Certifying Inconsistency of Sparse Linear Systems

M. Giesbrecht*
Dept. of Computer Science
University of Manitoba
Winnipeg, Manitoba
R3T 2N2, Canada
email: mgw@cs.umanitoba.ca

A. Lobo
Dept. of Mathematics and Computer Science
Washington College, 300 Washington Ave.
Chestertown, MD, 21620, USA
Email: Austin.Lobo@washcoll.edu

B. D. Saunders‡
Dept. of Computer and Information Sciences
University of Delaware
Newark, DE 19716, USA
Email: saunders@cis.udel.edu

Randomized black box algorithms provide a very efficient means for solving sparse linear systems over arbitrary fields. However, when these probabilistic algorithms fail, it is not revealed whether no solution exists or whether the algorithm simply made unlucky random choices. Here we give an efficient algorithm to compute a certificate of inconsistency for a black box linear system over a field. Our method requires a black box for the transpose of the matrix. The cost of producing the certificate is shown to be about the same as that of solving the system in the black box model, while the cost of applying a given certificate to prove inconsistency is much smaller. We also give an efficient algorithm for certifying that a sparse Diophantine linear system of integer equations has no integer solutions, even when it may have rational solutions.

1 Introduction

Given a sparse matrix $A \in F^{n \times n}$ over some ring F and a vector $b \in F^{n \times 1}$, it is a fundamental problem to solve the linear system $Ax = b$ for $x \in F^{1 \times n}$. The system has a unique solution, many solutions, or no solutions. That all three cases in this tautology can occur (and that we know the structure of the solution set) is of course the core of elementary linear algebra.

Fast probabilistic algorithms which exploit sparsity in A have been developed to solve the problem of finding solutions x if one exists (over fields by Wiedemann 1986, Kaltofen & Saunders 1991, Coppersmith 1993, Coppersmith 1994, Kaltofen 1995, Lambert 1996, Villard 1997, and over the integers by Giesbrecht 1997). Furthermore a purported solution is easily checked, so that these algorithms are of Las Vegas type when the hypothesis is made a priori that the system is consistent. However, less attention has been paid to the case when no solutions exist, and these algorithms do not certify this case. There is no way to determine whether a failure to find a solution was due to inconsistency or simply to unlucky random choices.

Over a field F, we show how to compute a vector $u \in F^{1 \times n}$ such that $uA = 0$ and $ub \neq 0$, if no solution to $Ay = b$ exists. This u clearly demonstrates that $Az = b$ has no solution $x \in F^{n \times 1}$ since $Az = b$ implies $uAz = ub$. Intuitively such certificates are dense in the left nullspace of A. If b is not in the column span of A, then b is orthogonal to at most a proper subspace of the left nullspace of A. Thus, with high probability, a random element of this left nullspace is a certificate.

The cost of our algorithm is measured in terms of black-box vector-times-matrix evaluations $w \rightarrow wA$, for $w \in F^{1 \times n}$. The algorithm requires an expected $O(r)$ such black-box evaluations plus an additional $O(rM(n))$ operations in F, where r is the rank of A and $O(M(n))$ operations in F are sufficient to multiply two polynomials of degree n over F ($M(n) = n \log n \log \log n$ using FFT-based polynomial arithmetic). Additional space for $O(n)$ values from F is required. This is approximately the cost of solving a consistent system having the same black-box matrix, using any of the known algorithms for solving sparse systems over a field. It should be noted that the black-box evaluations used here compute vector-times-matrix products rather than the matrix-times-vector products used in Wiedemann’s algorithm. This does represent a weakening of the black-box model, both theoretically and practically (for a complete solver we must have efficient algorithms for both matrix-vector and vector-matrix products, and a potentially substantial extra cost in memory usage). We do note that algorithms such as Lanczos, which require a symmetric input matrix A, generally already require preconditioning involving the transpose black-box to solve non-symmetric systems; see, e.g., Eberly & Kaltofen 1997.

We extend our techniques to provide certificates of inconsistency for sparse Diophantine systems $Ax = b$, where $A \in \mathbb{Z}^{n \times n}$, $b \in \mathbb{Z}^{n \times 1}$ and where integer solutions $x \in \mathbb{Z}^{n \times 1}$ are sought. The interesting case here is when rational solutions to the system do exist. In this case, a certificate of Diophantine inconsistency is a vector $u \in \mathbb{Z}^{1 \times n}$ and an integer d such that $uA \equiv 0 \mod d$ while $ub \not\equiv 0 \mod d$. The

*Research was supported in part by Natural Sciences and Engineering Research Council of Canada research grant OGP0555376 and University of Manitoba research grant 431-1725-80.

†Research supported by National Science Foundation grant CCR-9712962.
integer is generally a small factor or multiple of the largest determinantal divisor of A. A certificate can be found with the same cost as solving a consistent rational system having the same black-box matrix, using, say, Wiedemann’s algorithm. Again, the cost of using a certificate to prove inconsistency is much smaller.

2 Certifying inconsistency over a field

Let F be a field, $A \in F^{n \times n}$ and $b \in F^{n \times 1}$, and the linear system $Ax = b$ to be solved for $x \in F^{n \times 1}$. We offer an algorithm to solve the system in the sense that either (1) a solution x which is a random sample of the solution space in a suitable sense is returned or (2) a certificate of the fact that no solution exists is given. The latter is the new feature offered in this paper. The main idea is that a random element of the left nullspace of A will serve as the certificate. Hence, choosing a random solution to a linear system in a suitable sense is involved in both cases (1) and (2). If the field F is finite and it is feasible to select uniformly at random from all of F, then we can have a uniformly random element of the nullspace of A as in Theorem 4 of Kaltofen & Saunders 1991. Here we also work out more specifically than in Kaltofen & Saunders 1991 the details of random sampling when uniform selection from a subset of F is the available tool.

