
Tutorial: Adaptive Replication and Partitioning in Data Systems
Brad Glasbergen, Michael Abebe, Khuzaima Daudjee

Cheriton School of Computer Science
University of Waterloo

{bjglasbe,mtabebe,kdaudjee}@uwaterloo.ca

ABSTRACT
To meet growing application demands, distributed data systems
replicate and partition data across multiple machines. Replication
increases the resource and request processing capabilities of a sys-
tem by spreading copies of the data across multiple machines, while
partitioning splits data across machines to achieve the same objec-
tives. Replication and partitioning present di�erent trade-o�s in the
form of replication maintenance and multi-machine coordination
costs, which system administrators must carefully evaluate. Tradi-
tionally, administrators made replication and partitioning decisions
based on their understanding of the application workload, which
results in suboptimal performance if the system is miscon�gured or
if the workload changes. However, systems that adaptively employ
replication and partitioning can adjust these decisions based on
workload observations and predictions, which improves perfor-
mance and reduces complexity for administrators. In this tutorial,
we present an overview of techniques used by systems to adap-
tively partition and replicate data and services. We focus on the
decision-making strategies employed by these systems, and how
these decisions are executed in an online environment. Finally, we
identify opportunities for research in the area.

ACM Reference Format:
Brad Glasbergen, Michael Abebe, Khuzaima Daudjee. 2018. Tutorial: Adap-
tive Replication and Partitioning in Data Systems. In 19th International
Middleware Conference Tutorials (Middleware ’18 Tutorials), December 10–14,
2018, Rennes, France. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3279945.3279946

1 INTRODUCTION
Driven by enterprise and individual needs, big data applications
are placing ever-increasing demands on data systems [3, 29, 43].
For example, it is now common for systems to receive hundreds-of-
thousands of requests per second from clients around the world,
all of whom expect fast response times [8, 10]. These stringent
demands exceed the capabilities of a single machine and therefore
require data systems to scale and operate in a distributed environ-
ment.

There are two primary means of scaling out systems that manage
data: replication and partitioning. Replication creates copies of data
and spreads them across a pool of machines. A client may access
any node hosting its desired data to perform computations and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Middleware ’18 Tutorials, December 10–14, 2018, Rennes, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6073-9/18/12.
https://doi.org/10.1145/3279945.3279946

retrieve results, which increases the amount of computing power
available and may bring data closer to clients. By contrast, partition-
ing splits data across multiple machines, which enables a request to
be processed by any machine that holds the data the request needs,
and increases the amount of available storage and compute power.

Although data replication and partitioning can improve the per-
formance of data systems, they also pose many challenges. Admin-
istrators must decide which data items to replicate and on which
machines these replicas should be placed. Similarly, they must se-
lect a partitioning scheme for the data that maximizes parallelism
without degrading performance due to excessive communication
and coordination among machines. Choosing such a replication and
partitioning scheme can be extremely challenging. A poor choice
leads to low levels of performance [12], and a good choice for one
workload may be poor for another. Compounding this problem, a
partitioning or replication scheme may initially perform well but
then su�er due to changes in the workload.

Data system applications experience variation in workloads be-
cause of changes in external factors, such as human behaviour. For
example, popular data items result in hot-spots in systems and
cause contention. These hot-spots may change over time as the
popularity of items changes or as a result of “follow-the-sun” cy-
cles from geo-distribution of clients [46]. Finally, data systems may
su�er from short-term load spikes that occur because of a short
burst of increased demand. These dynamic workload e�ects make
it very di�cult for a system administrator to select a single data
replication or partitioning strategy for their system that works well
for a variety of workloads.

Consequently, data systems are increasingly employing adaptive
data replication and partitioning techniques. Such systems modify
their partitioning and replication schemes while the system is run-
ning to ensure good performance even when the workload changes.
Systems that adaptively replicate and partition data continually
decide which data items to replicate and how partitions and replicas
should be placed based on the workload. These systems monitor
the running workload, extract salient characteristics, predict future
requests, and adjust data placements using the discovered infor-
mation. Given the personnel costs for administrators to determine
and perform these actions manually [42], the ubiquitous nature of
dynamic workloads [45], and the desire to minimize reaction time
to workload change, the time is ripe for both research and industrial
communities to investigate and develop truly autonomous, adaptive
data systems.

