
WatDFS: A Project for Understanding Distributed Systems
in the Undergraduate Curriculum
Michael Abebe, Brad Glasbergen, Khuzaima Daudjee
Cheriton School of Computer Science, University of Waterloo

{mtabebe,bjglasbe,kdaudjee}@uwaterloo.ca

ABSTRACT
The ubiquity of distributed computing systems has led to an in-
creased focus on distributed systems in the undergraduate curricu-
lum. In this paper, we describe the design of, and our experiences
with, a new distributed systems project where students implement
the core components of a distributed file system called WatDFS.
The WatDFS project enables students to meet learning objectives
from across the distributed systems curriculum and interact with
real systems, while providing a high-quality testing environment
that yields actionable feedback to students on their submissions.

ACM Reference Format:
Michael Abebe, Brad Glasbergen, Khuzaima Daudjee. 2019. WatDFS: A
Project for Understanding Distributed Systems, in the Undergraduate Cur-
riculum. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19), February 27-March 2, 2019, Minneapolis, MN,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.
3287473

1 INTRODUCTION
The collection of vast amounts of data in domains such as science,
commerce and health has outstripped the computing and storage
capacity of a single, centralized machine, fueling the need to store
and access these data on clusters of machines that together provide
enhanced storage and compute capacities [30, 33]. Many everyday
services that users interact with, such as Netflix, Gmail and Face-
book are all backed by such clusters. These clusters are popularly
called distributed systems and have become ubiquitous, providing
the view of a single coherent system with appropriate transparen-
cies for storing and managing user data. Due to their ubiquity, from
the perspective of both individual users and the design and develop-
ment of large-scale industrial applications, there is a need to focus
on distributed systems in the undergraduate curriculum [4, 24].

At our university, distributed systems is a semestered course
taught at the 4th-year level to approximately 120 undergraduate
students, with an operating systems course being a pre-requisite.
The course focuses on the fundamentals of distributed systems [34],
covering the following topics: architectures of distributed systems,
a brief overview of computer networks, communication paradigms
including remote procedure calls (RPCs), distributed file systems,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287473

coordination/synchronization, replication, consistency, and fault
tolerance. A primary focus of the course is understanding the trade-
offs made as a consequence of design decisions in distributed sys-
tems [3, 8, 23]. We evaluate a student’s understanding of these
fundamental concepts and their trade-offs via four assignments
throughout the semester and a final written exam. Two written
assignments focus on assessing the students’ understanding of the
principles of distributed systems. The other two assignments to-
gether form a programming project that enables students to apply
the fundamental course concepts through their implementation and
use. These programming assignments, and our experiences with
them, are the focus of this experience report.

Previously, a distributed systems programming project in our
course required students to implement the functionality of an RPC
library using socket primitives [7, 16] to support client-server com-
puting. To allow students to learn the basics of socket programming,
students first implemented an echo server that would respond to
client requests with the contents of each request. For the second
programming assignment, they developed an RPC library that al-
lowed applications to invoke function calls on a remote server. This
second assignment required locating a server that could satisfy
client requests via a directory server, serializing the request, and
sending it to the remote server. The server deserializes the request,
executes it, and then serializes and sends back the result.

Reflecting on the previous assignments that comprised the pro-
gramming project, we observed that the assignments covered topics
from only the first few course modules. Furthermore, the product
of the assignments was an RPC library that necessitates integration
into a software project from its inception. Consequently, students
lacked the opportunity to use their library with real-world system
software and applications that use RPCs. Finally, some students
made small mistakes in their assignments which stymied communi-
cation between client and server, hindering the implementation and
testing of the rest of the assignment’s functionality. Based on these
reflections, we decided to develop an entirely new set of program-
ming assignments that encompass material from the whole course,
allow students to interact with existing systems and applications
seamlessly, and support a testing environment that gives students
high-quality and timely feedback on their submissions.

Towards this goal, we created a programming project that com-
prised a pair of assignments in which students develop a distributed
file system,WatDFS, which acts as a real file system in a Unix envi-
ronment. Consequently, students can interact with their file system
using standard tools and Unix commands such as cat, echo and cp
to access and manage their files, or edit them with a text editor.

