3.1, we know that if ui u g(i−1) 6= x then ui |◦ g(i−1) for i ≥ 1
because ui is indecomposable. In this case it will not change the join g(i−1)

and is redundant. Because f is the join of all its indecomposable right factors,
g(k) = f for some k ≤ m. From the construction, the exponent of the join
of the polynomials in T is the sum of the exponents of these polynomials.
By theorem 4.4, therefore, any one polynomial in T is composition-coprime
with the join of the others in T . �

Note that we can choose any indecomposable right factor u1 we want in the
above procedure.

A polynomial f ∈ AF is said to be completely transmutable if in any
complete decomposition, any two adjacent indecomposable factors are trans-
mutable.
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Theorem 4.19. An additive polynomial is completely reducible if and only
if it is completely transmutable.

Proof. We first show that if f ∈ AF is completely reducible then it is com-
pletely transmutable. We proceed by induction on the number of indecom-
posable factors in a complete decomposition of f . Assume f = g1 ∈ AF,
where g1 is indecomposable. Then f is completely transmutable. Now, as-
sume the statement is true if f has less than m indecomposable factors in any
complete decomposition. Let f = gm ◦ gm−1 ◦ · · · ◦ g1 = ḡ ◦ g1 where gi ∈ AF

are indecomposable for 1 ≤ i ≤ m and m > 2, and ḡ = f /◦ g1 ∈ AF. As
f is completely reducible, it has an indecomposable basis {g1, h2, h3, . . . , h`}
with hi ∈ AF indecomposable for 2 ≤ i ≤ `. We get

ḡ = ((h` t · · · t h2) t g1) /◦ g1

= g1 . (h` t · · · t h2)

= (g1 . h`) t (g1 . h`−1) t · · · t (g1 . h2)

and ḡ ∼ (h`t· · ·th1). Thus, ḡ is completely reducible and, by the inductive
assumption, completely transmutable. We have shown the leftmost m − 1
factors of any complete decomposition of f are completely transmutable.
Now we need only show that g1 and g2 are transmutable. We know g2 |◦
ḡ = g1 . (h` t · · · t h2). By theorem 4.15, all complete decompositions of
g1 . (h` t · · · t h2) are simply decompositions of h` t · · · t h2 transformed by
g1 (g1 and (h` t · · · t h2) are composition-coprime). Therefore, g2 = g1 . u
for some u ∈ AF similar to g2, and g1 and g2 are transmutable. Thus, any
completely reducible additive polynomial is completely transmutable.

We now show that if f ∈ AF is completely transmutable then f is com-
pletely reducible. Once again we prove this by induction on the number of
indecomposable factors in a complete decomposition of f . If f = g1, where
g1 ∈ AF is indecomposable, then f is obviously completely reducible. Assume
the statement holds if f has fewer than m factors in a complete decompo-
sition. Then assume f = gm ◦ gm−1 ◦ · · · ◦ g1 where gi ∈ AF for 1 ≤ i ≤ m.
Also, let ḡ = gm ◦ gm−1 ◦ · · · ◦ g2. Since ḡ is completely transmutable, it is
completely reducible by the inductive assumption, so ḡ = h` t · · · th2 where
` ∈ N is greater than two and h2, . . . , h` ∈ AF are indecomposable. Each
of the hi are indecomposable right factors of ḡ and because f is completely
transmutable, each of the hi’s can be transmuted with g1. Thus, hi = g1 . h̄i
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for some h̄i ∈ AF, h̄i ∼ hi for 1 ≤ i ≤ `. Therefore

f = ḡ ◦ g1 = (h` t h`−1 t · · · t h2) ◦ g1

= ((g1 . h̄`) t (g1 . h̄`−1) t · · · t (g1 . h̄2)) ◦ g1

= h̄` t h̄`−1 t · · · t h̄2 t g1,

and since the h̄i are indecomposable for 2 ≤ i ≤ ` and g1 is indecomposable,
f is completely reducible. �

Note that since xp does not transmute with itself, this theorem implies
that any completely reducible polynomial can have at most one composition
factor xp in an arbitrary complete decomposition.
A strong relationship exists between the composition factors of an arbitrary
complete decomposition and an arbitrary indecomposable basis.

Theorem 4.20. Let f ∈ AF be completely reducible, (f, (fm, fm−1, . . . , f1)) ∈
cAPDECF

∗ , and h1, . . . , h` be an indecomposable basis for f . Then m = `
and there exists a permutation σ of {1, . . . ,m} such that hi ∼ fσi for
1 ≤ i ≤ m.

Proof. We proceed by induction on m. If m = 1, then f is indecomposable,
and ` = 1 and σ is the identity permutation. Now assume the hypothesis is
true for all complete decompositions of length less than m. Let f ∈ AF be
completely reducible, (f, (fm, fm−1, . . . , f1)) ∈ cAPDECF

∗ , and h1, . . . , h` be
an indecomposable basis for f . Since h1 is an indecomposable right factor
of f , there exists a decomposition (f, (f ′m, f

′
m−1, . . . , f

′
2, h1)) ∈ cAPDECF

∗
and by corollary 4.17 a permutation τ of {1, . . . ,m} such that f ′i ∼ fτi for
1 ≤ i ≤ m. Now, (f /◦ h1, (f

′
m, f

′
m−1, . . . , f

′
2)) ∈ cAPDECF

∗ and by the
inductive assumption,

f /◦ h1 = h1 t (h` t h`−1 t · · · t h2) /◦ h1

= h1 . (h` t h`−1 t · · · t h2)

= (h1 . h`) t (h1 . h`−1) t · · · t (h1 . h2),

giving an indecomposable basis for f /◦ h1. By the inductive hypothesis
`− 1 = m− 1 so m = ` and there exists a permutation µ of {2, . . . ,m} such
that hi ∼ f ′µi for 2 ≤ i ≤ m. Extending this to a permutation µ̄ of {1, . . . ,m}
by letting µ̄1 = 1 we find that σ = τ µ̄ has the property that hi ∼ f ′µ̄i ∼ fσi
for 1 ≤ i ≤ m. �
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4.5 The Uniqueness of Transmutation
A question which will concern us algorithmically is that of the uniqueness
of transmutation. We can characterise how additive polynomials trans-
mute in terms of the similar factors in an arbitrary complete decomposi-
tion. Let g ∈ AF be monic of exponent ν with complete decomposition
(g, (gm, gm−1, . . . , g1)) ∈ cAPDECF

∗ . Let f ∈ AF be monic and indecompos-
able. Assume that f transmutes by g in two distinct ways, say f = g . f̄
for f̄ ∈ AF, f̄ ∼ f , and f = g . f̃ for f̃ ∈ AF, f̃ ∼ f , and f̃ 6= f̄ . Then
f ◦ g has complete decompositions (f ◦ g, (ḡm, . . . , ḡ1, f̄)) where ḡi ∈ AF and
ḡi ∼ gi for 1 ≤ i ≤ m and (f ◦g, (g̃m, . . . , g̃1, f̃)) where g̃i ∈ AF and g̃i ∼ gi for
1 ≤ i ≤ m. We know f̃ |◦ f ◦ g. Let k ∈ N be the smallest number such that
f̃ |◦ ḡk◦ḡk−1◦· · ·◦ḡ1◦f̄ (f̃ does not divide f̄). Then f̃ and ḡk−1◦ḡk−2◦· · ·◦ḡ1◦f̄
are composition-coprime and by theorem 4.7, ḡk = (ḡk−1 ◦ · · · ◦ ḡ1) . f̃ and
ḡk ∼ f̃ . We have the following theorem:

Theorem 4.21. Let f, g ∈ AF be monic with (g, (gm, . . . , g1)) ∈ cAPDECF
∗

and f indecomposable. If f and g transmute in two or more distinct ways,
then f ∼ gi for some i such that 1 ≤ i ≤ m.

We can further characterise when non-unique transmutations occur by
showing the following theorem about transmutations in general.

Theorem 4.22. Let f, g, h ∈ AF be monic. If f transmutes by g ◦ h with
transmutation f̄ , then f and g transmute, and if a transmutation of f by g
is f̃ , then f̃ and h transmute as well.

Proof. If f = (g ◦h). f̄ , then f = g . (h. f̄) by lemma 4.8. Since f̄ and g ◦h
are composition-coprime, f̄ and h are composition-coprime. Let f̃ = h . f̄ .
Then f̃ transmutes with g since f = g . f̃ . Furthermore, because f̃ = h . f̄ ,
f̃ and h transmute. �

This theorem can be extended to the case when f transmutes by hm ◦hm−1 ◦
· · · ◦ h1.

Theorem 4.23. Let f, hi ∈ AF for 1 ≤ i ≤ m. If f transmutes by h =
hm ◦ hm−1 ◦ · · · ◦ h1, then

(i) f transmutes by hm, with transmutation f (m) ∈ AF, for some f (m) ∼
f , and

(ii) for m ≥ i > 1, f (i) transmutes by hi−1 with transmutation f (i−1) ∈
AF for some f (i−1) ∼ f .
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Proof. We proceed by induction on m. The base case, where m = 2 follows
directly from theorem 4.22. Assume the theorem holds if h is given as a
composition of less than m factors. If h is given as a composition of m
factors then by theorem 4.22 f transmutes by hm . Let f (m) ∈ AF be the
transmutation of f by hm. Also by theorem 4.22, f (m) transmutes with
hm−1 ◦ · · · ◦ h1. By the inductive hypothesis, f (m) transmutes by hm−1 with
some transmutation f (m−1) ∼ f and for m − 1 ≥ i > 1, f (i) transmutes by
hi−1 with some transmutation f (i−1) ∼ f (m) ∼ f . �

If f transmutes by h in two distinct ways, then for an arbitrary decom-
position (h, (hm, hm−1, . . . , h1)) ∈ cAPDECF

∗ , f transmutes by each hi in
turn for m ≥ i ≥ 1. Which transmutation of f by h is obtained is deter-
mined entirely by the transmutation of f (i) by hi for 1 ≤ i ≤ m. Since the
transmutation of f (i) by hi is unique if f (i) � hi, the transmutation of f by
h is determined completely by the transmutation of f (i) by hi for 1 ≤ i ≤ m
when f (i) ∼ hi. With this in mind, we define an additive polynomial f ∈ AF

to be similarity free if in an arbitrary complete decomposition, no two of the
composition factors are similar. In a similarity free additive polynomial, all
transmutations of the factors are unique.