We begin with the observation that drives the inconsistency certification.

Theorem 2.1. Let $A \in F^{n \times n}$ and $b \in F^{n \times 1}$. There is no $x \in F^{n \times 1}$ such that $Ax = b$ if and only if there exists a $u \in F^{1 \times n}$ such that $uA = (0, \ldots, 0) \in F^{1 \times n}$ and $ub \neq 0$.

Proof. Assume there is no $x \in F^{n \times 1}$ such that $Ax = b$. Then $\text{rank}[A] = \text{rank}[A] + 1$. Thus the dimension of the left nullspace of $[A]b$ is one less than the dimension of the left nullspace of A and there exists a $u \in F^{1 \times n}$ in the left nullspace of A which is not in the left nullspace of $[A]b$. For this u, $uA = (0, \ldots, 0) \in F^{1 \times n}$ and $ub \neq 0$.

Conversely, assume there exists a u with the described properties and an $x \in F^{n \times 1}$ with $Ax = b$. Then $0 = uAx = ub \neq 0$, a contradiction.

The algorithm to follow will generate efficiently a vector which is a random linear combination of a certain spanning set of the nullspace of A, however, this spanning set will not itself be explicitly constructed.

The next theorem shows that a vector so generated is not likely to be orthogonal to b, i.e., not likely to be in the left nullspace of $[A]b$, a hyperplane in the left nullspace of A.

Theorem 2.2. Let $A \in F^{n \times n}$ and suppose $v_1, \ldots, v_s \in F^{1 \times n}$ span N_A, the left nullspace of A. Let \mathcal{L} be a finite subset of F and $\delta_1, \ldots, \delta_s$ uniformly and randomly chosen from \mathcal{L}. Let H be a hyperplane in N_A. Then

$$\text{Prob}\left\{ \sum_{1 \leq i \leq s} \delta_i v_i \notin H \right\} \geq 1 - 1/\#\mathcal{L}.$$

Proof. The hyperplane H extends to a hyperplane H' of $F^{1 \times n}$ such that $H = H' \cap N_A$. Let $b \in F^{n \times 1}$ define H', i.e., $H' = \{v : v \cdot b = 0\}$. Assume $v_i = (v_{i1}, \ldots, v_{in}) \in F^{1 \times n}$ and $b = (b_1, \ldots, b_n) \in F^{n \times 1}$. Let z_1, \ldots, z_s be indeterminates and let

$$f(z_1, \ldots, z_s) = \sum_{1 \leq i \leq s} z_i v_i \cdot b$$

$$= \sum_{1 \leq i \leq s} z_i \sum_{1 \leq j \leq n} v_{ij} b_j \in F[z_1, \ldots, z_s].$$

The polynomial f is either identically zero or has degree 1. However, by Theorem 2.1 there exists a vector $u = \sum_{1 \leq i \leq s} u_i v_i$ such that $f(u_1, \ldots, u_s) \neq 0$. By the Schwartz (1980)/Zippel (1979) Lemma, $\text{Prob}\{f(\delta_1, \ldots, \delta_s) \neq 0\} \geq 1 - 1/\#\mathcal{L}$. for $\delta_1, \ldots, \delta_s$ chosen randomly and uniformly from \mathcal{L}.

We next give the algorithm of Kaltofen & Saunders (1991) to produce a random solution to a singular linear system.

Algorithm RandomSol

Input:
- $A \in F^{n \times n}$;
- $b \in F^{n \times 1}$;
- $f(z)$, a polynomial in $F[z]$ such that $f(0) \neq 0$;
- \mathcal{L}, a subset of F.

This algorithm is meant to be called with arguments for which you have reason to believe that $r := \deg(f) = \text{rank}(A)$ and that the leading $r \times r$ principal minor of A has minimum polynomial f.

Output:
- "False", meaning no solution was obtained or ("True", $x \in F^{n \times 1}$) such that
 (i) $Ax = b$,
 (ii) x is a random sample of the solution space to $Ax = b$ as in Theorem 2.3;

1. Choose $w = (w_1, \ldots, w_n)^t$, with entries chosen randomly from \mathcal{L};
 Let $r := \deg(f)$;
2. Let b' be the vector consisting of the first r entries of $b + Aw$;
 Let A' be the leading $r \times r$ submatrix of A;
 // The black box for A' consists of padding the vector // with zeros, applying the black box for A and // considering only the first r entries of the output;
 Let $x = -\sum_{i=1}^r f_i f_0 A' b'$;
3. If $Ax = b$ then return ("True", x) else return "False".

Theorem 2.3.

(a) If RandomSol returns ("True", x), then x is a correct solution to $Ax = b$.

(b) If the inputs A, b, f, \mathcal{L} to RandomSol satisfy $r := \deg(f) = \text{rank}(A)$, $f = \text{minpoly}(A_r)$, where A_r is the leading principal $r \times r$ submatrix of A, then the ("True", x) output is returned and for any hyperplane H in $\{y : Ay = b\}$ the probability that $x \in H$ is less than $1/\#\mathcal{L}$.

(c) The algorithm requires $O(r)$ evaluations of the black box for A, $O(nr)$ additional operations in F, and space for $O(n)$ elements of F.

