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Build Your Own 
Distributed File System



Project Goals

7

Cover wide range of course material

Interaction with common systems & applications

Provide high-quality and timely feedback
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WatDFS Project
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Implement WatDFS client and server:

Support: file creation, open, close, read, 
write, truncate, and metadata operations

Using two distributed file systems models
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Remote-Access Model
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Introduce RPCs and file I/O

Familiarize tools (libfuse, gdb, strace)

File

ServerClient

Learning Goals



Upload-Download Model

20

File

Download file from server

ServerClient



Upload-Download Model

21

File

Download file from server

File

ServerClient
Perform 

operations
at client



Upload-Download Model

22

File

Download file from server

File

ServerClient
Upload file

to server
Perform 

operations
at client



Upload-Download Model

23

File

Download file from server

File

ServerClient
Upload file

to server
Perform 

operations
at client



Upload-Download Model

24

File

Download file from server

File

Perform 
operations
at client

ServerClient
Upload
to server

Reduces Latency



Upload-Download Freshness

25

File

Download file from server

ServerClient



Upload-Download Freshness

26

File

Download file from server

File

ServerClient
Perform 

operations
at client



Upload-Download Freshness

27

File

Download file from server

File

ServerClient
Perform 

operations
at client



Upload-Download Freshness

28

File

Download file from server

File

ServerClient
Perform 

operations
at client

Clients see stale state



Upload-Download Freshness

29

FileFile

ServerClient

How to ensure freshness?
Periodically upload and download
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Periodically upload and download using
timestamp-based cache consistency



Upload-Download Freshness
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FileFile

ServerRead Client

Periodically upload and download
Timestamp-based cache consistency
Details at tiny.cc/watdfs

Reduces Latency

Clients see fresher state



Upload-Download Model
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FileFile

ServerClient
Manage distributed state with cache consistency

Use locks for atomicity and mutual exclusion

Learning Goals



Experiences with WatDFS
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Provide students with:

Detailed specification and Q&A forum

Starter code: ~300 lines of code

Public and release tests (Marmoset)



Experiences with WatDFS
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Students implement

~760 lines of code for remote-access model

~1425 lines of code for upload-download model

Design document about upload-download model



Experiences with WatDFS
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95% passed all remote-access model tests

80% passed majority of 
upload-download model tests

Most common errors and questions about 
timestamp-based cache consistency



WatDFS Project Summary
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Covers wide range of course material
FUSE allows usage of existing applications
Tests provide high-quality & timely feedback

Implement two distributed file systems models

Details at tiny.cc/watdfs