Building adaptive replication and partitioning into data sys-
tems presents several challenges from both decision-making and
decision-execution perspectives. In this tutorial, we survey the re-
cent work on systems that adaptively replicate and partition data,
focusing on the techniques that are used in these systems and high-
lighting how they address these challenges. We describe the key

https://doi.org/10.1145/3279945.3279946
https://doi.org/10.1145/3279945.3279946
https://doi.org/10.1145/3279945.3279946


Middleware ’18 Tutorials, December 10–14, 2018, Rennes, France B. Glasbergen, M. Abebe, K. Daudjee

features of these systems and discuss research opportunities in the
area.

2 TUTORIAL OVERVIEW
The target audience of this tutorial is systems researchers and
practitioners that have a basic knowledge of distributed data man-
agement. Some knowledge of data replication and partitioning is
helpful, but not necessary. For newcomers to the area, this tutorial
introduces replication, partitioning and the motivation for applying
these techniques adaptively. For researchers that are experienced
with replication and partitioning, this tutorial provides a broader
view of the common approaches to providing adaptivity in data
systems and o�ers suggestions on how current techniques can be
improved. In general, we hope that this tutorial inspires our col-
leagues from the middleware and systems communities to research
and implement adaptivity as a core component in data systems
across a variety of data management domains including relational
databases, graph data management, stream processing, and dis-
tributed storage systems.

We present replication and partitioning techniques from a vari-
ety of data management domains and emphasize one or two repre-
sentative systems from each domain that employ these techniques
adaptively. For these systems, we discuss the decision-control frame-
work for determining new replication and partitioning strategies
and the underlying mechanisms used in each system. Finally, we
discuss trends within this area and present open research challenges
and opportunities for adaptive data systems.

The tutorial is divided into four modules: (i) The motivation be-
hind data replication and partitioning, and why adaptivity matters
(Section 1) (ii) Adaptive replication (Section 3.1), (iii) Adaptive par-
titioning (Section 3.2), (iv) Outlook for adaptive data management
systems (Section 4).

3 TUTORIAL OUTLINE
3.1 Adaptive Replication
Data replication improves system performance by enabling read
operations to be performed on replicas. The replicas may be physi-
cally close to a client or may be under less load than the primary
copy of data, both of which decrease access latency. Consequently,
replication is a popular method used in numerous data management
domains [6, 9, 19, 20, 36, 49]. A key challenge is keeping replicas
synchronized with the primary data copy. As requests update the
primary copy, they must be propagated and applied to the replicas.
Deciding which set of data items should be replicated, where the
replicas should be placed, which updates should be propagated,
and when they should be applied comprise the fundamental design
decisions of any replicated data system. By leveraging adaptive
replication techniques, systems can perform these decisions on-the-
�y with respect to the workload, thereby improving performance
and reducing system con�guration complexity.

The adaptive data replication (ADR) algorithm [50] is among
early work in adaptive replication. ADR formulates its cost func-
tions based on system requirements and the environment, which
optimize the number of replicas, their placement, and which up-
dates are propagated to each replica.

At a global scale, distributed systems must place replicas of data
around the world such that both access and update latencies are
minimized. Data placement is a challenging problem as clients can
be spread globally, and as more copies of data are created, the cost
of keeping data consistent in the face of updates increases. Sharov
and colleagues [41] propose an optimization formulation for leader
replica placement. The GPlacer system [51] also addresses replica
placement, but generalizes beyond leader placement to other non-
leader replica protocols such as Paxos.

Data caching is a particular form of adaptive replication, in
the sense that what is replicated, or cached, can adapt based on
access history. Predictive caching [7, 34] aims to further improve
the performance of cache-based systems by placing data items that
will be accessed in the cache ahead of time. An example of such a
system is Apollo [14], a middleware cache for database systems that
learns database query patterns to predictively cache query results
to improve system performance.