Proof. The algorithm is a reasonably straightforward embellishment of the proofs of Lemma 4 and Theorem 4 in Kaltofen & Saunders (1991).
Algorithm: CompleteSparseLinearSystemSolver

Input:
- a black box, \(x \rightarrow Ax \) for \(A \in \mathbb{F}^{n \times n} \);
- a black box for \(A^t \), \(u \rightarrow uA \);
- \(b \in \mathbb{F}^{n \times 1} \);
- \(\mathcal{L} \), a subset of \(\mathbb{F} \) containing more than \(2n(n-1) \) elements, from which to choose at random;

Output:
Accordingly as the system \(Ay = b \) is nonsingular, singular and consistent, or singular and inconsistent, respectively, we get:

- (**nonsingular**, \(x \)) with \(x = A^{-1}b \), or
- (**singular-consistent**, \(x \)) such that \(x \) is a random element of the solution space to \(Ay = b \), or
- (**singular-inconsistent**, \(u \)) such that \(u^TA = 0 \) and \(u^Tb \neq 0 \), certifying the inconsistency.

(1) // Try the non-singular case.
Apply Wiedemann’s algorithm to \(A, b, \mathcal{L} \). It returns either a solution \(x \in \mathbb{F}^{n \times 1} \) or a factor \(f(z) \) of \(\minpoly(A) \in \mathbb{F}[z] \), which is divisible by \(z \).

If the former case,
then return (**nonsingular**, \(x \));
else continue to step 2.
// alternatively one could try steps 3 and 4 on \(A \)
// without preconditioning. This alternative could
// save considerable time, however we make no claim
// about the randomness of a solution obtained in step 4
// if this is done. For this alternative:
// set \(f := \minpoly(A) \);
// if \(f \) divides \(f(z) \)
// then go to step 2 anyway;
// otherwise set \(B := A; c := b \); go to step 3;

The matrix is singular.
Repeat steps 2–4 until done.

(2) // Random preconditioning and \(\minpoly \).
Choose random \(\alpha_2, \ldots, \alpha_n, \beta_2, \ldots, \beta_n \) and \(\gamma_1, \ldots, \gamma_n \)
from \(\mathcal{L} \) and construct black boxes for

\[
U = \begin{pmatrix}
1 & \alpha_2 & \cdots & \alpha_n \\
1 & \alpha_2 & \cdots & \\
& & & 1 \\
& & & \alpha_2 \\
& & & 1
\end{pmatrix}
\]

\[
L = \begin{pmatrix}
1 & \beta_2 & 1 \\
\beta_3 & \beta_2 & \cdots \\
\vdots & \vdots & \ddots \\
\beta_n & \cdots & \beta_2 & 1
\end{pmatrix}
\]

and \(B = U AL \).
// RandomSol can also use the black box for \(B \) to
// obtain a black box for \(B' \), the leading
// \(r \times r \) submatrix of \(B \).
Compute \(f(z) := \minpoly(B) \in \mathbb{F}[z] \) with Wiedemann’s algorithm;
If \(z \) divides \(f(z) := f(z)/z \),
then repeat step (4)
else set \(r := \deg(f) \); \(c := Ub \); continue to step 3.

(3) // Try inconsistency.
Call RandomSol with \(B', 0, f, \mathcal{L} \).
if it returns (**True**, \(u \)) and \(u^Tc \neq 0 \)
then return (**singular-inconsistent**, \(u \));
else continue to step (4);

(4) // Try solving.
Call RandomSol with \(B, c, f, \mathcal{L} \).
if RandomSol returns (**True**, \(x \))
then return (**singular-consistent**, \(x \));
else go to step (2);
expression swell and count bit (machine-word) operations in our analyses. For $X \in \mathbb{Z}^{n \times m}$, define $\|X\| = \|X\|_{\infty} = \max|X_{ij}|$, the maximum absolute value in the matrix or vector. For a polynomial $g = \sum_{0 \leq i \leq n} a_i z^i \in \mathbb{Z}[z]$, define $\|g\| = \max|a_i|$.

In Giesbrecht (1997) it is shown how to solve solutions to such systems in the black box model.

Fact 3.1 (Giesbrecht 1997). Let $A \in \mathbb{Z}^{n \times m}$ with rank r and $b \in \mathbb{Z}^{n \times 1}$, and assume a solution $x \in \mathbb{Z}^{n \times 1}$ to $Ax = b$ exists.

Let $g = r \log |A| + \log \|b\|$.

- We can find a $x \in \mathbb{Z}^{n \times 1}$ such that $Ax = b$ with an expected number of $O(r \log \|A\| + \log \|b\|)$ hits.
- The output x satisfies $\|x\| = O(r \log n + r \log |A| + \log \|b\|)$.
- An additional $O(r^2 + n M(\log \|A\|))$ bit operations and additional storage for $O(n \log \|A\|)$ words are required.

Algorithm 3.1 (Giesbrecht 1997). For functions $f, g : \mathbb{R} \rightarrow \mathbb{R}$ we have the equivalence $g = O(f) \iff g = O(f \cdot \log(f))$ for some $k \geq 0$.

By way of comparison, if the input matrix has $O(n^{1+\varepsilon})$ non-zero entries (for some $\varepsilon > 0$), this algorithm requires $O(n^{2+\varepsilon} \log(n + \|A\|))$ bit operations, vs. $O(n^2 \log^2 \|A\|)$ bit operations for Gaussian elimination.

Like Wiener’s algorithm, if a Diophantine solution does not exist, we cannot distinguish this from unlucky random choices. Our goal in this paper is to remove this possibility of error with about the same cost.

The principle new idea required here is that if no solution exists over the integers, then no solution exists modulo d, for some integer $d \in \mathbb{Z}$ (for example, whenever d is a multiple of the rth determinantal divisor of A). Clearly, if there exists a $d \in \mathbb{Z}$ and a $u \in \mathbb{Z}^{n \times 1}$ such that $Au \equiv \mod d$ and $ub \equiv \mod d$, then the system has no Diophantine solution $x \in \mathbb{Z}^{n \times 1}$ (otherwise $0 \equiv uAx \equiv ub \equiv \mod d$). The existence of such certificates is established by the following Lemma.

