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ABSTRACT
To meet growing application demands, distributed data systems
replicate and partition data across multiple machines. Replication
increases the resource and request processing capabilities of a sys-
tem by spreading copies of the data across multiple machines, while
partitioning splits data across machines to achieve the same objec-
tives. Replication and partitioning present di�erent trade-o�s in the
form of replication maintenance and multi-machine coordination
costs, which system administrators must carefully evaluate. Tradi-
tionally, administrators made replication and partitioning decisions
based on their understanding of the application workload, which
results in suboptimal performance if the system is miscon�gured or
if the workload changes. However, systems that adaptively employ
replication and partitioning can adjust these decisions based on
workload observations and predictions, which improves perfor-
mance and reduces complexity for administrators. In this tutorial,
we present an overview of techniques used by systems to adap-
tively partition and replicate data and services. We focus on the
decision-making strategies employed by these systems, and how
these decisions are executed in an online environment. Finally, we
identify opportunities for research in the area.
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1 INTRODUCTION
Driven by enterprise and individual needs, big data applications
are placing ever-increasing demands on data systems [3, 29, 43].
For example, it is now common for systems to receive hundreds-of-
thousands of requests per second from clients around the world,
all of whom expect fast response times [8, 10]. These stringent
demands exceed the capabilities of a single machine and therefore
require data systems to scale and operate in a distributed environ-
ment.

There are two primary means of scaling out systems that manage
data: replication and partitioning. Replication creates copies of data
and spreads them across a pool of machines. A client may access
any node hosting its desired data to perform computations and
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retrieve results, which increases the amount of computing power
available and may bring data closer to clients. By contrast, partition-
ing splits data across multiple machines, which enables a request to
be processed by any machine that holds the data the request needs,
and increases the amount of available storage and compute power.

Although data replication and partitioning can improve the per-
formance of data systems, they also pose many challenges. Admin-
istrators must decide which data items to replicate and on which
machines these replicas should be placed. Similarly, they must se-
lect a partitioning scheme for the data that maximizes parallelism
without degrading performance due to excessive communication
and coordination among machines. Choosing such a replication and
partitioning scheme can be extremely challenging. A poor choice
leads to low levels of performance [12], and a good choice for one
workload may be poor for another. Compounding this problem, a
partitioning or replication scheme may initially perform well but
then su�er due to changes in the workload.

Data system applications experience variation in workloads be-
cause of changes in external factors, such as human behaviour. For
example, popular data items result in hot-spots in systems and
cause contention. These hot-spots may change over time as the
popularity of items changes or as a result of “follow-the-sun” cy-
cles from geo-distribution of clients [46]. Finally, data systems may
su�er from short-term load spikes that occur because of a short
burst of increased demand. These dynamic workload e�ects make
it very di�cult for a system administrator to select a single data
replication or partitioning strategy for their system that works well
for a variety of workloads.

Consequently, data systems are increasingly employing adaptive
data replication and partitioning techniques. Such systems modify
their partitioning and replication schemes while the system is run-
ning to ensure good performance even when the workload changes.
Systems that adaptively replicate and partition data continually
decide which data items to replicate and how partitions and replicas
should be placed based on the workload. These systems monitor
the running workload, extract salient characteristics, predict future
requests, and adjust data placements using the discovered infor-
mation. Given the personnel costs for administrators to determine
and perform these actions manually [42], the ubiquitous nature of
dynamic workloads [45], and the desire to minimize reaction time
to workload change, the time is ripe for both research and industrial
communities to investigate and develop truly autonomous, adaptive
data systems.

Building adaptive replication and partitioning into data sys-
tems presents several challenges from both decision-making and
decision-execution perspectives. In this tutorial, we survey the re-
cent work on systems that adaptively replicate and partition data,
focusing on the techniques that are used in these systems and high-
lighting how they address these challenges. We describe the key
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features of these systems and discuss research opportunities in the
area.

2 TUTORIAL OVERVIEW
The target audience of this tutorial is systems researchers and
practitioners that have a basic knowledge of distributed data man-
agement. Some knowledge of data replication and partitioning is
helpful, but not necessary. For newcomers to the area, this tutorial
introduces replication, partitioning and the motivation for applying
these techniques adaptively. For researchers that are experienced
with replication and partitioning, this tutorial provides a broader
view of the common approaches to providing adaptivity in data
systems and o�ers suggestions on how current techniques can be
improved. In general, we hope that this tutorial inspires our col-
leagues from the middleware and systems communities to research
and implement adaptivity as a core component in data systems
across a variety of data management domains including relational
databases, graph data management, stream processing, and dis-
tributed storage systems.

We present replication and partitioning techniques from a vari-
ety of data management domains and emphasize one or two repre-
sentative systems from each domain that employ these techniques
adaptively. For these systems, we discuss the decision-control frame-
work for determining new replication and partitioning strategies
and the underlying mechanisms used in each system. Finally, we
discuss trends within this area and present open research challenges
and opportunities for adaptive data systems.

The tutorial is divided into four modules: (i) The motivation be-
hind data replication and partitioning, and why adaptivity matters
(Section 1) (ii) Adaptive replication (Section 3.1), (iii) Adaptive par-
titioning (Section 3.2), (iv) Outlook for adaptive data management
systems (Section 4).