Students implement WatDFS using the Filesystem in Userspace
(FUSE) library [2, 35, 36], which is supported by the Virtual File Sys-
tem (VFS) layer of most popular operating systems. A key advantage

https://doi.org/10.1145/3287324.3287473
https://doi.org/10.1145/3287324.3287473
https://doi.org/10.1145/3287324.3287473

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA Michael Abebe, Brad Glasbergen, Khuzaima Daudjee

(a) Remote-Access Model (b) Upload-Download Model

Figure 1: Twomodels of distributed file systems: the remote-
access model, which sends all requests to the server, and the
upload-download model, which operates on files locally.

of using FUSE is that it precludes the need to write kernel-space
code that is often complex and difficult to comprehend [26, 31]
for students who want to learn the core concepts of distributed
systems. Over the course of the two assignments, students imple-
ment WatDFS using two standard distributed file system models:
the remote-access model, and the upload-download model [34].

In this paper, we share our experiences of rolling out theWatDFS
assignments in the hope that our explanations and reflections will
be useful pedagogically for other educators who design similar
assignments or build upon our work in their classes. Importantly,
our analysis focuses on how theWatDFS project serves to bridge the
gap between the theory and practice of distributed systems, which
is otherwise difficult to achieve in the classroom [5, 9, 11, 16, 25, 38].

2 DESIGN OF THEWATDFS ASSIGNMENTS
In the WatDFS assignments, students implement the core compo-
nents of a distributed file system. Completed, WatDFS supports
creating, opening, reading, writing and closing files on local or
remote machines. WatDFS follows the typical client-server archi-
tecture: an application interacts via standard I/O system calls with a
WatDFS client, which in turn communicates with a WatDFS server.

Students implement WatDFS using two common models in dis-
tributed file systems: remote-access and upload-download (Figure 1).
In the remote-access model, the client forwards all requests to the
server, which then performs the file system operations on behalf of
the client. The remote-access model performs poorly if the latency
between the client and server is high because every request must
be sent to the remote (and potentially distant) server. By contrast,
in the upload-download model, the client downloads a copy of the
file from the server, performs operations locally and — when the
client is done with the file — uploads the file back to the server.
Consequently, the upload-download model reduces latency when
repeatedly operating on a remote file by performing operations
locally and avoiding excess communication with the remote server.
More generally, the remote-access and upload-download models
represent two common design choices in client-server architectures:
moving computation to the server (in this case, file operations), or
moving data (transferring files), and therefore computation, closer
to the client. As students implement these models, they are directly
presented with the algorithmic tasks and ensuing performance
trade-offs discussed in the course.

2.1 Architecture of WatDFS
As mentioned in Section 1, we designed the assignments such that
students can use and test their code using real systems and applica-
tions. In the course, students learn that popular distributed file sys-
tems are implemented such that applications can interact with them

Figure 2: The architecture of WatDFS: requests from an ap-
plication arrive at theWatDFS client through libfuse. If nec-
essary, the WatDFS client communicates with the WatDFS
server on a remotemachine using an RPC library which per-
forms file system operations on the server. Students imple-
ment the WatDFS client and server.

transparently. That is, applications operate without knowledge that
the file they are accessing may reside on a remote machine [18].
In implementing the assignments, students directly observe the
value of access transparency in file systems because they can use
their assignment solution as a real file system without modifying
existing applications. Although access transparency simplifies the
integration between a distributed file system and applications, the
file system may return errors, for example network errors, that
applications do not expect. Thus, the WatDFS assignments also
expose students to transparency challenges.

Traditionally, distributed file systems such as Sun’s Network File
System (NFS) achieve access transparency by integrating directly
into the kernel. However, we preferred that students did not have
to modify kernel code because of the challenges associated with the
lack of memory protection, standard libraries, debugging tools, and
complex dependencies [26, 31]. Instead, WatDFS uses FUSE to allow
students to create their own file systems entirely in user-space in C
or C++ (Figure 2). Applications issue system calls to manipulate files,
which are passed through the kernel into the VFS and the FUSE
driver. The FUSE driver issues the corresponding libfuse calls
to a user-space client library, which the students implement. To
manage files, the client library issues remote procedure calls (RPCs)
to the WatDFS server that students implement. The WatDFS server
handles client requests and supports ten libfuse calls for both
assignments [2]. The semantics for the libfuse calls varies per
assignment; we describe their behavior in the following sections.

We provide students with a custom RPC library, which supports
registering functions at the server that the client can then call. The
RPC library is provided to students to reduce implementation time
and enables them to focus on distributed file-system concepts.

2.2 Remote-Access Model
The WatDFS assignments require students to support distributed
file-system functionality using libfuse and an RPC library, both
of which are new technologies for students. With that in mind, we
designed the remote-access assignment to familiarize students with
these technologies and the basics of WatDFS before beginning the
more challenging upload-download assignment.