Lemma 3.2. Let $A \in \mathbb{Z}^{n \times m}$ and $b \in \mathbb{Z}^{n \times 1}$ be such that there exists no $x \in \mathbb{Z}^{n \times 1}$ with $Ax = b$. Assume A has rank r and rth determinantal divisor $\Delta \neq 0$. There exists a prime p such that there is no solution $x \in \mathbb{Z}^{n \times 1}$ with $Ax \equiv b \mod p^e$, where $e \geq \text{ord}_p(\Delta)$. As well, there exists a $u \in \mathbb{Z}^{1 \times n}$ with $Au \equiv \mod p^e$ and $ub \equiv \mod p^e$.

Proof. By a unimodular change of basis we may assume that A is in Smith form. Since no solution $x \in \mathbb{Z}^{n \times 1}$ to $Ax = b$ exists, there exists a prime p and $s \leq e$ such that $p^s \mid A_{i,j}$ and $p^{s+1} \mid b_j$. Clearly there can be no $x \in \mathbb{Z}^{n \times 1}$ such that $Ax \equiv b \mod p^e$. Moreover, if $u \in \mathbb{Z}^{1 \times n}$ is zero except for a p^{s+1} in the ith location, then $Au \equiv \mod p^e$ and $ub \equiv \mod p^e$.

We will assume here that $Ax = b$ has rational solutions $x \in \mathbb{Q}^{n \times 1}$ such that $Ax = b$. If this is not the case, inconsistency can be certified by the techniques of the previous section. In fact, for a random single-word prime q, if $Ax = b$ has no rational solution then $Ax \equiv b \mod q$ has no solution in \mathbb{Z}_q with high probability and we can work very efficiently in \mathbb{Z}_q. When rational solutions do exist, the certificates $u \in \mathbb{Z}^{1 \times n}$ we are looking for (such that $uA \equiv \mod d$ and $ub \equiv \mod d$) will not be in the rational nullepspace of A—these will only certify rational inconsistency. Thus we need a u such that $uA \equiv \mod d$ but $uA \neq 0$. The following lemma describes how a solution randomly sampled from the modular nullepspace of A will provide the desired certificate with high probability.

We will generally require some stronger conditions on A which can be obtained by random pre-conditioning (see Lemma 3.4). For convenience we prove these lemmas for an arbitrary principal ideal domain R. For the initial algorithm $R = \mathbb{Z}$, but R will be a localization of an order of a number field at a prime later on (recall that an order of a number field is a subring of the ring of algebraic integers in that number field). For a prime $p \in R$ and $e > 0$, define $R_{p^e} = R/p^e R$.

Lemma 3.3. Let R be any principal ideal domain and $T \in \mathbb{R}^{n \times m}$ with rank r and rth determinantal divisor \mathbb{V}. Let $p \in R$ be prime in R and $e = \text{ord}_p(\mathbb{V})$. Let $v \in \mathbb{R}^{1 \times r}$ such that there exists no $y \in \mathbb{R}^{1 \times r}$ with $Ty \equiv \mod v$. Suppose $w_1, \ldots, w_r \in \mathbb{R}^{1 \times r}$ generate the left nullspace module of T modulo p^e. For randomly selected $d_1, \ldots, d_r \in \{0, 1\}$ and $w = \sum_{0 \leq i \leq r} d_i w_i \in \mathbb{R}^{1 \times r}$, we have $\text{Prob}(w \cdot v \equiv \mod p^e) > 1/2$.

Proof. Let $S = \text{diag}(p^{e_1}, \ldots, p^{e_r}) \in \mathbb{R}^{n \times n}$ with $0 \leq m_1 \leq \cdots \leq m_r \leq e$ be the Smith normal form of T modulo p^e, that is $S \equiv PTQ$ with $P \in \mathbb{R}^{m \times m}$, $Q \in \mathbb{R}^{m \times n}$, and det P, det $Q \in \mathbb{R}_{p^e}$. For $u \in \mathbb{R}^{1 \times n}$,

$$uT \equiv \mod v \iff uTQ \equiv \mod v \iff uP^{-1}S \equiv \mod p^e.$$

Let $\bar{v} = P v = (\bar{v}_1, \ldots, \bar{v}_r) \in \mathbb{R}^{1 \times 1}$ and $\bar{v}_i = w_i P^{-1}$ for $1 \leq i \leq r$.

Define $W(z_1, \ldots, z_r) = \sum_{0 \leq i \leq r} z_i w_i$ for indeterminates z_1, \ldots, z_r. Consider the linear form $W(z_1, \ldots, z_r) \cdot v = \sum_{0 \leq i \leq r} z_i w_i \cdot v = \sum_{0 \leq i \leq r} z_i \bar{v}_i \cdot \bar{v}$. If we can show that this form is not identically zero modulo p^e, then for randomly chosen $d_1, \ldots, d_r \in \{0, 1\}$ we have $W(d_1, \ldots, d_r) \cdot v \equiv \mod 0$ with probability at least 1/2 by the Lemma of Zippel (1979)/Schwartz (1980). Hence $w \equiv W(d_1, \ldots, d_r) \cdot v$ has the desired properties with probability at least 1/2.