Finally, data replication is often used to ensure high-availability
and fault tolerance. In distributed storage systems, erasure-coding
is often used as a replacement for replication because it can pro-
vide lower storage overhead [18, 31]. However, these systems face
many of the same design decisions as replicated storage systems.
EC-Store [2] is an adaptive erasure-coded storage system that dy-
namically places and moves data to reduce access latencies. We
contrast the data-placement decisions made in EC-Store with those
made in replicated storage systems such as C3 [33, 37, 44].

3.2 Adaptive Partitioning
Data partitioning enables systems to scale by splitting data across
multiple machines. Traditional partitioning techniques such as hash
or range partitioning result in even distributions of the number of
data items across machines. However, skew in data item popularity
can result in load imbalance among machines. To mitigate this
e�ect, systems aim to adaptively repartition data to ensure load
balance while maintaining locality among co-accessed data items.

The L-Store system [26] aims to minimize the number of dis-
tributed transactions that are performed in a partitioned database
system. L-Store guarantees that transactions are performed at a
single site by localizing data items to that site during transaction
execution. AdaptCache [5] also focuses on localized processing,
partitioning both requests and data so that an application server
can �nd the objects needed to handle a request in their local cache
most of the time.

Dynamic workloads change the demand they make on data sys-
tems over time. Consequently, elastic systems dynamically adjust
their physical resources according to demand. When machines are
added or removed from the system according to current workload
demand, it is important to repartition data accordingly. The E-Store
system [46] incorporates repartitioning into its elastic operations
via the Squall system [13]. While E-Store reacts to load changes,
P-Store [45] predicts load demands, elastically scaling the database
according to its predictions.

While data systems frequently partition horizontally, that is, on
the individual data item level, data can also be partitioned vertically
by data item attributes. Database cracking [16, 21, 22, 38, 39] auto-
matically vertically partitions databases based on the presence of



Adaptive Replication and Partitioning in Data Systems Middleware ’18 Tutorials, December 10–14, 2018, Rennes, France

predicate queries. Database cracking highlights a consequence of
data partitioning: changes need to be made to data access operators,
for example, pushing down cracked database operators that operate
on vertically partitioned data.

Finally, adaptive data partitioning is applied in many other data
management domains to improve system performance. As an ex-
ample, graph data systems aim to partition data items (vertices and
edges) such that the number of machines over which graph traver-
sal operations are executed is minimized [19, 23]. Hermes [32] uses
a lightweight dynamic partitioning algorithm that aims to keep
load balanced while minimizing the number of edge-cuts and con-
sequently network I/O. Additionally, many systems rely on graph
partitioning algorithms to generate partitions by modelling their
data as a graph [12, 17, 37]. In stream processing engines, data
items can be repartitioned to balance load across the streaming
engines [1, 15, 40]. Adaptive partitioning techniques for streaming
systems has become an emerging area of research [24, 27, 48].

4 OUTLOOK
Many current systems use data replication and partitioning to im-
prove system performance. However, systems are becoming in-
creasingly adaptive, automatically determining partitioning and
replication strategies. These systems adapt by monitoring the sys-
tem and client workload behaviour, such as the observed load or
patterns in data access, and then make decisions based on these
observations. In particular, systems adapt by reacting to changes in
behaviour. However, many of these systems could o�er improved
performance by making decisions based on predictions of future
system and client behaviour [4, 35], such as in P-Store [45]. While
advances in machine learning have been applied to parameter se-
lection and tuning [30, 47, 52] as well as data structures such as
indexes [25], they have not yet been broadly applied to the areas of
partitioning and replication. We believe that data systems should
leverage advances in workload forecasting [11, 28] to make deci-
sions about partitioning and replication. Put broadly, we pose two
questions to the research community: “How should we model work-
loads in your domain of expertise?” and “If you had an accurate
model of your workload in terms of both data accesses and load,
how would you design a replication and partitioning scheme for
it?”. We expect that these questions will spark interest, discussion
and debate over the design of future data systems.