3 TUTORIAL OUTLINE
3.1 Adaptive Replication
Data replication improves system performance by enabling read
operations to be performed on replicas. The replicas may be physi-
cally close to a client or may be under less load than the primary
copy of data, both of which decrease access latency. Consequently,
replication is a popular method used in numerous data management
domains [6, 9, 19, 20, 36, 49]. A key challenge is keeping replicas
synchronized with the primary data copy. As requests update the
primary copy, they must be propagated and applied to the replicas.
Deciding which set of data items should be replicated, where the
replicas should be placed, which updates should be propagated,
and when they should be applied comprise the fundamental design
decisions of any replicated data system. By leveraging adaptive
replication techniques, systems can perform these decisions on-the-
�y with respect to the workload, thereby improving performance
and reducing system con�guration complexity.

The adaptive data replication (ADR) algorithm [50] is among
early work in adaptive replication. ADR formulates its cost func-
tions based on system requirements and the environment, which
optimize the number of replicas, their placement, and which up-
dates are propagated to each replica.

At a global scale, distributed systems must place replicas of data
around the world such that both access and update latencies are
minimized. Data placement is a challenging problem as clients can
be spread globally, and as more copies of data are created, the cost
of keeping data consistent in the face of updates increases. Sharov
and colleagues [41] propose an optimization formulation for leader
replica placement. The GPlacer system [51] also addresses replica
placement, but generalizes beyond leader placement to other non-
leader replica protocols such as Paxos.

Data caching is a particular form of adaptive replication, in
the sense that what is replicated, or cached, can adapt based on
access history. Predictive caching [7, 34] aims to further improve
the performance of cache-based systems by placing data items that
will be accessed in the cache ahead of time. An example of such a
system is Apollo [14], a middleware cache for database systems that
learns database query patterns to predictively cache query results
to improve system performance.

Finally, data replication is often used to ensure high-availability
and fault tolerance. In distributed storage systems, erasure-coding
is often used as a replacement for replication because it can pro-
vide lower storage overhead [18, 31]. However, these systems face
many of the same design decisions as replicated storage systems.
EC-Store [2] is an adaptive erasure-coded storage system that dy-
namically places and moves data to reduce access latencies. We
contrast the data-placement decisions made in EC-Store with those
made in replicated storage systems such as C3 [33, 37, 44].

3.2 Adaptive Partitioning
Data partitioning enables systems to scale by splitting data across
multiple machines. Traditional partitioning techniques such as hash
or range partitioning result in even distributions of the number of
data items across machines. However, skew in data item popularity
can result in load imbalance among machines. To mitigate this
e�ect, systems aim to adaptively repartition data to ensure load
balance while maintaining locality among co-accessed data items.

The L-Store system [26] aims to minimize the number of dis-
tributed transactions that are performed in a partitioned database
system. L-Store guarantees that transactions are performed at a
single site by localizing data items to that site during transaction
execution. AdaptCache [5] also focuses on localized processing,
partitioning both requests and data so that an application server
can �nd the objects needed to handle a request in their local cache
most of the time.

Dynamic workloads change the demand they make on data sys-
tems over time. Consequently, elastic systems dynamically adjust
their physical resources according to demand. When machines are
added or removed from the system according to current workload
demand, it is important to repartition data accordingly. The E-Store
system [46] incorporates repartitioning into its elastic operations
via the Squall system [13]. While E-Store reacts to load changes,
P-Store [45] predicts load demands, elastically scaling the database
according to its predictions.

While data systems frequently partition horizontally, that is, on
the individual data item level, data can also be partitioned vertically
by data item attributes. Database cracking [16, 21, 22, 38, 39] auto-
matically vertically partitions databases based on the presence of
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predicate queries. Database cracking highlights a consequence of
data partitioning: changes need to be made to data access operators,
for example, pushing down cracked database operators that operate
on vertically partitioned data.

Finally, adaptive data partitioning is applied in many other data
management domains to improve system performance. As an ex-
ample, graph data systems aim to partition data items (vertices and
edges) such that the number of machines over which graph traver-
sal operations are executed is minimized [19, 23]. Hermes [32] uses
a lightweight dynamic partitioning algorithm that aims to keep
load balanced while minimizing the number of edge-cuts and con-
sequently network I/O. Additionally, many systems rely on graph
partitioning algorithms to generate partitions by modelling their
data as a graph [12, 17, 37]. In stream processing engines, data
items can be repartitioned to balance load across the streaming
engines [1, 15, 40]. Adaptive partitioning techniques for streaming
systems has become an emerging area of research [24, 27, 48].

4 OUTLOOK
Many current systems use data replication and partitioning to im-
prove system performance. However, systems are becoming in-
creasingly adaptive, automatically determining partitioning and
replication strategies. These systems adapt by monitoring the sys-
tem and client workload behaviour, such as the observed load or
patterns in data access, and then make decisions based on these
observations. In particular, systems adapt by reacting to changes in
behaviour. However, many of these systems could o�er improved
performance by making decisions based on predictions of future
system and client behaviour [4, 35], such as in P-Store [45]. While
advances in machine learning have been applied to parameter se-
lection and tuning [30, 47, 52] as well as data structures such as
indexes [25], they have not yet been broadly applied to the areas of
partitioning and replication. We believe that data systems should
leverage advances in workload forecasting [11, 28] to make deci-
sions about partitioning and replication. Put broadly, we pose two
questions to the research community: “How should we model work-
loads in your domain of expertise?” and “If you had an accurate
model of your workload in terms of both data accesses and load,
how would you design a replication and partitioning scheme for
it?”. We expect that these questions will spark interest, discussion
and debate over the design of future data systems.
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