To show $W(z_1, \ldots, z_r) \cdot v$ is not identically zero, we need only show the existence of a single $\bar{v} \in \mathbb{R}^{1 \times r}$ such that $\bar{v} S \equiv \mod p^e$ and $\bar{v} \not\equiv \mod p^e$. This follows since w_1, \ldots, w_r are assumed to generate the left nullspace module of A mod p^e, so $\bar{w}_1, \ldots, \bar{w}_r$ must generate the left nullspace module of S mod p^e. Note that $\bar{w} S \equiv \mod p^e$ if and only if $\bar{w} \not\equiv \mod p^e$. Since there is no solution $y \in \mathbb{R}^{1 \times r}$ to $Ty = v$ there must exist an index k (1 $\leq k \leq r$) such that $p^{e_m - k} \equiv \bar{w}_k$ (this is a diagonal system). Let $\bar{v} \in \mathbb{R}^{1 \times r}$ be zero except for the kth component which is p^{e_m}. Then $\bar{w} S \equiv \mod p^e$, $\bar{v} \equiv \mod p^e$.

Next, we provide the properties which may be assumed with high probability about a random pre-conditioning of the input matrix.
Lemma 3.4. Let R be any principal ideal domain and $A \in R^{n \times n}$ of rank r with rth determinantal divisor ∇_r. Let L be a subset of R with at least $2r(r+1)$ elements and $\alpha_1, \alpha_2, \ldots, \alpha_n$ randomly and uniformly chosen from L. Let

$$U = \begin{pmatrix} 1 & \alpha_2 & \alpha_3 & \cdots & \alpha_n \\ 1 & \alpha_2 & \cdots & \cdots & \cdots \\ & & & & \\ 1 & \alpha_2 & \cdots & \cdots & \cdots \\ \end{pmatrix}, \quad L = \begin{pmatrix} 1 & \beta_2 & 1 \\ \beta_3 & \beta_2 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ \beta_n & \beta_{n-1} & \cdots & \cdots & 1 \\ \end{pmatrix}$$

D = \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix}

(3.1)

and form $B = U^{\top}L$ with $f(z) = \text{minpoly}(B) \in R[z]$. Let $p \in R$ be any prime such that $(pR/pR) > 2r(r+1)$. Then with probability at least $1/2$:

(i) $f(z) = z \cdot f(x)$ with $\deg f = r$, $d := \deg f(0) \neq 0$, and charpoly(B) $= z^r \cdot f(x)$;

(ii) $\nabla_r d$ and ord$_R(d) = \text{ord}_R(\nabla_r)$;

(iii) the first r columns of B mod p^d generate the $R[x]$-module spanned by all the rows of $B \mod p^d$ and the first r columns of $B \mod p^d$ generate the $R[x]$-module spanned by all the columns of $B \mod p^d$.

Proof. Part (i) follows from Kaltofen & Saunders (1991), Lemma 2 (by considering Wiedemann’s algorithm over the quotient field of R). Parts (ii) and (iii) follow from Giesbrecht (1997), Theorem 2.5 and Theorem 2.1 respectively. □

Algorithm: CertifyZInconsistency

Input: $A \in Z^{n \times n}$ and $B \in Z^{n \times 1}$ such that there exist rational solutions $x \in Q^{n \times 1}$ to $Ax = b$ but no integer solution $x \in Z^{n \times 1}$; Assume also that there is a prime $p > 2r(r+1)$ and $e > 0$ such that $Ax \equiv b \mod p^d$ has no solution for $x \in Z^{n \times 1}$.

Output: $u \in Z^{1 \times n}$ and $d \in Z$ such that $uA \equiv 0 \mod d$ and $ub \not\equiv 0 \mod d$.

Repeat

1. Choose random $\alpha_1, \ldots, \alpha_n$ from $L := \{0, \ldots, 2n(n+1)\}$ and construct black boxes for U, L, D and $B = U^{\top}L$ as in (3.1). Let $B \in Z^{n \times 1}$ be the leading $r \times r$ submatrix of B (for which we also have a black box).

2. Find $\text{minpoly}(B) = x \cdot f(x) \in Z[x]$ and set $r := \deg f(0)$ and $d := \deg f(0)$.

Use Wiedemann’s algorithm over Q;

3. Choose random $d_1, \ldots, d_e \in \{0, 1\}$.

Let $v_j := (d_1, \ldots, d_e) \in Z^{1 \times e}$;

4. Solve $y, B = v_j$ for the unique $y = (\xi_1, \ldots, \xi_r) \in Z^{1 \times r}$ using Wiedemann’s algorithm over Q.

Let $y := (\xi_1, \ldots, \xi_r, 0, \ldots, 0)$;

5. Let $u := yU \in Z^{1 \times n}$;

Until $uA \equiv 0 \mod d$ and $ub \not\equiv 0 \mod d$;

Return $u \in Z^{1 \times n}$ and d.

Theorem 3.5. CertifyZInconsistency works as specified when there exists a prime $p > 2r(r+1)$, $t \geq 1$ and $u \in Z^{1 \times n}$ such that $uA \equiv 0 \mod p^r$ and $ub \not\equiv 0 \mod p^r$. In this situation $O(1)$ iterations of the main loop are required.

Proof. Clearly, if there is an output, it satisfies the required properties. We need only show that on each iteration the algorithm produces an output with probability at least $1/4$.

By Lemma 3.2 there exists a prime p and $e > 0$ such that $Av \equiv b \mod p^e$ has no solution $x \in Z^{n \times 1}$ and a $u \in Z^{1 \times n}$ such that $uA \equiv 0 \mod p^e$ and $ub \not\equiv 0 \mod p^e$. By Lemma 3.4, we may assume that after steps (2)-(3), with probability at least $1/2$, the constructed B has its first r columns generate the $Z[x]$-module spanned by all the columns of B and whose first r rows generate the $Z[x]$-module spanned by all the rows of B. We may also assume that $e = \text{ord}_R(d) = \text{ord}_R(\nabla_r)$.