5 BIOGRAPHICAL SKETCHES
Brad Glasbergen is a doctoral student at the University of Water-
loo. His research interests focus on intelligent data management
techniques. Recently, he has worked on predictive caching for rela-
tional databases and intelligent transaction routing in distributed
data systems. In the past, he has worked for SAP Waterloo on the
Database Query Engine team. (Homepage)

Michael Abebe is a doctoral student at the University of Wa-
terloo. He is interested in distributed data management as well
as adaptive data systems and their infrastructure. Previously, he
has worked at Facebook on data and service infrastructure teams.
(Homepage)

Khuzaima Daudjee is a faculty member in the Cheriton School
of Computer Science at the University of Waterloo. His research

interests are in designing and building large-scale data systems. He
is an Associate Editor for Information Systems and IEEE Transac-
tions on Knowledge and Data Engineering. He has been a Visiting
Research Scientist at Japan National Institute of Informatics and
Visiting Professor at Sapienza University of Rome. He is the re-
cipient of a best paper award at the ACM Symposium on Cloud
Computing. (Homepage)

ACKNOWLEDGMENTS
Funding for this project was provided by the Natural Sciences
and Engineering Research Council of Canada and the Province of
Ontario.

REFERENCES
[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.
Aurora: A New Model and Architecture for Data Stream Management. The VLDB
Journal 12, 2 (Aug. 2003), 120–139. https://doi.org/10.1007/s00778-003-0095-z

[2] Michael Abebe, Khuzaima Daudjee, Brad Glasbergen, and Yuanfeng Tian. 2018.
EC-Store: Bridging the Gap Between Storage and Latency in Distributed Erasure
Coded Systems. In 38th IEEE International Conference on Distributed Computing
Systems, ICDCS 2018, Vienna, Austria, July 2-5, 2018.

[3] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. 2011. Big data and cloud
computing: current state and future opportunities. In EDBT 2011, 14th Interna-
tional Conference on Extending Database Technology, Uppsala, Sweden, March
21-24, 2011, Proceedings. 530–533. https://doi.org/10.1145/1951365.1951432

[4] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.
2011. The Case for Predictive Database Systems: Opportunities and Challenges.
In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 9-12, 2011, Online Proceedings. 167–174. http://cidrdb.
org/cidr2011/Papers/CIDR11_Paper20.pdf

[5] Omar Asad and Bettina Kemme. 2016. AdaptCache: Adaptive Data Partitioning
and Migration for Distributed Object Caches. In Proceedings of the 17th Interna-
tional Middleware Conference (Middleware ’16). ACM, New York, NY, USA, Article
7, 13 pages. https://doi.org/10.1145/2988336.2988343

[6] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-
braker. 2005. Fault-tolerance in the Borealis Distributed Stream Processing
System. In Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’05). ACM, New York, NY, USA, 13–24. https:
//doi.org/10.1145/1066157.1066160

[7] Ivan T. Bowman and Kenneth Salem. 2005. Optimization of Query Streams Using
Semantic Prefetching. ACM Trans. Database Syst. 30, 4 (Dec. 2005), 1056–1101.
https://doi.org/10.1145/1114244.1114250

[8] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Di-
mov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li,
Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the So-
cial Graph. In Proceedings of the 2013 USENIX Conference on Annual Technical
Conference (USENIX ATC’13). USENIX Association, Berkeley, CA, USA, 49–60.
http://dl.acm.org/citation.cfm?id=2535461.2535468

[9] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. 2008. Middleware-
based Database Replication: The Gaps Between Theory and Practice. In Pro-
ceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’08). ACM, New York, NY, USA, 739–752. https://doi.org/10.1145/
1376616.1376691

[10] James C. Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, et al. 2013. Span-
ner: Google&Rsquo;s Globally Distributed Database. ACM Trans. Comput. Syst.
31, 3, Article 8 (Aug. 2013), 22 pages. https://doi.org/10.1145/2491245

[11] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17).
ACM, New York, NY, USA, 153–167. https://doi.org/10.1145/3132747.3132772

[12] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-driven Approach to Database Replication and Partitioning. Proc. VLDB
Endow. 3, 1-2 (Sept. 2010), 48–57. https://doi.org/10.14778/1920841.1920853