The previous theorem also allows us to strengthen theorem 4.16 of Ore’s.
We say two complete decompositions (f, (fm, fm−1, . . . , f1)) and (f, (gm, . . . , g1))
in cAPDECF

∗ are single-indecomposable-transmutation equivalent if fi = gi
for 1 ≤ i ≤ m or there exists an ` ∈ N with 1 ≤ ` < m such that

(f, (gm, . . . , g`+1, g`, g`−1, g`−2, . . . , g1)) = (f, (fm, . . . , f`+1, f̄`−1, f̄`, f`−2, . . . , f1))

where f̄` ∼ f` is the transmutation of f` by f`−1 and f̄`−1 = f̄` . f`−1 ∼ f`−1.

We define indecomposable-transmutation equivalence as the reflexive tran-
sitive closure of single-indecomposable-transmutation equivalence. Thus, two
decompositions are indecomposable-transmutation equivalent if one can be
obtained from the other by a sequence of transmutations of adjacent inde-
composable factors.

Theorem 4.24. Two complete decompositions are indecomposable- trans-
mutation equivalent if and only if they are transmutation equivalent.

Proof. If two complete decompositions are indecomposable-transmutation
equivalent, then they are transmutation equivalent. By theorem 4.23, any
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transmutation of an indecomposable additive polynomial with a composi-
tion of indecomposable polynomials is equivalent to a sequence of trans-
mutations with each of the indecomposable factors in turn. Thus, single-
transmutation equivalent decompositions are indecomposable-transmutation
equivalent. Since transmutation equivalence is just the reflexive transitive
closure of single-transmutation equivalence, transmutation equivalent decom-
positions must be indecomposable-transmutation equivalent. �

As an immediate corollary we get a stronger version of theorem 4.16.

Corollary 4.25. All complete decompositions of an additive polynomial f ∈
AF in cAPDECF

∗ are indecomposable-transmutation equivalent.

From now on we will simply say two complete decompositions are transmu-
tation equivalent to mean indecomposable-transmutation equivalent.

4.6 The Number of Complete Decompositions
Using the methods from chapter 3 as well as the material from this chapter,
we can now prove an upper bound on the number of complete decompositions
of a (not necessarily simple) additive polynomial.

Let f ∈ AF be monic of degree n = pν . Then f = g ◦ xp` where g ∈ AF

is simple and ` ≥ 0. From theorem 3.10, we know that g has at most nµ logn

complete decompositions in cSAPDECF
∗ where µ = (2 log p)−1. For each

decomposition (g, (gm, gm−1, . . . , g1)) ∈ cSAPDECF
∗ , f has a decomposition

(f, (gm, gm−1, . . . , g1,

` times︷ ︸︸ ︷
xp, xp, . . . , xp)) ∈ cAPDECF

∗ .

Without changing the order of the gi’s for m ≥ i ≥ 1, and allowing for
transformations into similar factors, we can distribute the indecomposable
factors xp throughout the decomposition of f . There are up to(

m+ `

`

)
≤
(
ν

`

)
≤ 2ν ≤ n

such distributions. We know these are all the decompositions because all de-
compositions of additive polynomials are transmutation equivalent. Because
there are nµ logn complete decompositions of g ∈ cSAPDECF

∗ , there are at
most n1+µ logn complete decompositions of f ∈ cAPDECF

∗ . We have shown
the following generalisation of lemma 3.10.
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Theorem 4.26. If f ∈ AF has degree n, then f has at most n1+µ logn decom-
positions in cAPDECF

∗ .

Note that in the case of a perfect field F , for any u ∈ AF, we know

u ◦ xp = xp ◦ u
1
p = xp ◦ ū where ū = u

1
p ◦ xp ∈ AF. In this case there are,

therefore, exactly
(
m+`
`

)
times as many complete decomposition of f than of

g in cAPDECF
∗ .
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5 Decomposing Additive Polynomials
5.1 The Model of Computation
The model of computation used in this chapter is the “arithmetic Boolean
circuit” as described in chapter 2, section A. Once again, let SF (n) be the
number of field operations required to factor an arbitrary univariate poly-
nomial f ∈ F [x] of degree n into irreducible factors (where F is a field
of characteristic p). In this chapter, SF (n) is assumed to be polynomially
bounded. It is also assumed to satisfy the property that for p, ν ∈ N,∑

0≤i≤ν
SF (pi) = O(SF (pν)).

The following theorem will also be useful in the analysis of some of our
algorithms.

Lemma 5.1. If p, ν, d ∈ N with p ≥ 2 and ν ≥ 1, then∑
1≤i≤ν

idpi ≤ 3νdpν .

Proof. We proceed by induction on ν. If ν = 1 then the theorem is trivially
true. Assume it is true for ν < k. Then∑

1≤i≤k
idpi =

∑
1≤i≤k−1

idpi + kdpk

≤ 3(k − 1)dpk−1 + kdpk

≤ (3/2)kdpk + kdpk

≤ 3kdpk,

and the theorem holds for all ν ≥ 1. �

5.2 The Cost of Basic Operations in AF.
Let f, g ∈ AF be of exponents ν and ρ respectively, and max(ν, ρ) ≤ δ. The
following analyses of the basic operations in AF are probably not optimal,
but will be sufficient for our purposes.

Lemma 5.2. (Composition) Computing f ◦ g requires at most O(δ2 log p)
field operations.
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Proof. Each coefficient of g must be raised to the pith power for 0 ≤ i ≤
ν ≤ δ. This requires O(ρδ log p) = O(δ2 log p) field operations. �

Lemma 5.3. (Division with remainder) If g 6= 0, computing Q,R ∈ AF such
that f = Q◦ g+R and expnR < expn g requires O(δ2 log p) field operations.

Proof. The cost of computing right division with remainder is dominated by
the cost of raising g (and hence each coefficient of g) to the pith power for 0 ≤
i ≤ ν − ρ. This requires O(ρ(ν − ρ) log p) = O(δ2 log p) field operations. �

Lemma 5.4. (Meet) Computing f u g requires O(δ3 log p) field operations.

Proof. In the Euclidean scheme described in the previous section, each step
involves right division with remainder of additive polynomials with exponent
at most δ. There are at most δ steps. Therefore we can compute the meet
of f and g with O(δ3 log p) divisions. �

Lemma 5.5. (Join) Computing f t g requires O(δ3 log p) field operations.

Proof. Using the formula of theorem 4.3, we must first compute the fi’s of the
Euclidean scheme. This requires O(ν3 log p) field operations by the previous
lemma. Computing the join then requires at most δ divisions and δ composi-
tions of polynomials with exponents not exceeding 2δ. Thus, computing the
join requires O(δ3 log p) + δO((2δ)2 log p) = O(δ3 log p) field operations. �

Lemma 5.6. (Transformation) Computing f . g requires O(δ3 log p) field
operations.

Proof. By definition f . g = (f t g) /◦ f , and the number of field operations
involved is dominated by the number of field operations required to compute
the join, which is O(δ3 log p). �

5.3 The Minimal Additive Multiple
Let f be an arbitrary monic polynomial in F [x]. A concept which will prove
extremely useful when dealing computationally with additive polynomials is
that of the minimal additive multiple f̂ ∈ AF of f . This is the monic additive
polynomial of smallest exponent such that f̂ is a multiple of f . The idea of
a minimal additive multiple first appears in Ore[1933b].

If f = 0, then f̂ = f = 0 ∈ AF. If f ∈ PF does not equal zero, the
following algorithm computes the minimal additive multiple f̂ of f .



86 Mark Giesbrecht

MinAddMult : PF → AF

Input: - f ∈ PF of degree n ≥ 1.

Output: - f̂ ∈ AF, the minimal additive multiple of f.

1) For i from 0 to n,

1.1) compute hi ≡ xp
i

mod f

where hi ∈ F [x] and deg hi < deg f.

2) Let k ∈ N be the smallest number with 0 ≤ k ≤ n

such that there exists α0, α1, . . . , αk−1 ∈ F
such that hk =

∑
0≤j<k αjhj.

3) Return f̂ = xp
k −∑0≤j<k αjx

pj.

We know f̂ is a multiple of f because

f̂ = xp
k −

∑
0≤j<k

αjx
pj

≡ (hk +
∑

0≤j<k
αjhj) mod f

≡ 0 mod f.

The existence of any additive multiple of f with exponent ` < k would imply
h0, . . . , h` are linearly dependent, which is false. Thus f̂ is the minimal
additive multiple of f . We know a solution always exists since n+ 1 vectors
in F n must be linearly dependent.

The number of field operations to compute hj for 0 ≤ j ≤ n isO(nM(n) log p).
The determination of k can be done by a modified Gaussian elimination on
the n × n matrix H where Hij is the coefficient of xi in hj for 0 ≤ i, j < n.
We proceed in stages from 0 to n − 1. Let H(0) = H. At stage ` (with
0 ≤ ` < n) we perform Guassian elimination on rows zero through ` of H(k)

obtaining H(k+1) (leaving rows ` + 1 through n − 1 unchanged). If, at the
end of stage `, row ` of H(`+1) has all entries zero, then rows zero through `
of H are linearly dependent and we can return k = `. At each stage of this
elimination we only perform a row operation on row `, so each stage requires
O(n2) field operations over F . The complete procedure then requires O(n3)
field operations. Given k, it is simple linear algebra to find α0, α1, . . . , αk−1

such that hk =
∑

0≤j<k αjhj. This also require O(n3) field operations. We
get the following theorem:
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Theorem 5.7. Let f ∈ F [x] be monic of degree n. The minimal additive
multiple f̂ ∈ AF of f can be determined in O(n3) field operations.

If f̃ is also an additive multiple of f , then by theorem 4.5, h = f̂ u f̃
is equal to the multiplicative greatest common divisor of f̂ and f̃ . Thus f
divides f̂ u f̃ and this is an additive multiple of f . But f̂ is the minimal
additive multiple of f so f̂ = f̂ u f̃ and f̂ |◦ f̃ . We have shown the following:

Theorem 5.8. If f̂ ∈ AF is the minimal additive multiple of f ∈ F [x] and
f̃ is a monic additive multiple of f , then f̂ |◦ f̃ .

