MorphoSys: **Automatic Physical Design Metamorphosis for Distributed Databases Systems**

Michael Abebe mtabebe@uwaterloo.ca Brad Glasbergen August 2021 Khuzaima Daudjee tiny.cc/morphosys

Distributed Databases

How to distribute data?

Database Replication

Replica

Database Replication

Replica

Database Replication

Partitioned Databases

Partitioned Databases

Partitioned Databases

commit

Distributed Databases

How to distribute data?

Distributed Database Physical Design

Distributed Database Physical Design For each data item

Where is the master?

What nodes **replicate** it?

How is it grouped (partitioned) with other data items?

Physical designs

Any combination of master data placement, replication, & data partitioning

Physical designs

Any combination of master data placement, replication, & data partitioning

Which physical design?

Traditionally: offline workload knowledge

Physical design should change with workload

Automatically chooses a physical design

Automatically adapts the physical design

Aim: improve database system performance

What are the building blocks of automatic physical design?

Dynamic Replication

Dynamic Replication

Dynamic Replication

Dynamic Mastering

remaster A

split partition A

$W[A_1]$ $W[A_2]$

split partition A

split partition A

MorphoSys Physical Design Change Operations

Add or remove replica of a partition

Remaster a **partition**

Split or **merge** partition(s)

Challenges of Automatic Physical Design

How to execute both transactions and design changes efficiently

How to decide which physical design operations to use, and when

Efficient Execution

Perform all operations at the partition level

Decouple partition reads and writes

Partition based multi-versionconcurrency control

tiny.cc/morphosys

Making design decisions

Design change cost < Expected Benefit

Physical design cost model

Design change cost < Expected benefit

Decompose operators into key costs

Predict benefit based on workload history

How well does MorphoSys work?

Comparisons

Single-Master Multi-Master VoltDB

Static Designs

DynaMast Adaptive Replication (ADR) Clav

Dynamic Designs

Skewed YCSB - Throughput

MorphoSys

DynaMast Single-Master Clay Multi-Master VoltDB ADR

Number of Replicas

Partition Sizes

Adapts to Workload Changes

More Details in the Paper

Formalism of concurrency control

Role in replica maintenance & design change operator execution

Generating design change plans Learned cost functions & building a workload model

Additional Experiments

MorphoSys Takeaways

Automatic physical design changes

for distributed databases

tiny.cc/morphosys

Efficiently execute using partition level operations

Learned cost model quantifies physical design