WatDFS: A Project for Understanding Distributed Systems SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

In the remote-access model, the WatDFS client handles libfuse
calls by issuing file-system operations to the WatDFS server, which
executes them on the client’s behalf and sends back the results.
We suggest that students first implement the getattr libfuse
call, which is used to retrieve file metadata. Afterwards, students
support the mknod call, which creates a file if it does not exist, and
the open call, which opens a file and stores a file handle for use in
subsequent libfuse calls. The read and write libfuse calls are
considered next, which read data from a file into a buffer and write
data from a buffer into a file, respectively. Then, students complete
release, which is called asynchronously after a file is closed and
signals that the file system can close the file and free any associated
metadata. Finally, students implement the remaining calls: utime,
which changes the file modification time; fsync, which flushes the
file to disk; and truncate, which adjusts the file’s size.

Students are provided with detailed descriptions of the libfuse
calls in the assignment specification, and must decide which file-
system operations the WatDFS server should perform when it re-
ceives a request from a client. To assist students with this task, we
provide an instrumented libfuse library that logs the name and
arguments of received calls to a debugging file. With the logged
information, students can write or use existing applications to inter-
act with their WatDFS client and observe how, and when, different
libfuse calls are issued. Students are encouraged to use the strace
tool [1] on existing applications (e.g., cat) to observe the system
calls that they make and how they are translated to libfuse calls.

We simplified design and debugging for this first assignment by
requiring students to follow a specific RPC protocol, which allows
automated tests (Section 2.4) to quickly point out communication
errors before students work on the higher-level functionality.

2.3 Upload-Download Model
In the second assignment, students implement WatDFS using the
upload-downloadmodel. In the upload-downloadmodel, theWatDFS
client downloads and locally caches a copy of the file from the
WatDFS server, performs file operations on the cached copy and
uploads the file copy back to the server when the client is done us-
ing it. Students build on their remote-access model solution, adding
support for file transfer, cache consistency, and mutual exclusion.

WatDFS uses a timeout-based caching scheme similar to that of
NFS, which allows stale reads, as covered in class. In this timeout-
based caching scheme, a file is periodically re-downloaded from
the server, or re-uploaded to the server, when a freshness condition
F no longer holds. WatDFS defines the freshness condition for a
file as follows.

Let Tclient be the time the file was last modified by the client,
and Tserver the time the file was last modified at the server. Let
Tvalidate be the time the client last validated the freshness of the
file, where Tvalidate is the time the client downloaded the file if it
has not yet been validated. Then the freshness condition for time
T is F = [(T −Tvalidate) < Tfresh] ∨ [Tclient == Tserver], where Tfresh
is a configurable interval that defines the amount of time that can
elapse between file validation checks. When F is false, the client
must synchronize its copy of the file with the server.

In words, the freshness condition is true, if the file has been
recently validated, or if the file has not been modified locally at
the client or the server since the time the file was last downloaded.

At the end of freshness check, Tvalidate is updated to the current
time. Note that the first clause of the freshness condition can be
evaluated without contacting the server and the second clause
requires retrieving only file metadata from the server. Students are
expected to include these optimizations in their solution.

Students are required to perform all file operations locally at the
client, which means that a copy of the file must be downloaded
first. Before every read operation, the freshness condition must be
checked; if it fails, then the file is downloaded from the server. After
write operations, the freshness condition is checked; if it fails, then
the file is uploaded to the server. In WatDFS, three libfuse calls
have special semantics: open should always fetch the file from the
server, release should upload the file to the server if it was open
for writes, and fsync forces an upload of the file to the server.

Students must prevent concurrent file modification by ensuring
that a file is open in write mode by only one client at a time. The
WatDFS server enforces this requirement by returning an error
(-EACCES) if it receives a request to open a file in write-mode that
has already been opened in write mode by another client. To pre-
vent partial file updates, students implement atomic uploads and
downloads of files, while allowing multiple simultaneous down-
loads. To assist students with these mutual-exclusion requirements,
we provide them with an implementation of a reader-writer lock.

2.4 Assessment of WatDFS Assignments
Student submissions are primarily assessed through automated test
cases. Students may submit their assignments any number of times
before the deadline to aMarmoset server [29], which has two classes
of test cases. A student can immediately view the results of all public
tests for their submission, but must pass all of the public tests before
they can run the release tests. For a given submission, a student can
see at most two failed release test cases and can release test their
submission at most five times in a 24-hour window. The limited
availability of release tests encourages students to re-examine their
code when they fail a test, develop their own system tests and to
start their assignments early [29].