Another characterisation of the minimal additive multiple of f ∈ PF can
be obtained by looking at the roots of f in its splitting field K. Assume f is
squarefree and has roots {θ1, . . . , θn} and minimal additive multiple h. Then
f must have an additive multiple g ∈ AK such that

g = ((xp − θp−1
1 x) t (xp − θp−1

2 x) t · · · t (xp − θp−1
n x)) ∈ AK .

The polynomial g is an additive multiple of f because all roots of f are
roots of g, and g is additive. Also, g |◦ h because for each root θi of f , kθi
must be a root of h for each k ∈ Zp and 1 ≤ i ≤ n. The one dimensional
vector space Vi = {kθi | k ∈ Zp} is a subspace of the kernel of h, and the
polynomial gi = xp − θp−1

i x has Vi as its kernel. So gi |◦ h for 1 ≤ i ≤ n
and therefore g = (g1 t g2 t · · · t gn) |◦ h as well (see lemma 4.1(v)). The
coefficients of g are symmetric functions (over F ) of the θi’s for 1 ≤ i ≤ n.
Each automorphism of K relative to F carries the set of roots of f into
itself. Thus, each automorphism leaves the coefficients of g fixed, and these
coefficients must therefore be in F . It follows that g ∈ F [x], and since g
right divides h (the minimal additive multiple of f), g is equal to h. This
also means that the exponent of the minimal additive multiple f̂ is exactly
the dimension of the linear span of the roots of f considered as a Zp vector
space in K.

An interesting case is when f is a normal polynomial in Zp[x] (a normal
polynomial is an irreducible polynomial such that its roots [in some fixed
algebraic closure of Zp] form a basis over Zp for its splitting field). The
dimension of the Zp vector space spanned by the roots of f is therefore
the degree of f . It follows that the normal polynomials of degree n are
exactly those irreducible polynomials whose minimal additive multiples have
exponent n.
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5.4 Complete Rational Decomposition of Additive Polynomials
Assume the field F supports a polynomial factorisation algorithm. The pre-
ceding method for finding minimal additive multiples can be used to build a
polynomial time algorithm for finding rational complete normal decomposi-
tions of additive polynomials in a polynomial number of field operations.

First we present an algorithm for finding the set of indecomposable right
composition factors of f ∈ AF.

FindIndecRightFactors: AF → P(AF)
Input: - f ∈ AF, a monic additive polynomial.

Output: - H = {h1, . . . , h`}, the set of indecomposable

right composition factors of f.
1) Factor f such that f = xe0he11 h

e2
2 · · ·hemm

where hi ∈ F [x] are distinct, monic and irreducible and

ei ∈ N \ {0} for 0 ≤ i ≤ m.

2) Let J := {ĥ | ĥ is the minimal additive multiple of

hi for some i such that 1 ≤ i ≤ `}.
Assume J = {g1, . . . , g`} for some ` ∈ N
and is indexed such that if i < j then expn gi ≤ expn gj
for 1 ≤ i ≤ `.

3) For 1 ≤ i < j ≤ `, if gi |◦ gj, mark gj.
4) Let H = {g ∈ J | g not marked in step 3}.
5) Return H.

To show correctness we must prove that g ∈ H if and only if g is an
indecomposable right composition factor of f . If g ∈ AF is an indecomposable
right factor of f , then, since g is also a multiplicative factor of f , each
irreducible multiplicative factor h ∈ F [x] of g is an irreducible multiplicative
factor of f . We know that the minimal additive multiple ĥ ∈ AF of any such h
right divides g by theorem 5.8, and as g is indecomposable, ĥ = g. Therefore
g will never be marked in step 3 and g ∈ H. Assume, on the other hand, that
g ∈ H. Suppose that g is decomposable and h is an indecomposable right
composition factor of g. Then h is an indecomposable right factor of f and
h ∈ H as shown above. In step 3, g would be marked as decomposable and
would not be in H, a contradiction. Therefore, each g ∈ H is indecomposable
and the algorithm works correctly.

We now analyse the number of field operations required by the procedure
FindIndecRightFactors. For f ∈ AF of degree n = pν consider computing



Functional Decomposition of Polynomials 89

FindIndecRightFactors(f). The factorisation in step 1 requires O(SF (n))
field operations. In step 2 we find additive multiples of each of the indecom-
posable right factors of f . The worst case occurs when there is one factor of
degree n − 1. Thus, step 2 requires O(n3) field operations. The number of
operations required in the remaining steps is dominated by the requirements
of steps 1 and 2, so we have the following:

Lemma 5.9. Given f ∈ F [x] of degree n we can compute all the indecom-
posable right factors of f in O(SF (n) + n3) field operations.

Now consider the following algorithm for generating a complete decom-
position of f in cAPDECF

∗ .

CompleteDecomposition: AF → cAPDECF
∗

Input: - f ∈ AF, a monic additive polynomial.

Output: - a complete decomposition of f in cAPDECF
∗ .

1) Using FindRightIndecFactors, find the set H of

indecomposable right factors of f. Assume

H = {h1, . . . , h`}.
2) If h1 = f

then f is indecomposable, Return (f, (f)).

else

2.1) Let D :=CompleteDecomposition(f /◦ h1).

We know D = (f /◦ h1, (ut, . . . , u1)) ∈ cAPDECF
∗

for some t ∈ N \ {0}.
2.2) Return (f, (ut, . . . , u1, h1)).

At each recursive stage of the algorithm we simply determine one in-
decomposable right factor h1 of f . We then proceed recursively to find a
complete decomposition of f /◦ h1. As f has exponent ν, and each inde-
composable right factor has exponent at least one, there can be at most ν
recursive stages. We now analyse the number of field operations required
to decompose a polynomial f ∈ AF of degree n = pν . The worst case oc-
curs when a p − linear (exponent one) right composition factor occurs at
each recursive stage i, for 1 ≤ i ≤ ν. In this case, at stage i we must call
FindRightIndecFactors on a degree pi polynomial, requiring O(SF (pi)+p3i)
field operations. Thus, the total number of field operations required to find
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one complete decomposition is∑
0≤i≤ν

(SF (pi) +O(p3i)) = O(SF (pν) + p3ν)

= O(SF (n) + n3).

Theorem 5.10. Given an additive polynomial f ∈ AF of degree n we can
determine a complete decomposition of f in cAPDECF

∗ in O(SF (n) + n3)
field operations.

Corollary 5.11. Rational indecomposability of an additive polynomial of
degree n can be determined in O(SF (n) + n3) field operations.

5.5 General Rational Decomposition of Additive Polynomials
Let f ∈ AF be of degree n and let ℘ = (rm, rm−1, . . . , r1) be an ordered
factorisation of n. The fact that we can obtain a complete decomposition
of an f ∈ cAPDECF

∗ in a polynomial number of field operations in n does
not mean that we can determine the existence of a decomposition of f in
APDECF

℘ , and find one if it exists, in polynomial time. We can look at the
set of all complete decompositions and check if the composition factors of
any of them can be “grouped” according to the desired ordered factorisation
℘. More generally, a length d ordered factorisation κ = (sd, sd−1, . . . , s1) of
n ∈ N is said to be a refinement of a length m ≤ d ordered factorisation ℘ =
(rm, rm−1, . . . , r1) if there exists a non-decreasing, onto map ϕ : {1, . . . , d} →
{1, . . . ,m} such that for 1 ≤ j ≤ m,∏

1≤i≤d
ϕ(i)=j

si = rj.

This is simply saying that the d-tuple κ can be divided into m contiguous
pieces, with the elements of piece j having product rj, for 1 ≤ j ≤ m. One
approach to finding decompositions of f with a given ordered factorisation is
to generate the set of all complete decompositions of f and check if any of the
ordered factorisations associated with these decompositions are a refinement
of ℘.

We now present an algorithm for generating all the complete decomposi-
tions of an additive polynomial.



Functional Decomposition of Polynomials 91

AllCompleteDecomposition: AF → P(cAPDECF
∗ )

Input: - f ∈ AF, a monic additive polynomial.

Output: - the set of all complete decompositions of f

in cAPDECF
∗ .

1) Using FindRightIndecFactors, find the set H of

indecomposable right factors of f. Assume

H = {h1, . . . , h`}.
2) If f = h1

Then f is indecomposable, Return (f, (f)).

Else

2.1) Let T := ∅.
2.2) For i from 1 to `

2.2.1) Let D(i) :=CompleteDecomposition(f /◦ hi),
the set of all complete decompositions

of (f /◦ hi) in cAPDECF
∗ .

2.2.2) For each decomposition

(f /◦ hi, (u`, . . . , u1)) ∈ D(i),

add (f, (u`, . . . , u1, hi)) ∈ cAPDECF
∗

to T.

2.3) Return T.

Correctness is easy to verify. At each recursive stage we simply find the set
of all indecomposable right factors H of f and for each h ∈ H we recursively
find the complete decompositions of f /◦ h. All complete decompositions are
found and, since we choose a different member of H in each step 2.2.1, each
decomposition added to T is distinct.

We analyse the cost of the algorithm by first finding the cost of computing
one complete decomposition. We then use the bounds developed in chapter 3
and 4 on the number of complete decompositions to get bounds on the cost of
computing all complete decompositions. As with CompleteDecomposition,
the worst case occurs when a p − linear right composition factor occurs at
each recursive stage i, for 1 ≤ i ≤ ν. In this case, at stage i, we must call
FindRightIndecFactors on a degree pi polynomial, requiring O(SF (pi)+p3i)
field operations. Thus the total number of field operations required to find
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one complete decomposition is∑
0≤i≤ν

SF (pi) +O(p3i) = O(SF (pν) + p3ν)

= O(SF (n) + n3).

Theorem 5.12. If f ∈ AF is monic of degree n and t ∈ N, then we can
determine if there exist t decompositions of f in cAPDECF

∗ , and if so find
them, with O(t(SF (n) + n3)) field operations.

By theorem 4.26, the total number of complete normal decompositions of
f in cAPDECF

∗ is nO(logn), so we can compute all complete rational decom-
positions of an arbitrary additive polynomial in a quasi-polynomial number
of field operations.

Let ℘ be a given ordered factorisation of n. As we generate each complete
decomposition of f , we can check if the ordered factorisation associated with
it is a refinement of ℘. The number of operations required to do this is dom-
inated by the other steps in the algorithm. Thus, the number of operations
required to find all decompositions of f in DECF

℘ is of the same order as the
number required to generate all complete decompositions.

Corollary 5.13. If f ∈ AF is monic of degree n, and ℘ is an ordered fac-
torisation of n, then all decompositions of f in APDECF

℘ can be found in

nO(logn) field operations.