Let B_0 be the $r \times n$ matrix consisting of the first r rows of B and b_0 the first r rows of $b \equiv Ub$. There can be no solution $\hat{x} \in Z^{1 \times r}$ such that $B_0 \hat{x} \equiv b_0 \mod p^e$, since the remaining rows of B are assumed to be linear combinations of the first r rows.

The algorithm generates random vectors $y_\alpha \in Z^{1 \times r}$ which sample the left nullspace of $B_0 b_0 \mod p^e$ as required in Lemma 3.3 in steps (4) and (5). First recall that we have assumed the first r columns of B generate the column space of $B \mod p^e$, so the first r columns of B_0 generate the column space of $B_0 \mod p^e$. Thus, we need only find vectors u_α such that $u_\alpha B_0 \equiv 0 \mod p^e$, and it will follow that $u_\alpha B_0 \equiv 0 \mod p^e$. To do this we note that if $u B \equiv 0 \mod d$, then $B_0 \hat{x} = d_0 w$ for some $w \in Z^{1 \times r}$. Let $\mu_\alpha \in Z^{1 \times r}$ be the αth unit vector and $\psi_\alpha \in Z^{1 \times e}$ the unique solution to $\psi_\alpha B_0 = d_0 \mu_\alpha$ for $1 \leq i \leq r$ (ψ_i is integral since det $B_0 = d$).

Since $\text{ord}_R(d) = \text{ord}_R(\nabla_r)$, we know ψ_1, \ldots, ψ_r generate the left-nullspace module of B_0, $\mod p^e$. In step (4) we sample this as required in Lemma 3.3.

Thus, with probability at least $1/2$, $u_\alpha B_0 \equiv 0 \mod p^e$ and $u_\alpha \cdot b_0 \not\equiv 0 \mod p^e$. It follows, assuming that our pre-conditioning was correct (which is true with probability at least $1/2$), that $(y_0[0], \ldots, 0)B \equiv 0 \mod p^e$ and $(y_0[0], \ldots, 0)Ub_0 \not\equiv 0 \mod p^e$, or equivalently that $uA \equiv 0 \mod p^e$ and $ub \not\equiv 0 \mod p^e$ as well.

Thus, with probability at least $1/4$ on each iteration, the algorithm finds a certificate of inconsistency. □

We summarize the size of the algorithm as follows.

Theorem 3.6. Let $A \in Z^{n \times n}$ with rank r and $b \in Z^{n \times 1}$, and assume no solution $x \in Z^{n \times 1}$ to $Ax = b$ exists. Let $e = r \log \|A\| + \log \|b\|$. Assume that there exists a prime $p > 2r(r+1)$ and integer $c \in 1$ such that there is also no $x \in Z^{n \times 1}$ such that $Ax \equiv b \mod p^e$.

\bullet We can find a certificate $u \equiv Z^{1 \times n}$ and d such that $uA \equiv 0 \mod d$ and $ub \not\equiv 0 \mod d$ with an expected number of $O((rn^2 \log n))$ operations and additional storage for $O((n^2 \log n))$ bits.

\bullet The output u satisfies $\|u\| = O((r \log n + r \log \|A\|) \text{ bits})$.

An additional $O((r^2 + \text{nnz}(M)) \text{ bit operations and additional storage for } O(n \text{ bits}) \text{ are required.}$

Proof. The dominant cost is the execution of Wiedemann’s algorithm to find the minimal polynomial of an integer matrix in step (2) and to solve the pre-conditioned
$r \times r$ non-singular system in step (4) an expected constant number of times. These costs are summarized in Giesbrecht (1996), Theorem 1.5 and Giesbrecht (1997), Fact 3.2.

Inconsistency with small primes dividing determinantal divisors
The case when the only witnesses to Diophantine inconsistency are modulo powers of a small prime p (i.e., $p < 2r(r+1)$) is not covered by the above algorithm. In this case we employ the ring extension techniques of Giesbrecht (1997). The algorithm remains essentially the same, but we work in a sequence of ring extensions of Z such that each small prime p dividing \mathcal{V}, is guaranteed to remain inert (i.e., does not factor) in at least one of these extensions. The asymptotic cost is an extra poly-logarithmic factor.

We will compute in extension rings of Z as follows. Let p be a prime and $\Gamma \subseteq \mathbb{Z}[\lambda]$ a monic polynomial in indeterminate λ such that $\Gamma \mod p$ is irreducible in $\mathbb{Z}_p[\lambda]$. Define $\theta \equiv \lambda \mod \Gamma$, so $\mathbb{Z}[\theta]$ is an order in the number field $\mathbb{Q}(\theta)$. By our choice of Γ, p remains inert (i.e., does not factor) in $\mathbb{Z}[\theta]$.

A difficulty in working with $\mathbb{Z}[\theta]$ is that this is not a principal ideal domain. We can recover this property in part by considering the localization of $\mathbb{Z}[\theta]$ at p. Define $\mathbb{Z}[\theta]_p = \{a/b : a \in \mathbb{Z}, b \not\equiv 0 \mod p\}$, the localization of Z at p. This is a principal ideal domain where the only prime is p and all ideals have the form $p^n \mathbb{Z}[\theta]_p$ for some $i \geq 0$. Since p remains inert in $\mathbb{Z}[\theta]$, the localization of $\mathbb{Z}[\theta]$ in $\mathbb{Z}_p[\theta]$ (see, e.g., Giesbrecht 1997, Section 4). In particular, $\mathbb{Z}[\theta]_p$ is also a principal ideal domain in which the only prime is p and all ideals have the form $p^n \mathbb{Z}[\theta]_p$ for some $i \geq 0$. Clearly we have the inclusions $\mathbb{Z} \subseteq \mathbb{Z}[\theta] \subseteq \mathbb{Z}[\theta]_p \subseteq \mathbb{Q}$ and $\mathbb{Z}[\theta] \subseteq \mathbb{Z}[\theta]_p \subseteq \mathbb{Q}[\theta]$.