In the remote-access model assignment, the public tests issue sim-
ple file operations and verify that the RPC requests and responses
are correct. These basic tests account for 30% of the assignment’s
mark. This assignment’s release tests are end-to-end system tests,
verifying that applications using I/O system calls perform correctly.
Themost difficult tests involve reading andwriting large files, which
necessitates invoking multiple RPCs to ensure that entire buffers
of data are read or written. The release tests account for 65% of the
assignment’s mark, and 5% is awarded for a short README.

All tests in the upload-download model assignment are end-to-
end system tests. The public tests are similar to the remote-access
model’s release tests, but also ensure that files are correctly up-
loaded and downloaded from the server, and account for 40% of the
assignment’s mark. The release tests are worth 35% of the assign-
ment’s mark and test the cache consistency and mutual exclusion
requirements of the assignment. For example, one test ensures that
when the freshness interval expires, a client re-downloads the file
from the server and sees any updates. Finally, we allocate 25% of the
assignment’s marks to a system manual, where students describe
the architecture and design decisions of their WatDFS solution.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA Michael Abebe, Brad Glasbergen, Khuzaima Daudjee

3 OUTCOMES AND EXPERIENCES
The WatDFS assignments are designed with a number of learning
goals and objectives in mind. In this section, we discuss these goals,
share our experiences from the deployment of the assignments in
our course, and describe extensions to WatDFS.

3.1 Learning Goals and Objectives
The WatDFS assignments give students the opportunity to use and
apply concepts from distributed systems by implementing the core
components of a distributed file system. We highlight the relevant
curricular content that students are exposed to when doing the
WatDFS assignments, based on learning objectives in the distributed
systems course and from the relevant curricula [4, 24].

3.1.1 Relevance to Course Material. The course introduces dis-
tributed system models and the trade-offs associated with them. In
WatDFS, students implement a client-server model: the WatDFS
client initiates a request on behalf of the application, and theWatDFS
server satisfies the request. The remote-access model features a
stateless client, while the upload-download model uses a stateful
client. When implementing the upload-download model, students
must manage distributed state and replicas using the timeout-based
cache consistency scheme. A complete solution also uses mutual-
exclusion primitives to ensure that there is at most a single-writer
to a file, and to provide atomic file transfers during the file upload
or download. Finally, for the WatDFS client to communicate with
the WatDFS server, students must make RPCs. In summary, by im-
plementing the two common models of distributed file systems,
students are directly exposed to the trade-offs between the two
models, which are representative of choices faced by distributed
systems developers.

Given the nature of the WatDFS assignments, students also focus
on systems-related learning objectives such as using file systems.
While completing the WatDFS client, students must implement
libfuse calls, which have similar behavior and interfaces to VFS
calls. Students were also exposed to access transparency since the
WatDFS client enables applications to access local and remote re-
sources using the same file system interface.

3.1.2 Use of Real Systems and Applications. FUSE enables students
to develop a distributed file system that supports access trans-
parency. This design choice has two important consequences: (i) it
exposes students to key systems and software development prac-
tices, and (ii) it makes it easier for students to test and reason about
correctness (Section 3.1.3).

As WatDFS is a programming assignment, it requires students
to apply many fundamental concepts in system and software de-
velopment. We provide students with starter code and libraries to
complete the WatDFS assignments. To successfully use this code,
students must read and understand the documentation and exam-
ples, building on their experience from doing so in their prerequisite
operating systems course. As WatDFS executes entirely in user-
space, students had to perform system calls. Doing so requires un-
derstanding system call functionality, arguments, and return values.
The ability to read and understand documentation and follow exam-
ples is an essential skill when working with systems/technologies
[14]. In fact, it is a common requirement for students who are asked

to work on system design and development on a work (co-op) term
or when they start full-time employment as software developers. 1

3.1.3 High Quality Testing Environment. WatDFS acts as a real file
system, allowing students to test their code easily: any existing
application that performs file creation, reads, or writes can be used
to test functionality. Students are required to discuss their testing
strategy in their documentation, which encourages students to
design and write their own tests. Many students reported using
existing command line tools (echo, cat, less, tail) to manipulate
files. Students also wrote their own test cases using programming
languages such as C++ and python to edit files in WatDFS using
language-specific features.