Note that this algorithm requires a comparable number of operations to
those of Kozen and Landau[1986] for separable irreducible polynomials.

5.6 General Decomposition of Completely Reducible
Additive Polynomials

We now consider computing decompositions of a completely reducible addi-
tive polynomial f ∈ AF of degree n corresponding to a given ordered factori-
sation ℘ of n. We will see that the decomposition problem for completely
reducible additive polynomials can be computed in a polynomial number of
field operations in the input degree. We proceed by constructing an inde-
composable basis for f (see chapter 4, section D) and combine the basis
components appropriately to determine if an appropriate decomposition ex-
ists, and if so, find it.
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We now describe an efficient way of computing an indecomposable basis
for a given completely reducible additive polynomial. The procedure strongly
resembles the one described in the proof of lemma 4.18.

IndecBasis: AF → AF
∗

Input: f ∈ AF, completely reducible of degree n = pν.

Output: u1, u2, . . . , ud ∈ AF, an indecomposable basis for f.

1) Using FindIndecRightFactors, find the set

R = {v1, v2, . . . , v`} of indecomposable right factors of f.

2) Let j := 0.

3) Let g(0) := x.

4) For i from 1 to ` do

4.1) If vi u g(i−1) = x then

4.1.1) Let g(i) := g(i−1) t vi.
4.1.2) Let j := j + 1.

4.1.3) Let uj := vi.

Else

4.1.4) Let g(i) := g(i−1).

4.2) If g(i) = f then quit,

returning u1, . . . , uj as an indecomposable basis.

Since we know f is completely reducible, f is, by definition, the join of its
indecomposable right factors v1, . . . , v`. The algorithm simply looks at each
indecomposable right factor in turn. At step 4.1, either viug(i−1) = x or vit
g(i−1) = g(i−1). Only in the first case does vi contribute anything to the join
of all the right factors, and, in this case, expn(g(i)) = expn(g(i−1))+expn(vi).
The set of all such contributing right factors clearly forms an indecomposable
basis for f . The cost of this algorithm is dominated by the cost of finding
the set of indecomposable right factors of f . We have shown the following:

Lemma 5.14. Let f ∈ AF be completely reducible of degree n. We can find
an indecomposable basis for f with O(SF (n) + n3) field operations.

Let f ∈ AF be completely reducible of degree n = pν and let ℘ =
(pρm , . . . , pρ1) be an ordered factorisation of n. We now address the prob-
lem of finding a decomposition of f in APDECF

℘ . It is true in general that
there exists a decomposition of f in APDECF

℘ if and only if there exists an
ordered factorisation κ = (pσd , pσd−1 , . . . , pσ1) of n which is a refinement of



94 Mark Giesbrecht

℘ such that f has a complete decomposition in cAPDECF
κ . Since all com-

pletely reducible additive polynomials are completely transmutable, we need
only determine if some permutation of the ordered factorisation κ is a refine-
ment of ℘. By theorem 4.20, the composition factors of an arbitrary complete
decomposition and the members of an arbitrary indecomposable basis of f
are similar in pairs. Assume u1, . . . , ud forms an indecomposable basis for f ,
where deg ui = pei for 1 ≤ i ≤ d. Then f has a decomposition in APDECF

℘

if an only if some permutation of µ = (ped , ped−1 , . . . , pe1) is a refinement of
℘. This is equivalent to saying that some permutation of µ is a refinement
of some permutation of ℘ – we do not need to consider the order of ℘ either.
In light of this, we denote an unordered factorisation of n of length m as
[am, am−1, . . . , a1] where ai ∈ N for 1 ≤ i ≤ m,

∏
1≤i≤m ai = n and for any

permutation τ of {1 . . .m}, [aτm , aτm−1 , . . . , aτ1 ] = [am, am−1, . . . , a1]. Such a
data structure can be easily managed computationally and the details will be
left to the reader (for instance, one could manage them as sorted m tuples).
Basic operations on an unordered factorisation of length `, such as assign-
ment and equality test, will be assumed to require `O(1) field operations. Let
℘̄ = [pρm , pρm−1 , . . . , pρ1 ] and µ̄ = [ped , ped−1 , . . . , pe1 ] be the unordered fac-
torisations corresponding with ℘ and µ respectively. A length d unordered
factorisation γ = [pσd , pσd−1 , . . . , pσ1 ] is an unordered refinement of ℘̄ if there
is an onto map ψ : {1, . . . , d} → {1, . . .m} such that for 1 ≤ j ≤ m,∏

1≤i≤d
ψ(i)=j

σi = rj.

We proceed by generating the set L of all length m unordered factorisations
λ of n which are unordered refinements of µ̄. For each λ ∈ L we keep exactly
one refinement ψλ from µ̄ to λ, ignoring other such refinements. We show
that L is in fact small and can be computed in time polynomial in n. Once L
is computed, it is easy to check if ℘̄ is in L. If it is, then f has a decomposition
in APDECF

℘ and it is a simple matter to recover this decomposition from
the refinement.

We proceed by dynamic programming. We define the d ×m array S of
sets of unordered factorisations as follows. For 1 ≤ i ≤ d and 1 ≤ j ≤
m, let Sij be the set of unordered factorisations of length j of pdi (where
di =

∑
1≤k≤i ei) which are unordered refinements of [pei , pei−1 , . . . , pe1 ]. The

following algorithm exploits an easy recurrence to generate all of S.
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FindUnorderedFacts: N∗ × N→ (P(N∗))∗

Input: - µ = (ped , ped−1 , . . . , pe1), an ordered

factorisation of n,
- m ∈ N, an integer at most d.

Output: - S, a d×m array of sets of unordered

factorisations of n as described above.

1) S11 := (pe1).
For i from 2 to d

For j from 1 to m
2) Sij := ∅.
3) For each unordered factorisation

[paj−1 , . . . , pa1 ] ∈ Si−1,j−1

add [paj−1 , . . . , pa1 , pei ] to Sij.
4) For each unordered factorisation

[paj , . . . , pa1 ] ∈ Si−1,j and for 1 ≤ k ≤ j
add [paj , . . . , pak+1 , pakpei , pak−1 , . . . , pa1 ] to Sij.

Certainly, at the conclusion Sdm contains the desired set of unordered
factorisations. The number of unordered factorisations which are unordered
refinements of µ̄ is at most the number of additive partitions p(ν) of ν (the
exponents of p in the unordered factorisation give a partition of ν). Hua[1982]
(theorem 6.1) shows that

p(ν) ≤ ν3b
√
νc

≤ ν3
√
ν+3

≤ (2log ν)3
√
ν+3

≤ 26
√
ν log ν .

Thus the total algorithm can be completed in

dmνO(1)26
√
ν log ν = νO(1)26

√
ν log ν

= O(n)

field operations. By keeping the products pakpei in step 4 in an “unevaluated”
form (or, alternatively, keeping some record of the multiplicands) for each
λ ∈ L, we can easily recover an explicit unordered refinement ψλ from µ̄ to λ.
By checking if ℘̄ is in Sdm, we can determine if µ̄ is an unordered refinement
of ℘̄, and, if it is, actually determine the refinement ψ.
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Assume ℘̄ ∈ Sdm and ψ is an unordered refinement from µ̄ to ℘̄. For
1 ≤ j ≤ m, let

hj =
⊔

1≤i≤d
ϕ(i)=j

ui.

Then for 1 ≤ i ≤ m, deg hi = ri, h1, h2, . . . , hm are pairwise composition
coprime, and h1 t · · · t hm = f . The following simple procedure can be used
to recover a decomposition of f in APDECF

℘ .

BasisToDec: AF
∗ → APDECF

∗
Input: - h1, . . . , hm ∈ AF such that f = h1 t h2 t · · · t hm,

hi u hj = x for 1 ≤ i < j ≤ m
and deg hi = ri for 1 ≤ i ≤ m.

Output: - (f, (fm, fm−1, . . . , f1)) ∈ APDECF
℘

where ℘ = (rm, rm−1, . . . , r1).
Let g(0) := x.
For 1 ≤ i ≤ m

Let g(i) := g(i−1) t hi.
Let fi := g(i) /◦ g(i−1).

Return (f, (fm, fm−1, . . . , f1)) ∈ APDECF
℘ .

This procedure can certainly be completed in O(n3) field operations. We
have now completed the description of a general decomposition algorithm
for completely reducible additive polynomials and have shown the following
theorem:

Theorem 5.15. Given f ∈ AF completely reducible of degree n and ℘ an
ordered factorisation of n, we can determine if f has a decomposition in
APDECF

℘ , and if so find one, in O(SF (n) + n3) field operations.

5.7 Determining Transmutations of Additive Polynomials
Another approach to finding decompositions of additive polynomials is to
find one complete decomposition and then, using the relationship between
decompositions (developed in chapter 4), produce a decomposition into fac-
tors of the desired degrees.

To do this we must be able to determine if two polynomials f, g ∈ AF are
transmutable, and find the set

{(ḡ, f̄) ∈ AF × AF | f̄ ∼ f, f = g . f̄ , ḡ = f̄ . g},
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of possible transmutations of f by g. The following algorithm performs this
task if f is indecomposable in a polynomial number of operations in the sum
of the degrees of f and g.

Transmutable: AF × AF → P(AF × AF)
Input: - f ∈ AF, monic and indecomposable, g ∈ AF, monic.

Output: - T = {(ḡ, f̄) ∈ AF × AF | f̄ ∼ f, f = g . f̄ , ḡ = f̄ . g}.
1) Using FindIndecRightFactors, find the set H ⊆ AF of

indecomposable right factors of f ◦ g.
2) Let J := {f̂ ∈ H | expn f̂ = expn f} ⊆ H.

3) Let T := ∅.
4) For each f̂ ∈ J

4.1) Let ĝ := (f ◦ g) /◦ f̂.
4.2) If ĝ = f̂ . g then let T := T ∪ (ĝ, ĥ).

5) Return T.

A transmutation of f by g will transform f into a similar polynomial
f̂ ∈ AF which is a right factor of f ◦ g. Therefore, we eliminate all the f̂ ∈ H
with exponents unequal to that of f in step 2. Now, for any ĝ, f̂ ∈ AF such
that f ◦ g = ĝ ◦ f̂ and ĝ = f̂ . g, we know

f ◦ g = (f̂ . g) ◦ f̂
= f̂ t g
= ((g t f̂) /◦ g) ◦ g
= (g . f̂) ◦ g.