Algorithm: CertifyInconsistencySmallPrimes

Input: $- A \in \mathbb{Z}^{r \times r}$ and $b \in \mathbb{Z}^{r \times 1}$ such that there exist rational solutions $x \in \mathbb{Q}^{r \times 1}$ to $A x = b$ but no integer solution $x \in \mathbb{Z}^{r \times 1}$; Assume also that there is a prime $p < 2r(r+1)$ and $e > 0$ such that $A x \equiv b \mod p^e$ has no solution for $x \in \mathbb{Z}^{r \times 1}$.

Output: $- u \in \mathbb{Z}^{r \times 1}$ and $d \in \mathbb{Z}$ such that $u A \equiv 0 \mod d$ and $u b \not\equiv 0 \mod d$;

While true Do

1. Choose random $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n, \gamma_1, \ldots, \gamma_n$ from $\mathcal{C} := \{0, \ldots, 2n(n+1)\}$ and construct black boxes for U, L, D and $B = U A L D$ as in (3.1);

2. Find mimpoly$(B) = z \cdot \tilde{f}(z)$ and set $r := \deg \tilde{f}$ and $d := \tilde{f}(0)$; Use Wiedemann’s algorithm over \mathbb{Q};

3. Let $p_1, \ldots, p_n \in \mathbb{Z}$ be the primes dividing d which are less than $2r(r+1)$;

4. Using the algorithm BuildOrders from Giesbrecht (1997), on inputs $\eta = \lfloor \log_2(2r(r+1)) \rfloor$ and p_1, \ldots, p_n, find a set $G \subseteq \{\Gamma_1, \ldots, \Gamma_l\} \subseteq \mathbb{Z}[\lambda]$ of monic polynomials of degree η such that for each p_i there exists a $\Gamma_j \mod p_i$ irreducible in $\mathbb{Z}_p[\lambda]$;

5. Let $\theta_j := (\lambda \mod \Gamma_j)$ and $\ell_j := \{\sum_{0 \leq k \leq \eta} a_k \theta_j^k : a_k \in \{0, 1\} \} \subseteq \mathbb{Z}[\theta_j]$ for $1 \leq j \leq l$; For $j = 1$ to l Do

6. Choose random $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n, \gamma_1, \ldots, \gamma_n$ from \mathcal{C} and construct black boxes for U, L, D and $B = U A L D \in \mathbb{Z}[\theta_j]^{r \times r}$ as in (3.1); Let $B \in \mathbb{Z}[\theta_j]^{r \times r}$ be the leading $r \times r$ submatrix of B (for which we also have a black box);

7. Find mimpoly$(B) = z \cdot \tilde{f}(z) \in \mathbb{Z}[\theta_j][z]$; set $r := \deg \tilde{f}$ and $d := \tilde{f}(0)$;

8. Use Wiedemann’s algorithm over $\mathbb{Q}(\theta_j)$;

9. Choose random $\delta_1, \ldots, \delta_n \in \{0, 1\}$; Let $v_i := (\delta_1, \ldots, \delta_n) \in \mathbb{Z}^{r \times 1}$;

10. Solve $y_\cdot B = v$ for the unique $y_\cdot := (\xi_1, \ldots, \xi_r) \in \mathbb{Z}[\theta_j]^{r \times 1}$ using Wiedemann’s algorithm over $\mathbb{Q}(\theta_j)$;

11. Let $y := (\xi_1, \ldots, \xi_r, 0, \ldots, 0)$;

12. Let $u := u \Gamma_j \mod \mathbb{Z}[\theta_j]^{r \times r}$;

13. For all $p \in \{p_1, \ldots, p_n\}$ such that $\Gamma_j \mod p$ is irreducible in $\mathbb{Z}_p[\lambda]$ Do

14. $\textbf{Return} u$ and p.

THEOREM 3.7. CertifyInconsistencySmallPrimes works as specified when there exists a prime $p \not\equiv 2r(r+1)$, $r \geq 1$ and $u \in \mathbb{Z}^{r \times 1}$ such that $u A \equiv 0 \mod p^e$ and $u b \not\equiv 0 \mod p^e$. In this situation $O(1)$ iterations of the main loop are required.

Proof. We first show that the output is always correct. The algorithm reaches step (13) only if it finds a $u \in \mathbb{Z}[\theta]$ and prime power $p^e \in \mathbb{Z}$ such that $u A \equiv 0 \mod p^e$ and $u b \not\equiv 0 \mod p^e$. Thus, $u \not\equiv 0 \mod p^e$ and so there must exist a u_i such that $u_i b \not\equiv 0 \mod p^e$. Since $u A \equiv 0 \mod p^e$ as well, this is a certificate of Diophantine inconsistency. Next we must show that the algorithm returns a certificate of inconsistency with an expected $O(1)$ iterations of the outer loop. In steps (1) and (2) we compute the rank r of B (and A) and a multiple d of \mathcal{V}, correctly with probability 1/2 by Lemma 3.4. Assume that $p < 2r(r+1)$ is a prime such that there exists an e such that $A x \equiv b \mod p^e$ has no solution for $x \in \mathbb{Z}_p^{r \times r}$. Then there exists a $u \in \mathbb{Z}^{r \times 1}$ such that $u A \equiv 0 \mod p^e$ and $u b \not\equiv 0 \mod p^e$.