[13] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. 2015. Squall: Fine-Grained Live Recon�guration for Parti-
tioned Main Memory Databases. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’15). ACM, New York, NY,
USA, 299–313. https://doi.org/10.1145/2723372.2723726

https://cs.uwaterloo.ca/~bjglasbe/
https://cs.uwaterloo.ca/~mtabebe/
https://cs.uwaterloo.ca/~kdaudjee/
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1145/1951365.1951432
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper20.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper20.pdf
https://doi.org/10.1145/2988336.2988343
https://doi.org/10.1145/1066157.1066160
https://doi.org/10.1145/1066157.1066160
https://doi.org/10.1145/1114244.1114250
http://dl.acm.org/citation.cfm?id=2535461.2535468
https://doi.org/10.1145/1376616.1376691
https://doi.org/10.1145/1376616.1376691
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/2723372.2723726


Middleware ’18 Tutorials, December 10–14, 2018, Rennes, France B. Glasbergen, M. Abebe, K. Daudjee

[14] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, Scott Foggo, and Anil
Pacaci. 2018. Apollo: Learning Query Correlations for Predictive Caching in
Geo-Distributed Systems. In Proceedings of the 21th International Conference on
Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018.
253–264. https://doi.org/10.5441/002/edbt.2018.23

[15] Lukasz Golab and M. Tamer Özsu. 2003. Issues in Data Stream Management.
SIGMOD Rec. 32, 2 (June 2003), 5–14. https://doi.org/10.1145/776985.776986

[16] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. 2012.
Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-
memory Column-stores. Proc. VLDB Endow. 5, 6 (Feb. 2012), 502–513. https:
//doi.org/10.14778/2168651.2168652

[17] Katja Hose and Ralf Schenkel. 2013. WARP: Workload-aware replication and
partitioning for RDF. In Workshops Proceedings of the 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013.
1–6. https://doi.org/10.1109/ICDEW.2013.6547414

[18] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure coding in windows azure
storage. In Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). 15–26.

[19] Jiewen Huang and Daniel J. Abadi. 2016. Leopard: Lightweight Edge-oriented
Partitioning and Replication for Dynamic Graphs. Proc. VLDB Endow. 9, 7 (March
2016), 540–551. https://doi.org/10.14778/2904483.2904486

[20] YixiuHuang, A. Prasad Sistla, andOuriWolfson. 1994. Data Replication forMobile
Computers. In Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data, Minneapolis, Minnesota, USA, May 24-27, 1994. 13–24.
https://doi.org/10.1145/191839.191845

[21] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In CIDR 2007, Third Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. 68–78. http://cidrdb.
org/cidr2007/papers/cidr07p07.pdf

[22] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-memory
Column-stores. Proc. VLDB Endow. 4, 9 (June 2011), 586–597. https://doi.org/10.
14778/2002938.2002944

[23] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (Dec. 1998),
359–392. https://doi.org/10.1137/S1064827595287997

[24] Nikos R. Katsipoulakis, Alexandros Labrinidis, and Panos K. Chrysanthis. 2017.
A Holistic View of Stream Partitioning Costs. Proc. VLDB Endow. 10, 11 (Aug.
2017), 1286–1297. https://doi.org/10.14778/3137628.3137639

[25] Tim Kraska, Alex Beutel, Ed H. Chi, Je�rey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York, NY, USA,
489–504. https://doi.org/10.1145/3183713.3196909

[26] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and
Zhengkui Wang. 2016. Towards a Non-2PC Transaction Management in Dis-
tributed Database Systems. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD ’16). ACM, New York, NY, USA, 1659–1674.
https://doi.org/10.1145/2882903.2882923

[27] Federico Lombardi, Leonardo Aniello, Silvia Bonomi, and Leonardo Querzoni.
2018. Elastic symbiotic scaling of operators and resources in stream processing
systems. IEEE Transactions on Parallel and Distributed Systems 29, 3 (2018), 572–
585.