It follows that f = g . f̂ , and since f and f̂ have the same exponent, g and
f̂ are composition coprime and f transmutes by g.

Theorem 5.16. The set of all transmutations of an indecomposable additive
polynomial f ∈ AF by an arbitrary additive polynomial g ∈ AF, where the
degree of f ◦ g is n = pν , can be computed in O(SF (n) +n3) field operations.

Proof. Determining the set of indecomposable right factors in step 1 requires
O(SF (pν)+p3ν) = O(SF (n)+n3). Step 4.1 require O(n) exponent ν divisions,
and O(nν2 log p) field operations. Finally, step 4.2 requires O(nν3 log p) field
operations. Thus the total number of field operations required is dominated
by the number required for step 1 and is O(SF (n) + n3). �
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Suppose g ∈ AF in the above algorithm is given as a complete decompo-
sition. Then, if f transmute by g, f = g . f̄ where f̄ ∈ AF and f̄ ∼ f . It
follows that f ◦ g = ḡ ◦ f̄ where ḡ = f̄ . g. We would like to give the corre-
sponding decomposition of ḡ. By theorem 4.13 we can compute the effect of
transformation of a composition. The following algorithm performs this task
efficiently.

TransformComposition: AF × cAPDECF
∗ → cAPDECF

∗
Input: - h ∈ AF, monic and indecomposable,

- (g, (gm, gm−1, . . . , g1)) ∈ cAPDECF
∗ .

Output: - (ḡ, (ḡm, ḡm−1, . . . , ḡ1)) ∈ cAPDECF
∗ where

ḡ = h . g and ḡi ∈ AF, ḡi ∼ gi for 1 ≤ i ≤ m.

h1 := h.
ḡ1 := h1 . g1.

For 2 ≤ i ≤ m
hi := (gi−1 ◦ gi−2 ◦ · · · ◦ g1) . h.
ḡi := hi . gi.

Return (h . g, (ḡm, ḡm−1, . . . , ḡ1)).

Correctness follows immediately as the algorithm is simply a direct appli-
cation of theorem 4.13. If g ∈ AF and h ∈ AF are of exponents ρ and σ
respectively and δ = max(ρ, σ), then computing hi ∈ AF in the algorithm
requires O(δ3 log p) field operations for each i with 1 ≤ i ≤ m. Computing
ḡi also requires O(δ3 log p) field operations for each i with 1 ≤ i ≤ m. We
know that m ≤ δ, so we get the following theorem:

Theorem 5.17. If (g, (gm, gm−1, . . . , g1)) ∈ cAPDECF
∗ where g ∈ AF has

exponent ρ, and h ∈ AF has exponent σ, then we can transform the decom-
position of g into a corresponding decomposition of h . g in O(δ4 log p) field
operations, where δ = ρ+ σ.

5.8 Bidecomposition of Similarity Free Additive Polynomials
We now describe an algorithm for finding a bidecomposition of a similarity
free additive polynomial f ∈ AF of degree n = pν corresponding to an ordered
factorisation ℘ = (pρ, pσ). We will see this can be done in a polynomial
number of field operations in the degree of the input polynomial. Using the
algorithm CompleteDecomposition, we can find a complete decomposition
(f, (fm, fm−1, . . . , f1)) ∈ cAPDECF

∗ with O(SF (n)+n3) field operations. We
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proceed by looking at each subset S ⊆ {1, . . . ,m} such that
∑
i∈S expn fi = σ.

Assume S has cardinality t ∈ N where t ≥ 1. For each S we determine if
there exists a decomposition (f, (gm, . . . , g1)) ∈ cAPDECF

∗ and a bijection ϕ
between {1, . . . , t} and S with gi ∼ fϕ(i) for 1 ≤ i ≤ t. Say a decomposition
with this property is consistent with S and (f, (fm, fm−1, . . . , f1)). In other
words, there is a decomposition such that the rightmost t composition factors
are similar in pairs to the composition factors indexed by S. Because we are
assuming f is similarity free, all transmutations are unique (see chapter 4,
section E).

In the following algorithm we determine if a decomposition consistent
with a given S of size t and (f, (fm, fm−1, . . . , f1)) ∈ cAPDECF

∗ exists. The

algorithm proceeds in stages `, for 1 ≤ ` ≤ t. Assume (f (0)
m , f

(0)
m−1, . . . , f

(0)
1 ) =

(fm, fm−1, . . . , f1). At each stage ` we transmute one of the factors of

(f, (f (`−1)
m , f

(`−1)
m−1 , . . . , f

(`−1)
1 )) which is similar to a factor indexed in S into

the the `th composition factor position from the right, obtaining a new de-
composition (f, (f (`)

m , f
(`)
m−1, . . . , f

(`)
1 )). We keep track of where the factors of

the original decomposition have been transmuted to at the end of stage `
by means of an index vector c(`) = (c(`)

m , . . . , c
(`)
1 ). At this point, f

(`)
j ∼ f

c
(`)
j

for each j such that 1 ≤ j ≤ m. The decomposition produced at the end
of stage ` will have the property that for each j ∈ N such that 1 ≤ j ≤ `,
c

(`)
j ∈ S. If at each stage such a decomposition can be found, at stage t we

will have a decomposition of f consistent with S and (f, (fm, fm−1, . . . , f1)).

FactorsToRight: cAPDECF
∗ ×P(N)→ cAPDECF

∗
Input: - (f, (fm, fm−1, . . . , f1)) ∈ cAPDECF

∗ ,

- S ⊆ N of cardinality t ∈ N.
Output: - (f, (gm, gm−1, . . . , g1)) ∈ cAPDECF

∗ consistent

with (f, (fm, fm−1, . . . , f1)) and S (if such a

decomposition exists).

1) Let c(0) := (c(0)
m , c

(0)
m−1, . . . , c

(0)
1 ) := (m,m− 1, . . . , 1).

2) Let S(0) := S.

3) For ` from 1 to t

3.1) For each i ∈ S(`−1)

3.1.1) Let k ∈ N be such that c
(`−1)
k = i.

3.1.2) Using Transmutable, determine if f
(`−1)
k

transmutes by f
(`−1)
k−1 ◦ · · · ◦ f

(`−1)
` .



100 Mark Giesbrecht

If so, goto step 3.3.

3.2) No transmutation found, quit.

3.3) Using TransformComposition, for ` ≤ j ≤ k

find f̄
(`−1)
j ∼ f

(`−1)
j such that

f
(`−1)
k ◦f (`−1)

k−1 ◦· · ·◦f
(`−1)
` = f̄

(`−1)
k−1 ◦ f̄

(`−1)
k−2 ◦· · ·◦ f̄

(`−1)
` ◦ f̄ (`−1)

k

(ie. compute the transmutation of f
(`−1)
k by

f̄
(`−1)
k−1 ◦ f̄

(`−1)
k−2 ◦ · · · ◦ f̄

(`−1)
` ).

3.4) Let (f (`)
m , . . . , f

(`)
1 ) := (f (`−1)

m , . . . , f
(`−1)
k+1 , f̄

(`−1)
k−1 , . . . , f̄

(`−1)
` ,

f̄
(`−1)
k , f

(`−1)
`−1 , . . . , f

(`−1)
1 ).

3.5) Let c(`) := (c(`−1)
m , . . . , c

(`−1)
k+1 , c

(`−1)
k−1 , . . . , c

(`−1)
` ,

c
(`−1)
k , c

(`−1)
`−1 , . . . , c

(`−1)
1 ).

3.6) Let S(`) := S(`−1) − {i}.
4) Return (f, (f (t)

m , f
(t)
m−1, . . . , f

(t)
1 )).

We now show the correctness of the above algorithm. If there exists
no decomposition of f consistent with (f, (fm, fm−1, . . . , f1)) and S, then
FactorsToRight will obviously not find it.

Lemma 5.18. Let S be a subset of {1, . . .m}. If there exists a decomposi-
tion of f consistent with (f, (fm, fm−1, . . . , f1)) and S, FactorsToRight will
find one.

Proof. We prove this lemma by induction on t, the cardinality of S. For
the basis step, t = 1 and S = {i} for some i such that 1 ≤ i ≤ m. Assume
that (f, (gm, gm−1, . . . , g1)) ∈ cAPDECF

∗ is a decomposition of f consistent
with (f, (fm, fm−1, . . . , f1)) and S. In step 3.1.1, k = i. We know that

g1 |◦ f . Let j ∈ N be the smallest number such that g1 |◦ f (0)
j ◦ · · · ◦ f

(0)
1 . The

polynomials g1 and f
(0)
j−1◦· · ·◦f

(0)
1 are composition-coprime, so by theorem 4.7,

f
(0)
j = (f

(0)
j−1 ◦ · · · ◦ f

(0)
1 ). g1, f

(0)
j ∼ g1, and f

(0)
j transmutes by f

(0)
j−1 ◦ · · · ◦ f

(0)
1 .

Since f is assumed to be similarity free, j = k and the transmutation of step
3.1 gives a decomposition consistent with (f, (fm, fm−1, . . . , f1)) and S.

Now assume that FactorsToRight finds a decomposition of f consistent
with (f, (fm, fm−1, . . . , f1)) and S if the cardinality of S is less than t. We
must show it does so for S of cardinality t as well.

