
SIGCSE 2019
1

Michael Abebe

Brad Glasbergen

Khuzaima Daudjee

tiny.cc/watdfs



2



3



4



5



6

Build Your Own 
Distributed File System



Project Goals

7

Cover wide range of course material

Interaction with common systems & applications

Provide high-quality and timely feedback



Distributed File Systems

8

File

ServerClient

App
RPC



Distributed File Systems

9

File

ServerClient

App
RPC

Lacks access transparency



Distributed File Systems

10

File

ServerClient

App

File System
RPC



Distributed File Systems

11

File

ServerClient

App

File System
RPCProvides access 

transparency



Distributed File Systems

12

File

ServerClient

App

VFS FS Client

FS Server
Userspace
Kernel

RPC



Distributed File Systems

13

File

ServerClient

App

VFS FS Client

FS Server
Userspace
Kernel

RPC

Kernel implementation



Distributed File Systems

14

File

ServerClient

App

VFS FUSE

WatDFS WatDFS
Userspace
Kernel

RPC



Distributed File Systems

15

File

ServerClient

App

VFS FUSE

WatDFS WatDFS
Userspace
Kernel

RPC
Provides access 

transparency

Userspace implementation



WatDFS Project

16

Implement WatDFS client and server:

Support: file creation, open, close, read, 
write, truncate, and metadata operations

Using two distributed file systems models



Remote-Access Model

17

File stays at server

Forward operations to server

ServerClient

File



Remote-Access Model

18

File stays at server

Forward operations to server

File

ServerClientIncreases Latency



Remote-Access Model

19

Introduce RPCs and file I/O

Familiarize tools (libfuse, gdb, strace)

File

ServerClient

Learning Goals



Upload-Download Model

20

File

Download file from server

ServerClient



Upload-Download Model

21

File

Download file from server

File

ServerClient
Perform 

operations
at client



Upload-Download Model

22

File

Download file from server

File

ServerClient
Upload file

to server
Perform 

operations
at client



Upload-Download Model

23

File

Download file from server

File

ServerClient
Upload file

to server
Perform 

operations
at client



Upload-Download Model

24

File

Download file from server

File

Perform 
operations
at client

ServerClient
Upload
to server

Reduces Latency



Upload-Download Freshness

25

File

Download file from server

ServerClient



Upload-Download Freshness

26

File

Download file from server

File

ServerClient
Perform 

operations
at client



Upload-Download Freshness

27

File

Download file from server

File

ServerClient
Perform 

operations
at client



Upload-Download Freshness

28

File

Download file from server

File

ServerClient
Perform 

operations
at client

Clients see stale state



Upload-Download Freshness

29

FileFile

ServerClient

How to ensure freshness?
Periodically upload and download



Upload-Download Freshness

30

File

Download file from server

File

ServerRead Client



Upload-Download Freshness

31

File

Download file from server

File

ServerRead Client



Upload-Download Freshness

32

File

Download file from server

File

ServerRead Client
Perform 

operations
at client



Upload-Download Freshness

33

File

Download file from server

File

ServerRead Client
Perform 

operations
at client



Upload-Download Freshness

34

File

Download file from server

File

ServerRead Client
Download 

file from server
Perform 

operations
at client



Upload-Download Freshness

35

File

Download file from server

File

ServerRead Client
Perform 

operations
at client

Download 
file from server



Upload-Download Freshness

36

FileFile

ServerRead Client

Periodically upload and download using
timestamp-based cache consistency



Upload-Download Freshness

37

FileFile

ServerRead Client

Periodically upload and download
Timestamp-based cache consistency
Details at tiny.cc/watdfs

Reduces Latency

Clients see fresher state



Upload-Download Model

38

FileFile

ServerClient
Manage distributed state with cache consistency

Use locks for atomicity and mutual exclusion

Learning Goals



Experiences with WatDFS

39

Provide students with:

Detailed specification and Q&A forum

Starter code: ~300 lines of code

Public and release tests (Marmoset)



Experiences with WatDFS

40

Students implement

~760 lines of code for remote-access model

~1425 lines of code for upload-download model

Design document about upload-download model



Experiences with WatDFS

41

95% passed all remote-access model tests

80% passed majority of 
upload-download model tests

Most common errors and questions about 
timestamp-based cache consistency



WatDFS Project Summary

42

Covers wide range of course material
FUSE allows usage of existing applications
Tests provide high-quality & timely feedback

Implement two distributed file systems models

Details at tiny.cc/watdfs