[28] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geo�rey J. Gordon. 2018. Query-based Workload Forecasting for Self-Driving
DatabaseManagement Systems. In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD ’18). ACM, New York, NY, USA, 631–645.
https://doi.org/10.1145/3183713.3196908

[29] Sam Madden. 2012. From Databases to Big Data. IEEE Internet Computing 16, 3
(May 2012), 4–6. https://doi.org/10.1109/MIC.2012.50

[30] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang
Gerlach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh Bagchi, and
Somali Chaterji. 2017. Ra�ki: A Middleware for Parameter Tuning of NoSQL
Datastores for Dynamic Metagenomics Workloads. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (Middleware ’17). ACM, New York, NY,
USA, 28–40. https://doi.org/10.1145/3135974.3135991

[31] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
et al. 2014. f4: Facebook’s warm BLOB storage system. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). 383–398.

[32] Daniel Nicoara, Shahin Kamali, Khuzaima Daudjee, and Lei Chen. 2015. Hermes:
Dynamic Partitioning for Distributed Social Network Graph Databases. In Pro-
ceedings of the 18th International Conference on Extending Database Technology,
EDBT 2015, Brussels, Belgium, March 23-27, 2015. 25–36. https://doi.org/10.5441/
002/edbt.2015.04

[33] João Paiva, Pedro Ruivo, Paolo Romano, and Luís Rodrigues. 2014. AutoPlacer:
Scalable Self-Tuning Data Placement in Distributed Key-Value Stores. ACM Trans.

Auton. Adapt. Syst. 9, 4, Article 19 (Dec. 2014), 30 pages. https://doi.org/10.1145/
2641573

[34] Mark Palmer and Stanley B. Zdonik. 1991. Fido: A Cache That Learns To Fetch.
Brown University, Providence, RI, USA.

[35] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Manage-
ment Systems. In CIDR 2017, 8th Biennial Conference on Innovative Data Sys-
tems Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.
http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf

[36] Christian Plattner and Gustavo Alonso. 2004. Ganymed: Scalable Replication
for Transactional Web Applications. In Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware (Middleware ’04). Springer-Verlag, Berlin,
Heidelberg, 155–174. http://dl.acm.org/citation.cfm?id=1045658.1045671

[37] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. 2013. SWORD: Scalable
Workload-aware Data Placement for Transactional Workloads. In Proceedings of
the 16th International Conference on Extending Database Technology (EDBT ’13).
ACM, New York, NY, USA, 430–441. https://doi.org/10.1145/2452376.2452427

[38] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2013. The Uncracked
Pieces in Database Cracking. Proc. VLDB Endow. 7, 2 (Oct. 2013), 97–108. https:
//doi.org/10.14778/2732228.2732229

[39] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2016. An Experimental
Evaluation and Analysis of Database Cracking. The VLDB Journal 25, 1 (Feb.
2016), 27–52. https://doi.org/10.1007/s00778-015-0397-y

[40] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J.
Franklin. 2003. Flux: An Adaptive Partitioning Operator for Continuous Query
Systems. In Proceedings of the 19th International Conference on Data Engineering,
March 5-8, 2003, Bangalore, India. 25–36. https://doi.org/10.1109/ICDE.2003.
1260779

[41] Artyom Sharov, Alexander Shraer, Arif Merchant, andMurray Stokely. 2015. Take
Me to Your Leader!: Online Optimization of Distributed Storage Con�gurations.
Proc. VLDB Endow. 8, 12 (Aug. 2015), 1490–1501. https://doi.org/10.14778/2824032.
2824047

[42] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The End of an Architectural Era: (It’s
Time for a Complete Rewrite). In Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB ’07). VLDB Endowment, 1150–1160. http:
//dl.acm.org/citation.cfm?id=1325851.1325981

[43] Michael Stonebraker, Sam Madden, and Pradeep Dubey. 2013. Intel "Big Data"
Science and Technology Center Vision and Execution Plan. SIGMOD Rec. 42, 1
(May 2013), 44–49. https://doi.org/10.1145/2481528.2481537

[44] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3:
Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI’15). USENIX Association, Berkeley, CA, USA, 513–527.
http://dl.acm.org/citation.cfm?id=2789770.2789806