Assume S has cardinality t and that (f, (gm, gm−1, . . . , g1)) ∈ cAPDECF
∗

is a decomposition of f consistent with (f, (fm, fm−1, . . . , f1)) and S. With
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` = 1 we know there exists a k ∈ S such that f
(0)
k ∼ g1 and by the argument

for the basis case, f
(0)
k = (f

(0)
k−1 ◦ · · · ◦ f

(0)
1 ) . g1 and f

(0)
k transmutes by f

(0)
k−1 ◦

· · · ◦ f (0)
1 . The algorithm may or may not transmute f

(0)
k to the right of the

decomposition, depending on the choice in step 3.1. Assuming we do choose
this f

(0)
k to transmute in step 3.1, we get

(f (1)
m , . . . , f

(1)
1 ) = (f (0)

m , . . . , f
(0)
k+1, f̄

(0)
k−1, . . . , f̄

(0)
1 , f̄

(0)
k )

= (f (0)
m , . . . , f

(0)
k+1, f̄

(0)
k−1, . . . , f̄

(0)
1 , g1)

where f̄
(0)
i ∼ fi for 1 ≤ i ≤ k (we know f

(0)
k = g1 because f is similarity

free). As g1 is never referenced in the computation again, the remainder
of the algorithm is essentially finding a decomposition of f /◦ g1 (which has

decomposition (f /◦ g1, (f
(1)
m , . . . , f

(1)
2 )) ∈ cAPDECF

∗ ) that is consistent with

(f (1)
m , f

(1)
m−1, . . . , f

(1)
2 ) and S − {i}. Since S − {i} has cardinality less than t,

FactorsToRight finds such a decomposition by the inductive hypothesis.
Suppose, however, that in step 3.1, with ` = 1, we transmute f (0)

w � g1, for
some w such that 1 ≤ w ≤ m, w ∈ S and w 6= k, to the right. Then fw ∼ gj
for some j ≤ t. Since we know f̄ (0)

w |◦ f , gj transmutes by gj−1 ◦ · · · ◦ g1.
Assume

gj ◦ (gj−1 ◦ · · · ◦ g1) = ḡj−1 ◦ · · · ◦ ḡ1 ◦ ḡj
where gv ∼ ḡv for 1 ≤ v ≤ j. Then

(f, (gm, gm−1, . . . , gj+1, ḡj−1, . . . , ḡ1, ḡj)) ∈ cAPDECF
∗

must be another decomposition of f consistent with (f, (fm, fm−1, . . . , f1))
and S. Since f is similarity free, ḡj = f̄ (0)

w . By the argument for the case

when f
(0)
k was chosen in step 3.1, FactorsToRight finds a decomposition

consistent with (f, (fm, fm−1, . . . , f1)) and S. �

In FactorsToRight we execute t ≤ ν iterations of the main loop in step
3. In iteration i for 1 ≤ i ≤ t, step 3.1 will require up to i transmutations of
additive polynomials of exponents at most ν−i. This requires O(i(SF (pν−i)+
p3i)) field operations. Transforming the factors of this transmutation in step
3.3 using TransformComposition requires O((ν − i)3 log p) field operations.
The total number of field operations required in iteration i is

O(iSF (pν−i) + ip3i + (ν − i)3 log p)

= O(iSF (pν−i) + ip3i).
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The number of field operations required for all t = O(log n) iterations is
therefore ∑

0≤i≤t
O(iSF (pν−i) + ip3i)

= O(νSF (pν) + νp3ν)

= O(SF (n) log n+ n3 log n).

We can now write a complete algorithm for the bidecomposition of similarity
free additive polynomials.

SimFreeBidecomp: AF × N2 → cAPDECF
∗

Input: - f ∈ AF, similarity free of degree n = pν.

Output: - (pρ, pσ), an ordered factorisation of n.

1) Using CompleteDecomposition, attempt to find a

decomposition (f, (fm, fm−1, . . . , f1)) ∈ cAPDECF
∗ .

2) For each subset S of {1, . . . ,m}
2.1) if

∑
i∈S expn fi = σ, find a decomposition

(f, (gm, gm−1, . . . , g1)) consistent with

(f, (fm, fm−1, . . . , f1)) and S using FactorsToRight.

If such a decomposition is found, goto step 4.

3) There is no decomposition of f in cAPDECF
(pρ,pσ), quit.

4) Let k be such that gm ◦ gm−1 ◦ · · · ◦ gk has

exponent ρ.

5) Return (f, ((gm ◦ gm−1 ◦ · · · ◦ gk), (gk−1 ◦ gk−2 · · · ◦ g1))).

There are at most 2ν = O(n) subset S of {1, . . . ,m} so the total number
of field operations required is

O(SF (n)n log n+ n4 log n).

We have shown the following theorem:

Theorem 5.19. Let f ∈ AF be similarity free of degree n = pν . Let (pρ, pσ)
be an ordered factorisation of n. Using SimFreeBidecomp we can determine
if there exists a decomposition of f in APDECF

(pρ,pσ), and if so find one, with

O(SF (n)n log n+ n4 log n) field operations.
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5.9 Absolute Decompositions of Additive Polynomials
As noted in chapter 3, additive polynomials decompose into p-linear factors
over their splitting fields. We will now show how to compute an arbitrary
decomposition of an additive polynomial f ∈ F [x] in an algebraic closure F̄
of F (an absolute, complete decomposition).

Let f ∈ AF have exponent ν, splitting field K ⊆ F̄ and kernel V . We
know any p-linear right factor h = xp − ax where a ∈ K of f has a one
dimensional kernel W which is a subspace of V . For any root α 6= 0 of h,
a = αp−1. It follows that the only possible p-linear right composition factors
of f have (p − 1)st powers of roots of f/x in K as the coefficients of their
constant terms. Therefore (xp − ax) |◦ f if and only if a ∈ K is a root of
(f/x) ◦ x1/(p−1). Assume Fi is a field (to be defined later) for 1 ≤ i ≤ ν and
that F = Fν ⊆ Fν−1 ⊆ Fν−2 ⊆ · · · ⊆ F1 ( F̄ .

AbsAPDecomp: AF̄ → cAPDEC F̄
∗

Input : - f (i) ∈ AFi monic of exponent i,
for some i ∈ N.

Output : - a complete decomposition of f in cAPDEC F̄
∗ .

If i = 1
then return f (1) ∈ F1[x].

Otherwise

1) factor h(i) = (f (i)/x) ◦ x
1
p−1 ∈ F [x]

such that h(i) = ue11 u
e2
2 · · ·uemm

where uj ∈ F [x] are distinct, monic and

irreducible and ej ∈ N \ {0} for 1 ≤ j ≤ m.

2) Let a = z mod u1 ∈ Fi−1 = Fi[z]/(u1).
3) Compute g(i) = f (i) /◦ (xp − ax) ∈ Fi−1[x].
4) Recursively compute an absolute decomposition

(g(i), (vm, vm−1, . . . , v2)) ∈ cAPDEC F̄
∗ using AbsAPDecomp.

5) Return (f (i), (vm, vm−1, . . . , v2, u1)) ∈ cAPDEC F̄
∗ .

Each recursive stage i (starting with stage ν) requires the factoring of a
polynomial of degree at most (pi − 1)/(p− 1) ≤ pi in Fi. The degree of Fi−1

over Fi is at most (pi − 1)/(p− 1) ≤ pi. It follows that the degree of Fi over
F = Fν is at most ∏

i<j≤ν
[Fj−1 : Fj] ≤

∏
i<j≤ν

pj

≤ pν(ν−i).
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Therefore, at recursive stage i, the number of field operations required is at
most

SF (pi)M(pν(ν−i))

and the total cost is∑
0≤i≤ν

SF (pi)M(pν(ν−i)) ≤M(pν
2

)SF (pν).

We have shown the following:

Theorem 5.20. Given f ∈ AF monic of degree n = pν , we can find an
absolute decomposition of f in cAPDEC F̄

∗ in O(M(pν
2
)SF (pν)) = nO(logn)

field operations over F provided F supports a polynomial time factoring
algorithm.

Suppose F is finite. It is conjectured that an additive polynomial f ∈ AF

of degree n = pν can have a splitting field K of degree at most nO(1) over
F , and quite possibly at most n. This would follow immediately from a
(much stronger) unproven conjecture of Ore[1933b] that the degrees of all
irreducible factors of f divide the degree t of the largest multiplicative factor
of f . This would imply that [K : F ] = t, and that the above algorithm
for absolute decomposition would run in a polynomial number (in n) of field
operations over F .
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6 Rational Function Decomposition
Let f ∈ F (x) be a rational function in x. A natural question to ask is if f can
be represented as a composition of two other rational function g, h ∈ F (x),
so that f = g ◦ h. This problem has polynomial decomposition as a small
subcase. Mathematically, rational function decomposition has been exam-
ined since Ritt[1923]. The Generalised Schur Problem for rational functions
involves the classification of so called “virtually one to one” rational functions
and their decompositions. In general, rational function decomposition is far
from completely understood. An in depth coverage and survey of the prob-
lem is presented in Fried[1974], where a generalisation of the tame case for
polynomial decomposition in perfect fields is described (and is well beyond
the scope of this thesis). In this chapter we present a definition of the ratio-
nal function decomposition problem in a form similar to our presentation of
the polynomial decomposition problem. We show that such decompositions
can be normalised in a manner similar to polynomial decomposition and that
the general problem is Cook reducible to the normal problem. We then give
a computational solution to the normal decomposition problem for rational
functions (which will require an exponential number of field operations in
the input degree and a factorisation algorithm over F ).

6.1 The Normalised Decomposition Problem

If f ∈ F (x) then f = fN/fD for some fN , fD ∈ F [x] of degrees nN and nD
respectively. We can assume that fN and fD are relatively prime and that fD
is monic. For any rational function f , there is a unique pair of polynomials
fN , fD ∈ F [x] with fD monic and gcd(fN , fD) = 1 such that f = fN/fD. With
this in mind, define

UF = {(f, (fN , fD)) ∈ F (x)× F [x]2 | f = fN/fD, gcd(fN , fD) = 1, fD monic}.

If (f, (fN , fD)) ∈ UF and fN is monic, we say f is monic. Also define deg f =
nN + nD and ∆(f) = nN − nD. The only automorphisms of the field F (x)
over F are the fractional linear transformations

x 7→ t1x+ t2
t3x+ t4

,
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where t1, t2, t3, t4 ∈ F and t1t4 − t2t3 6= 0. The inverse of the the above map
is

x 7→
(

1

t1t4 − t2t3

)
t4x− t2
−t3x+ t1

.

Note that this group is isomorphic to GL2(F ), the group of 2×2 non-singular
matrices over F . Note also that if f = fN/fD ∈ F (x), then

t1x+ t2
t3x+ t4

◦ f =
t1fN + t2fD
t3fN + t4fD

.

Let f, g, h ∈ F (x) with f = g ◦ h, and let t ∈ F (x) be a fractional linear
transformation. We see that f = (g ◦ t−1) ◦ (t ◦ h) is also a decomposition
of f . Two decomposition f = g ◦ h and f = g′ ◦ h′ are said to be linearly
equivalent if there exists a fractional linear transformation t ∈ F (x) such that
g = g′ ◦ t−1 and h = t ◦ h′. Let (f, (fN , fD)) ∈ UF and (rN , rD, sN , sD) ∈ N4.
Define

RATDECF
(rN ,rD,sN ,sD) =



(f, (g, h)) ∈ F (x)× F (x)2, f = g ◦ h,
(g, (gN , gD)), (h, (hN , hD)) ∈ UF ,
deg gN = rN , deg gD = rD,

deg hN = sN , deg hD = sD.