In steps (3)-(5) we construct a set $G \subseteq \mathbb{Z}[\lambda]$ of monic polynomials, such that there exists a $\Gamma_j \in G$ with Γ_j irreducible modulo p. Thus, the localization of $\mathbb{Z}[\theta_j]$ at p is $\mathbb{Z}_p[\theta_j]$, and this is a principal ideal domain whose only prime is p. Moreover, the residue class field $\mathbb{Z}_p[\theta_j] \mod p$ for $\mathbb{Z}[\theta_j] \mod p$ is a finite field with p^e elements.

The main loop in this algorithm from steps (6)-(12) is similar to the main loop of CertifyInconsistency, as is the proof that it finds a certificate with probability 1/2 with each iteration of the outer loop. Consider only the iteration j of the inner loop where $\Gamma_j \mod p$ is irreducible in $\mathbb{Z}_p[\lambda]$ as above. The proof that each iteration finds a certificate with probability 1/2 follows similarly to Theorem 3.5. To apply Lemma 3.3 we consider this as a computation over $\mathbb{Z}_p[\theta_j]$ under the standard embedding. As in the integral case, $y \in \mathbb{Z}[\theta_j]^{r \times r}$ because B_j has determinant d.

One problem which arises is that the d computed in step (7) is not necessarily an integer. However, since we have a small number of potential primes to construct our certificate, we can simply take the order of these primes in d. Find the order e of p in d in step (12) simply by considering d as a polynomial in $\mathbb{Z}[\lambda]$ modulo Γ_j and taking the order of p in d.
the content of this polynomial (the GCD of the coefficients). This works since \(p \) is invert in \(Z[\theta] \), and \(p' \mid d \) in \(Z[\theta] \).

Theorem 3.8. Let \(A \in Z_{n \times n} \) with rank \(r \) and \(b \in Z_{n \times 1} \). Assume no solution \(x \in Z_{n \times 1} \) to \(Ax = b \) exists. Let \(q = r \log \| A \| + \log \| b \| \). Assume also that there is a prime \(p < 2r(r + 1) \) and an integer \(c \geq 1 \) such that \(Ax \equiv b \mod p^c \) has no solution.

- We can find a certificate \(u \in Z_{1 \times n} \) and integer \(d \) such that \(uA \equiv 0 \mod d \) and \(ub \not\equiv 0 \mod d \) with an expected number of \(O'(r^2 \log r) \) matrix-vector products by \(A \) modulo primes with \(O(\log n + \log \log(\| A \| + \| b \|)) \) bits.
- The output \(u \) satisfies \(\log \| u \| = O'(r \log n + r \log \| A \|) \).
- An additional \(O'(r^2 + nM(q)) \) bit operations and additional storage for \(O'(ng) \) words are required.

Proof. The dominant cost is the execution of Wiedemann's algorithm to find the minimal polynomial of an integer matrix in step (2) and to solve the pre-conditioned \(r \times r \) non-singular system over \(Q(\theta_j) \) in step (7). Step (2) is performed a constant number of times. The set \(G \) contains \(O(\log^2 r) \) polynomials \(\Gamma_j \in Z[A] \), each of degree \(\eta = O(\log r) \) and such that \(\log \| \Gamma_j \| = O(\log^2 r) \). The cost of solving the system \(yB = v \), over \(Q(\theta_j) \) in step (9) follows from a straight-forward analysis of Wiedemann's algorithm using a homomorphic imaging scheme. Such an analysis is done in Giesbrecht (1997), Theorem 5.3.

To summarize, we do not know a priori whether a particular Diophantine system is (a) consistent, (b) rationally inconsistent, (c) rationally consistent and has a certificate of Diophantine inconsistency modulo a power of a prime \(p > 2n(n + 1) \), or (d) rationally consistent and has no certificate of Diophantine inconsistency modulo a prime \(p > 2n(n + 1) \). A complete solution to this problem is provided in the following theorem.

Theorem 3.9. Let \(A \in Z_{n \times n} \) with rank \(r \) and \(b \in Z_{n \times 1} \). Let \(q = r \log \| A \| + \log \| b \| \).

- We can find a \(x \in Z_{n \times 1} \) such that \(Ax \equiv b \) or provide a certificate \(u \in Z_{1 \times n} \), \(d \in Z \) that no solution exists (where \(uA \equiv 0 \mod d \) and \(ub \not\equiv 0 \mod d \). The algorithm requires an expected number of \(O'(r^2 \log r) \) matrix-vector products by \(A \) modulo primes with \(O(\log n + \log \log(\| A \| + \| b \|)) \) bits.
- The output \(x \) (if produced) satisfies \(\log \| x \| = O'(r \log n + r \log \| A \| + \log \| b \|) \).
- The output \(u \) (if produced) satisfies \(\log \| u \| = O'(r \log n + r \log \| A \|) \).
- An expected additional \(O'(r^2 + nM(q)) \) bit operations and additional storage for \(O'(ng) \) words are required.

Proof. First attempt to find a Diophantine solution with a small constant number of iterations of the solver of Fact 3.1. If this fails, attempt to determine if the system is rationally consistent by attempting to solve or prove inconsistency of the system modulo randomly chosen word-sized primes as described above and in Section 2. If the system is rationally consistent, attempt to prove Diophantine inconsistency using Certify2Inconsistency. If this fails after a small constant number of iterations, attempt to prove Diophantine inconsistency using Certify2InconsistencySmallPrimes for a few iterations. This sequence should be repeated until either a Diophantine solution or certificate of Diophantine inconsistency has been found. The expected number of repetitions is constant.

Acknowledgement

The authors would like to thank Erich Kaltofen for his discussions about this problem.

References