[45] Rebecca Taft, Nosayba El-Sayed, Marco Sera�ni, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-Store:
An Elastic Database System with Predictive Provisioning. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD ’18). ACM, New
York, NY, USA, 205–219. https://doi.org/10.1145/3183713.3190650

[46] Rebecca Taft, Essam Mansour, Marco Sera�ni, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-
grained Elastic Partitioning for Distributed Transaction Processing Systems. Proc.
VLDB Endow. 8, 3 (Nov. 2014), 245–256. https://doi.org/10.14778/2735508.2735514

[47] Dana Van Aken, Andrew Pavlo, Geo�rey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). ACM, New York, NY, USA, 1009–1024. https://doi.org/10.
1145/3035918.3064029

[48] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali
Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle: Fast
and Adaptable Stream Processing at Scale. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 374–389.
https://doi.org/10.1145/3132747.3132750

[49] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. 2000. Un-
derstanding Replication in Databases and Distributed Systems. In Proceedings
of the The 20th International Conference on Distributed Computing Systems (
ICDCS 2000) (ICDCS ’00). IEEE Computer Society, Washington, DC, USA, 464–.
http://dl.acm.org/citation.cfm?id=850927.851782

[50] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. 1997. An Adaptive Data Repli-
cation Algorithm. ACM Trans. Database Syst. 22, 2 (June 1997), 255–314.
https://doi.org/10.1145/249978.249982

[51] Victor Zakhary, Faisal Nawab, Divy Agrawal, and Amr El Abbadi. 2018. Global-
Scale Placement of Transactional Data Stores. In Proceedings of the 21th Interna-
tional Conference on Extending Database Technology, EDBT 2018, Vienna, Austria,
March 26-29, 2018. 385–396. https://doi.org/10.5441/002/edbt.2018.34

https://doi.org/10.5441/002/edbt.2018.23
https://doi.org/10.1145/776985.776986
https://doi.org/10.14778/2168651.2168652
https://doi.org/10.14778/2168651.2168652
https://doi.org/10.1109/ICDEW.2013.6547414
https://doi.org/10.14778/2904483.2904486
https://doi.org/10.1145/191839.191845
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.14778/3137628.3137639
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/2882903.2882923
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.1109/MIC.2012.50
https://doi.org/10.1145/3135974.3135991
https://doi.org/10.5441/002/edbt.2015.04
https://doi.org/10.5441/002/edbt.2015.04
https://doi.org/10.1145/2641573
https://doi.org/10.1145/2641573
http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf
http://dl.acm.org/citation.cfm?id=1045658.1045671
https://doi.org/10.1145/2452376.2452427
https://doi.org/10.14778/2732228.2732229
https://doi.org/10.14778/2732228.2732229
https://doi.org/10.1007/s00778-015-0397-y
https://doi.org/10.1109/ICDE.2003.1260779
https://doi.org/10.1109/ICDE.2003.1260779
https://doi.org/10.14778/2824032.2824047
https://doi.org/10.14778/2824032.2824047
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dl.acm.org/citation.cfm?id=1325851.1325981
https://doi.org/10.1145/2481528.2481537
http://dl.acm.org/citation.cfm?id=2789770.2789806
https://doi.org/10.1145/3183713.3190650
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3132747.3132750
http://dl.acm.org/citation.cfm?id=850927.851782
https://doi.org/10.1145/249978.249982
https://doi.org/10.5441/002/edbt.2018.34


Adaptive Replication and Partitioning in Data Systems Middleware ’18 Tutorials, December 10–14, 2018, Rennes, France

[52] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestCon�g: tapping the perfor-
mance potential of systems via automatic con�guration tuning. In Proceedings

of the 2017 Symposium on Cloud Computing, SoCC 2017, Santa Clara, CA, USA,
September 24 - 27, 2017. 338–350. https://doi.org/10.1145/3127479.3128605

https://doi.org/10.1145/3127479.3128605

	Abstract
	1 Introduction
	2 Tutorial Overview
	3 Tutorial Outline
	3.1 Adaptive Replication
	3.2 Adaptive Partitioning

	4 Outlook
	5 Biographical Sketches
	Acknowledgments
	References