For any f ∈ F (x) and (rN , rD, sN , sD) ∈ N4 there are potentially a large
(possibly infinite, depending upon F ) number of decompositions of f in
RATDECF

(rN ,rD,sN ,sD) (though up to linear equivalence we will see there are
at most a linearly exponential number). The rational function decomposition
problem is, given f ∈ F (x) and rN , rD, sN , sD ∈ N, to determine if there exist
any decompositions of f in RATDECF

(rN ,rD,sN ,sD), and, if so, to find one or
all of them up to linear equivalence.

Let (f, (fN , fD)), (g, (gN , gD)), (h, (hN , hD)) ∈ UF . Assume fN , fD, gN , gD, hN , hD ∈
F [x] have degrees nN , nD, rN , rD, sN , sD respectively, and that they are of the
form

fN =
∑

0≤i≤nN
aix

i, fD =
∑

0≤i≤nD
āix

i,

gN =
∑

0≤i≤rN
bix

i, gD =
∑

0≤i≤rD
b̄ix

i,

hN =
∑

0≤i≤sN
cix

i, hD =
∑

0≤i≤sD
c̄ix

i.
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Let
A =

∑
0≤i≤rN

bihN
ihD

rN−i = hD
rN (gN ◦ h) ∈ F [x],

B =
∑

0≤j≤rD
b̄jhN

jhD
rD−j = hD

rD(gD ◦ h) ∈ F [x].

If f = g ◦ h then

f =
AhD

−rN

BhD
−rD =


A

BhD
rN−rD if rN > rD

AhD
rD−rN

B
if rN ≤ rD

Note that

degA =

{
rNsN if sN > sD,

rNsD if sN < sD.

If sN = sD then cancellation can occur and the strongest statement that can
be made is that degA ≤ rNsD. Similarly,

degB =

{
rDsN if sN > sD,

rDsD if sN < sD.

Once again, if sN = sD, cancellation can occur, and the most we can say is
that degB ≤ rDsD.

Lemma 6.1. A,B, and hD (as defined above) are pairwise relatively prime.

Proof. We first show gcd(A,B) = 1. Suppose to the contrary that gcd(A,B) 6=
1. Then A and B have a common root β ∈ F̄ (where F̄ is an algebraic closure
of F ), and

A(β) =

{
[hD

rNgN(hN/hD)](β) if hD(β) 6= 0,
brNhN

rN (β) if hD(β) = 0,

B(β) =

{
[hD

rDgD(hN/hD)](β) if hD(β) 6= 0,
b̄rDhN

rD(β) if hD(β) = 0.

If hD(β) 6= 0, it follows that gN(h(β)) = gD(h(β)) = 0, a contradiction since
gN and gD are relatively prime. If hD(β) = 0, then A(β) = brNhN

rD(β) 6= 0
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(since gcd(hN , hD) = 1), contrary to the assumptions. Thus gcd(A,B) = 1.
We now show that A and hD are relatively prime. First,

gcd(A, hD) = gcd(
∑

0≤i≤rN
bihN

ihD
rN−i, hD)

= gcd(brNhN
rN + hD

∑
0≤i≤rN

bihN
ihD

rN−i−1, hD)

= gcd(brNhN
rN , hD)

= 1 since gcd(hN , hD) = 1.

Similarly,

gcd(B, hD) = gcd(
∑

0≤j≤rD
b̄jhN

jhD
rD−j, hD)

= gcd(b̄rDhN
rD + hD

∑
0≤j≤rD

b̄jhN
jhD

rD−j−1, hD)

= gcd(b̄rDhN
rD , hD)

= 1 since gcd(hN , hD) = 1.
�

This implies that f = (A/B)hD
rD−rN is in “lowest terms”. For f as above,

we call (nN , nD) the degree pair of f .

Lemma 6.2. Given (f, (fN , fD)), (g, (gN , gD)), (h, (hN , hD)) ∈ UF with re-
spective degree pairs (nN , nD), (rN , rD), and (sN , sD), where ∆(f),∆(h) > 0
and f = g ◦ h, it follows that ∆(g) > 0, rN = nN/sN and

rD =
nDsN − nNsD
sN(sN − sD)

.

Proof. We know that f = (A/B)hD
rD−rN , where A,B ∈ F [x] are as defined

previously. Assume rN ≤ rD. We have seen that (f, (AhD
rD−rN , B)) ∈ UF

and nN = rNsN + rDsD− rNsD > rDsN = nD. A simple rearrangement reveals
that rN(sN − sD) > rD(sN − sD) and since sN > sD, we find that rN > rD, a
contradiction. It must then be true that rN > rD and (f, (A,BhD

rN−rD)) ∈
UF . From the previous discussion on the degrees of A and B, we know that
nN = rNsN and nD = rDsN + sD(rN − rD). Solving for rN and rD in these
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equations, we derive that rN = nN/sN and

rD(sN − sD) = nD − sDrN

=
nDsN − nNsD

sN

and finally that

rD =
nDsN − nNsD
sN(sN − sD)

.

�

This implies that the degree pair of g is totally determined by the degree

pairs of f and h. We will later see that in fact f and h uniquely determine
g.

The set of degree pairs of f and it images under fractional linear trans-
formations forms a highly structured set.

Lemma 6.3. Let f ∈ F (x) \ F ,

T = {t ◦ f | t ∈ F (x) a fractional linear transformation}

and
D = {(c, d) ∈ N2 | (c, d) a degree pair of some g ∈ T}.

Then D has exactly three elements, and these are of the form (a, b), (b, a)
and (a, a), for some a, b ∈ N with a > b.

Proof. Assume (f, (fN , fD)) ∈ UF and f has degree pair (nN , nD). As noted
earlier, if t = (t1x+ t2)/(t3x+ t4) ∈ F (x) is a fractional linear transformation
then t◦f = (t1fN + t2fD)/(t3fN + t4fD). We examine three cases. If nN > nD,
then for any fractional linear transformation t ∈ F (x), observation reveals
that t◦f has possible degree pairs (nN , nD), (nD, nN) and (nN , nN). Similarly,
if nD > nN , t ◦ f has possible degree pairs (nN , nD), (nD, nN) and (nD, nD). If
fN = fD, let aN be the leading coefficient of fN and δ the degree of fN−aNfD.
Then t ◦ f can have degree pairs (nN , nN), (δ, nN), and (nN , δ). Since the
fractional linear transformations form a group under composition, these are
the only degree pairs. �

This allows us to normalise the rational function decomposition problem
and show a reduction from the general problem to the normal problem. For
any (f, (fN , fD)) ∈ UF , let aN ∈ F be the leading coefficient of fN and let
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γ ∈ F be the leading coefficient of fN − aNfD. Also, let α = aN − 1 ∈ F .
Define Λf , a fractional linear transformation, as follows:

Λf =


x/aN if ∆(f) > 0,

γ ·
(
x− α
x− aN

)
if ∆(f) = 0,

aN/x if ∆(f) < 0.

Λf is a fractional linear transformation. Observation reveals that Λf ◦ f is
monic and ∆(Λf ◦ f) > 0. If f = g ◦ h for g, h ∈ F (x), then

Λf ◦ f = (Λf ◦ g ◦ Λ−1
h ) ◦ (Λh ◦ h).

Therefore, we can assume for any decomposition of f that f and h are monic
and ∆(f) and ∆(h) are both positive. By lemma 6.2 we know ∆(g) is positive
as well. Because fN =

∑
0≤i≤rN bihN

ihD
rN−i, sN > sD, and fN is monic, we

also see that brN = 1 and g is monic as well. A further normalisation can be
made by noting that

f = g ◦ h
= g(x+ h(0)) ◦ (h− h(0)).

Assume ∆(h) is positive. Then h − h(0) = (hN − h(0)hD)/hD has the same
degree pair as h. If ∆(f) and ∆(g) are also positive, it follows that g(x+h(0))
has the same degree pair as g as well since rN and rD are completely deter-
mined by nN , nD, sN , and sD, so we can assume h(0) = 0 in any decomposi-
tion. We call a decomposition of a monic rational function f with ∆(f) > 0
into two monic rational function g, h ∈ F (x) such that ∆(g) > 0, ∆(h) > 0
and h(0) = 0 a normal decomposition of f . Let nN , nD, rN , rD, sN , sD ∈ N be
such that nN = rNsN and nD = rNsD − rDsD + rDsN . Define

NRATDECF
(rN ,rD,sN ,sD) =



(f, (g, h)) ∈ F (x)× F (x)2 :

f, g, h monic, h(0) = 0, f = g ◦ h,
(f, (fN , fD)), (g, (gN , gD)), (h, (hN , hD)) ∈ UF ,
∆(f),∆(g),∆(h) > 0,

deg gN = rN , deg gD = rD,

deg hN = sN , deg hD = sD.
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Given a monic f ∈ F (x) with ∆(f) > 0, and (rN , rD, sN , sD) ∈ N4 such
that nN = rNsN and nD = rNsD − rDsD + rDsN , the normalised rational
function decomposition problem is to determine if there exists (f, (g, h)) ∈
NRATDECF

(rN ,rD,sN ,sD) and if so to find some predetermined number of
them.

Note that unlike the polynomial decomposition problem, the degrees of
the numerators and denominators of f, g and h are not left constant by the
normalisations. We will now examine the relationship between the normal
problem and the general problem by showing a linear time (in the input
degree) reduction from the general problem to the normal problem.

Assume f ∈ F (x) and rN , rD, sN , sD ∈ N are given as in the general
problem. Also assume (f, (fN , fD)) ∈ UF and f̄ = Λf◦f has (f̄ , (f̄N , f̄D)) ∈ UF
and degree pair (n̄N , n̄D). The easiest case occurs when sN > sD. For each
decomposition (f, (g, h)) ∈ RATDECF

(rN ,rD,sN ,sD) there is a decomposition

(f̄ , (ḡ, h̄)) ∈ NRATDECF
(r̄N ,r̄D,sN ,sD), where r̄N and r̄D are determined as in

lemma 6.2. Conversely, from any (f̄ , (ḡ, h̄)) ∈ NRATDECF
(r̄N ,r̄D,sN ,sD) we

can find a decomposition (f, (Λ−1
f ◦ ḡ, h̄)) ∈ RATDECF

(rN ,rD,sN ,sD).

