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Replicated Storage Systems
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Replicated Storage Systems
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Overhead of Replicated Storage
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Towards Lower Overhead Storage
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Erasure Coded Storage Systems
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Erasure Coded Storage Systems
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Breakdown of Response Times (YCSB
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Straggling Data Access
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Latency and Storage Gap
Replication

+ Fast data retrieval
- High storage overhead
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How to Improve Storage System
Performance

« Intelligently access data to minimize
access costs

« Reduce number of sites accessed
through data co-access

- Dynamically move data to improve future
accesses
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Multi-ltem Access
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Netherlands
I

The Netherlands, also known informally as Holland, is a country
in Western Europe with a population of seventeen million. It is
the main constituent country of the Kingdom of the Netherlands,
which is further comprised of three island territories in the
Caribbean: Bonaire, Sint Eustatius and Saba.
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Initial Data Placement
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Initial Data Placement

&) WATERLOO

29



Multi-Item Data Access Strategy
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Multi-Item Data Access Strategy
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Multi-Item Data Access Strategy

Retrieve: A, B, C
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Intelligent Multi-ltem Data
Access Strategy
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Intelligent Multi-ltem Data
Access Strategy

Retrieve: A, B, C

Minimizes number of sites accessed,
reducing likelihood of stragglers 36
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Intelligent Data Access Strategy

- Retrieve enough (K) chunks to reconstruct block
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Intelligent Data Access Strategy

- Retrieve enough (K) chunks to reconstruct block

- Quantify cost of access
- Cost of accessing site (load)
- Cost of accessing chunk at site (I/O)
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Intelligent Data Access Strategy

- Retrieve enough (K) chunks to reconstruct block

- Quantify cost of access
- Cost of accessing site (load)
- Cost of accessing chunk at site (I/O)

- Find minimal cost access strategy with Integer
Linear Programming Details in Paper
tiny.cc/ecstore
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Workload Change

What if: A, E becomes a
popular access pattern?
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Workload Change
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Can We Improve Access Costs?
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Data Movement Decisions
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Data Movement Decisions
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Data Movement Decisions
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Data Movement Decisions
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Improved Data Movement Decisions
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Dynamic Data Movement

« Move data in response to changes in access patterns
and load
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Dynamic Data Movement

« Move data in response to changes in access patterns
and load

« Consider future access costs and load balance

Details in Paper
tiny.cc/ecstore
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Dynamic Data Movement

« Move data in response to changes in access patterns
and load

« Consider future access costs and load balance

Details in Paper
tiny.cc/ecstore

- Move recently or frequently accessed chunks to sites
with co-accessed chunks or lighter load
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Standard Request Model
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Standard Request Model
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Late Binding Model
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Intelligent Access Strategy + Late
SI13inding Model
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Experimental Setup

E j x 32 Storage Nodes
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Experimental Setup

E j x 32 Storage Nodes

- Replication

- Erasure Coding
- + Late Binding
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Experimental Setup

E j x 32 Storage Nodes

- Replication

- Erasure Coding
- + Late Binding

- Erasure Coding
- + Access Strategies (EC-Store Access)
- + Movement Strategies (EC-Store)
- + Late Binding (EC-Store + LB)
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Response time Over time (YCSB)
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Response time Over time (YCSB)
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Response time Over time (YCSB)
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Breakdown of Response Times (YCSB

Avg. response time (ms)
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Breakdown of Response Times (YCSB

Avg. response time (ms)
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Tail Latencies (Wikipedia)
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EC-Store Takeaways

Achieves low storage
overhead and low
latency data access

- EC-Store uses dynamic

69

data access and data
movement strategies for
erasure coded storage
systems

IIIIIIIIIIII



EC-Store Takeaways

Achieves low storage
overhead and low
latency data access

EC-Store uses dynamic
data access and data
movement strategies for
erasure coded storage
systems

tiny.cc/ecstore

EC-Store: Bridging the Gap Between Storage and
Latency in Distributed Erasure Coded Systems