If sN < sD we have another easy case since Λh ◦h has degree pair (sD, sN).
For each decomposition (f, (g, h)) ∈ RATDECF

(rN ,rD,sN ,sD) there is a decom-
position

(f̄ , (ḡ, h̄)) ∈ NRATDECF
(r̄N ,r̄D,sD,sN )

where once again, we compute r̄N , r̄D as in lemma 6.2. From any (f̄ , (ḡ, h̄)) ∈
NRATDECF

(r̄N ,r̄D,sD,sN ) we can find a decomposition (f, (Λ−1
f ◦ḡ◦(1/x), (1/x)◦

h̄)) ∈ RATDECF
(rN ,rD,sN ,sD).

Finally, if sN = sD, we have a difficulty in that the problem can be
normalised in a number of different ways. Let s̄D ∈ N with s̄D < sN , and
find r̄N , r̄D ∈ N as in lemma 6.2 (if such an integer solution exists). For
each decomposition (f, (g, h)) ∈ RATDECF

(rN ,rD,sN ,sD) there is a decompo-

sition (Λf ◦ f, (Λf ◦ g, h)) ∈ NRATDECF
(rN ′,rD ′,sN ,sD) for some appropri-

ately calculated rN
′, rD

′ ∈ N (as in lemma 6.2). By lemma 6.3 there ex-
ists a fractional linear transformation t ∈ F (x) such that ∆(t ◦ h) > 0
and t ◦ h is monic and has degree pair (sN , s̄D) for some s̄D < sN . Thus
(Λf ◦f, (Λf ◦g ◦ t−1, t◦h)) ∈ NRATDECF

(r̄N ,r̄D,sN ,s̄D) for appropriately deter-

mined r̄N , r̄D ∈ N. For any (f̄ , (ḡ, h̄)) ∈ NRATDECF
(r̄N ,r̄D,sN ,s̄D) we can find a

decomposition (f, (Λ−1
f ◦ḡ◦[1/(x−1)], [(x+1)/x]◦h̄)) ∈ RATDECF

(rN ,rD,sN ,sD)
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(the fractional linear transformation t = (x+1)/x [whose inverse is 1/(x−1)]
is such that t ◦ h̄ has degree pair sN , sN). This requires the solution of at
most sN < deg f normal problems. We have shown the following:

Theorem 6.4. Assume we have an algorithm such that, given a monic f̄ ∈
F (x) of degree n with ∆(f̄) > 0, and (r̄N , r̄D, s̄N , s̄D) ∈ N4, we can determine
if there exist any (f̄ , (ḡ, h̄)) ∈ NRATDECF

(rN ,rD,sN ,sD), and if so, find some
predetermined number of them, in O(T (n)) field operations. Then, given
f ∈ F (x) of degree n and (rN , rD, sN , sD) ∈ N4, we can determine if there exist
any (f, (g, h)) ∈ RATDECF

(rN ,rD,sN ,sD), and if so, find some predetermined
number of them, in O(sNT (n)) = O(nT (n)) field operations.

This is equivalent to saying that the general rational function decomposi-
tion problem is Cook reducible to the normal rational function decomposition
problem, where the oracle for the normal problem is consulted sN times.

6.2 Decomposing Normalised Rational Functions

In this section we present a general computational solution for the rational
function decomposition problem. Throughout this section, for any f ∈ F [x]
of degree n and any i ∈ N such that 0 ≤ i ≤ n, we let coeff(f, i) ∈ F be the
coefficient of xi in f . We begin by showing a preliminary lemma.

Lemma 6.5. Given r ∈ N, u ∈ F [x] monic of degree n, and h ∈ F (x) monic
with h(0) = 0, (h, (hN , hD)) ∈ UF and ∆(h) > 0, we can determine if there
exists a monic v ∈ F [x] of degree r such that u = v(h)hD

r in O(n log nM(n))
field operations.

Proof. Assume hN , hD have degree sN , sD respectively. It follows that if v
exists, and is of the form

v =
∑

0≤i≤r
bix

i

with bi ∈ F for 0 ≤ i ≤ r then

u =
∑

0≤i≤r
bihN

ihD
r−i.
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Let d = max{j : xj |hN} ≥ 1. We see that for ` ∈ N,

coeff(u, `d) = coeff(
∑

0≤i≤r
bihN

ihD
r−i, `d)

= coeff(
∑

0≤i≤`
bihN

ihD
r−i, `d)

= b` coeff(hN , d)` coeff(hD, 0)r−` + coeff(
∑

0≤i<`
bihN

ihD
r−i, `d).

Since coeff(hN , d) 6= 0 and coeff(hD, 0) 6= 0, we know

b` =
coeff(u, `d)− coeff(

∑
0≤i<` bihN

ihD
r−i, `d)

coeff(hN , d)` coeff(hD, 0)r−`
.

Using this recurrence we can compute the coefficients b0, b1, . . . , br ∈ F in
order. Because the system is over constrained, the computed coefficients
may not lead to a decomposition. Thus we must check if in fact u = v(g)hD

r.
The cost of this computation is dominated by the cost of computing hN

ihD
r−i

for 0 ≤ i ≤ r, which can be done with O(n log nM(n)) field operations over
F . �

The previous lemma allows us to perform “right division” in the ring of
normal rational functions under composition.

Lemma 6.6. Given f, h ∈ F (x) monic with h(0) = 0 and ∆(f),∆(h) > 0,
we can determine if there exists a monic g ∈ F (x) (with ∆(g) > 0) such that
f = g ◦ h, and if so compute it, with O(n log nM(n)) field operations.

Proof. Assume (f, (fN , fD)), (h, (hN , hD)) ∈ UF . We want to find (g, (gN , gN)) ∈
UF such that f = g ◦ h. We know fN = (gN ◦ h)hD

rN and using lemma 6.5
we can compute gN ∈ F [x] if it exists. We also know that fD/hD

rN−rD =
gD(h)hD

rD , and so we can compute gD ∈ F [x] if it exists. The total number
of field operations required is O(n log nM(n)). �

We can now give an algorithm for the normal rational function decompo-
sition problem. It will require an exponential number of field operations.
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NormRatDec: F (x)× N4 → P(RATDECF )
Input: - f ∈ F (x) with ∆(f) > 0 and

(f, (fN , fD)) ∈ UF where fN and fD have

degrees nN and nD respectively,

- rN , rD, sN , sD ∈ N such that nN = rNsN
and nD = rNsD − rDsD + rDsN.

Output: - the set of all decompositions of f
in RATDECF

(rN ,rD,sN ,sD).

1) Let T := ∅.
2) For each monic hD ∈ F [x] of degree sD such that

hD
rN−rD |fD, and hD(0) 6= 0, do

2.1) Let B := fD/hD
rN−rD.

2.2) Let b̄0 := fD(0)/(hD(0))rN.
2.3) For each factor hN of B− b̄0hD

rD of degree sN,
2.3.1) Let h := hN/hD.
2.3.2) Attempt to compute g ∈ F (x) such that

f = g ◦ h using lemma 6.6. If

such a g exists for the chosen h,
add (f, (g, h)) to T.

3) Return T.

We know that in any decomposition hD
rN−rD |fD, so in step 2 we generate

all potential candidates for hD. In step 2.2, since fD(0) = hD
rN−rD(0)b̄0hD

rD(0) =
b̄0hD

rN , we can compute b̄0 = fD(0)/hD
rN (0). We use the identity

B − b̄0hD
rD =

∑
1≤j≤rD

b̄jhN
jhD

rD−j

= hN
∑

1≤j≤rD
b̄jhN

j−1hD
rD−j

to get all candidates for hN , namely all degree rN factors of B − b̄0hD
rD .

In step 2.3.1 we simply check whether the chosen h = hN/hD leads to a
decomposition. The algorithm certainly requires an exponential number of
field operations in the input size because for any f ∈ F [x] of degree n,
there are potentially 2n factors of f . Therefore, the cost of the algorithm is
dominated by the cost of computing step 2.3.2 as many as (2n)2 times, each
time requiring O(n log nM(n)) field operations. We have shown the following
theorem.
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Theorem 6.7. The normal rational function decomposition problem can be
solved with O(22nn log nM(n)) field operations.

Using theorem 6.4 we get the following corollary for the general case:

Corollary 6.8. The rational function decomposition problem can be solved
with O(22nn2 log nM(n)) field operations.

7 Conclusion.
We formally presented the decomposition problem for polynomials (both uni-
variate and multivariate) in a number of formulations and showed their equiv-
alence. We then presented a survey of the known algorithms for the decom-
position problem in light of this consistent mathematical basis. A reduction
is shown from the general (multiple composition factor) decomposition prob-
lem to the bidecomposition problem for “nice” classes of polynomials. In
the wild case we exhibited super-polynomial lower bound on the number
of decompositions of a polynomial which can exist by examining the addi-
tive polynomials, for which all decompositions are wild. We dealt with the
additive case algorithmically as well, demonstrating a polynomial time al-
gorithm for generating a complete decomposition (and hence determining
indecomposability). It is shown that the decomposition problem for additive
polynomials can be solved in quasi-polynomial time. We also showed that
the general decomposition problem for completely reducible additive polyno-
mials and the bidecomposition problem for similarity free additive polynomi-
als can be solved in polynomial time. The rational function decomposition
problem is also defined and it is shown how to normalise this problem appro-
priately, such that the general problem is reducible to the normal one. We
then showed how to solve the normalised rational function decomposition
problem in a polynomial number of field operations.

Many open questions remain in the wild case for polynomial decomposi-
tion. The additive polynomials represent a small but important subcase of
these polynomials and yet even here no polynomial time algorithm is known
for even the bidecomposition problem. It is strongly suspected by the author
that such an algorithm exists. Interesting questions also remain concerning
the computation of absolute decompositions. It may be true that even over
“well-behaved” fields such as finite fields that the coefficients of an absolute
decomposition generate an extension of exponential degree over the ground
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field. And of course, the main open question is still the existence of a poly-
nomial time algorithm for the rational polynomial decomposition problem
in the wild case. The rational function decomposition problem is only dealt
with briefly here and many interesting questions remain unsolved. Most of
these problems are extremely difficult, and the mathematical theory is very
incomplete. Polynomial time algorithms, even for special cases, would be of
great interest.
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