Michael Abebe, Khuzaima Daudjee, Brad Glasbergen, Yuanfeng Tian
Cheriton School of Computer Science, University of Waterloo
{mtabebe, kdaudjee, bjglasbe, y48tian} @uwaterloo.ca

Abstract—Cloud storage systems typically choose between
replicating or erasure encoding data to provide fault tolerance.
ication ensures that data can be accessed from a single site
urs a much higher storage overhead, which is a costly
downside for large-scale storage systems. Erasure coding has a
lower storage requirement but relies on encoding/decoding and
distributed data retrieval, which can result in straggling requests
that increase response times. We propose strategies for data
access and data movement within erasure-coded storage systems
that significantly reduce data retrieval times. We present EC-
Store, a system that incorporates these dynamic strategies for
data access and movement based on workload access patterns.
Through detailed evaluation using two benchmark workloads,
we show that EC-Store incurs significantly less storage overhead
than replication while achieving better performance than both
replicated and erasure-coded storage systems.

Keywords-distributed storage, erasure coding, replication, data
movement, data placement

I. INTRODUCTION

The need to store and retrieve big data has fueled the
development and adoption of cloud storage systems. In cloud
deployments, however, machines frequently experience down-
time. For example, Google observed that at any point in
time, up to 5% of the nodes within their storage system
were unavailable [12]. To ensure data remains available in
the presence of these failures, systems must be fault tolerant.
Large-scale distributed storage systems typically provide fault
tolerance either by replicating [4,14] or erasure encoding data
[11,15,19,23,30,52]. Replication creates complete copies of
data, incurring a significant storage overhead over erasure
coding that partitions data and stores the partitions and their
parity fragments on multiple nodes to provide the same level
of fault as ication. Ci ly, while erasure
encoding stores less data, accessing it requires multi-node
retrieval resulting in an increase in data access cost compared
to replication [51].

To demonstrate that performance in erasure-coded dis-
tributed storage systems is largely determined by the cost of
data retrieval, we show a breakdown of average response times
in Figure 1 for a workload that retrieves multiple 100 KB
blocks.! The response time is divided into four categories:
the cost of locating data (metadata access), determining which
data chunks to retrieve (access planning), retrieving and
decoding data. As Figure 1 shows, the performance difference
between replication and erasure coding is primarily due to

!Details are in Section VI.
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the time it takes to retrieve data, which dominates overall
response times. However, while both systems can tolerate the
same number of faults (two, in the example of Figure 1), the
replicated system stores 50% more data than the erasure-coded
system. These differences motivate a fault tolerant storage
system that can achieve the best of both worlds: low storage
overhead and low latency data retrieval.

When compared to replicated data stores, retrieval costs are
higher for erasure-coded storage systems because of the effects
of stragglers: the time taken to retrieve the slowest, or strag-
gling, data chunk dominates retrieval time [19,29]. Even when
parallelism is leveraged, straggler effects are more pronounced
in systems that must wait for multiple requests to complete
(e.g. in erasure-coded storage) than in systems that wait for
only a single request to complete (e.g. in replicated stor-
age) [9,26,46,49,53]. Given that large-scale storage systems
are typically deployed in distributed environments, concurrent
clients issuing requests in parallel over the distributed storage
system inevitably result in the occurrence of stragglers [9].

In our erasure-coded storage system, EC-Store, we propose
a novel approach to the stragglers problem: intelligently select
chunks to retrieve so as to avoid stragglers. This dynamic data
access strategy uses chunk location information to generate
a cost-effective strategy on-the-fly for data retrieval. By in-
corporating this strategy in EC-Store, we reduce data access
latencies and satisfy our best of both worlds goal.

To mitigate the effects of stragglers, some systems use a
late binding strategy [19,38,49] in which additional requests
are made and the slowest responses are ignored. Late binding
can reduce response time but places additional load on the
system: responses that will be ignored must still be generated.
In contrast, EC-Store’s dynamic data acc
excellent performance and places little additional load on the
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