To provide students with feedback, we used Marmoset [29] as
an automated test-server. As described in Section 2.4, we used a
combination of public and release tests. However, for each failed
test we also provided guidance on how students could alter their
system. For example, in the case of the RPC protocol tests for the
remote-access model, a test asserted that the WatDFS client issued
the correct RPC and handled the return correctly. If the test fails,
we configured Marmoset to print any called libfuse functions and
their expected argument types to help students reproduce the test
locally. For the end-to-end system tests, we provided a brief descrip-
tion of the failed test which a student can use to construct a similar
test case as well as a general description of the cause of failure.
For example, a test description in the upload-download model is
“Testing error handling when a file is opened multiple times”; on
a test failure a student would receive: “Expected to get EACCES on
second file open, but got no errors”. Such guided statements helped
students correct their own code, and as we discuss next, resulted in
a positive experience with the assignment.

3.2 Experiences with WatDFS
We now share our experiences with the WatDFS assignments, high-
lighting their effectiveness and providing insight into our plans
to iteratively improve the teaching and learning environment for
students. We base our discussion on analyses of 115 student grades,
questions posed by students on the class discussion forum, and
conversations with students both during office hours and in class.

Figure 3a displays a cumulative distribution function (CDF) of
student grades for the remote-access model assignment. The x-axis
of the graph corresponds to the percentage of students that achieved
at least the grade on the y-axis. We show three plots, one for each of
the three sub-components of the assignment. The figure shows that
almost all students (95%) achieved full marks for the RPC protocol
portion of the assignment, indicating that students understood
how to use the RPC library and libfuse. Students who lost marks
on the assignment tended to do so on a test of handling reads
and writes from/to large files, which was worth 10% of the (total)
assignment mark. Submissions that failed this test did not loop
within libfuse read and write calls until the requested amount
of data was read/written, as noted in the assignment specification.

To better understand how students worked through the assign-
ment, we examined 221 student questions on the class discussion

1Our university has a large co-operative education program, and many students work
at software/systems companies such as Google, Facebook, Amazon or start-ups.

WatDFS: A Project for Understanding Distributed Systems SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

(a) Remote-Access Model (b) Upload-Download Model (c) Grades By Submission Time

(d) Remote-Access Model (e) Upload-Download Model (f) Lines of Code

Figure 3: Metrics for student assesment in the WatDFS assignments. Student grades, displayed as a cumulative distribution
function (CDF), for WatDFS assignments, and average lines of code. A break down of the number of questions asked in each
assignment that relate to a particular topic. Sub-topics share a color, and a short description of each topic is offered as a legend.

forum. We selected 19 different categories and subcategories relat-
ing to the assignment specification/requirements and labeled each
question according to which of the categories and subcategories
it belonged. In Figure 3d, we display the number of questions that
were asked in each category for the remote-access model assign-
ment. Subcategories share a common color, and the first letter of
their abbreviation, with their parent category. For example, ques-
tions about FUSE (purple color — FC, FG, FO, FR) were further
categorized based on the specific function in question.

As noted in Section 2.2, the remote-access model assignment
is designed to familiarize students with the RPC library, libfuse,
and programming/debugging in WatDFS. Consequently, student
questions for this assignment (Figure 3d) were primarily focused on
testing and debugging (e.g. “Why am I failing this test?”, “How do I
trace the calls ‘cat’ makes?”), the usage of the provided code (e.g.
“Why am I getting this RPC error?”), or libfuse calls, specifically
those related to file creation, reading and writing. Based on the
types of questions that students asked and the grades that students
attained, we can infer that the remote-access model was successful
in helping students familiarize themselves with WatDFS.

In contrast to the remote-access model, the upload-download
assignment generated questions that were mostly related to error

handling, cache consistency, mutual exclusion and how these top-
ics applied to operations supported by libfuse. Error handling
was more important in the upload-download assignment than in
the remote-access model because the remote-access model simply
reported errors back to the application. In the upload-download
model, students had to decide what to do when an error occurred
in the middle of an operation, such as during file transfer.

Given the objectives of the upload-download assignment, many
of the questions related to cache consistency: clarifying the fresh-
ness condition or when a file should be considered invalid. These
questions focused on the semantics of caching in the context of
libfuse operations that are outside the boundaries of file open and
close operations. The crux of these questions is the gap between
the theory and practice of the upload-download model. Specifically,
standard textbooks [34] state that the upload-download model per-
forms all operations locally, and that the file is first downloaded to
the client on the file open call. However, downloading a copy of
the file only on libfuse open while performing all file operations
locally is not possible because some libfuse calls (e.g. getattr,
truncate, mknod) can occur before open. Consequently, some stu-
dents were unsure of the semantics because not all operations can
be applied locally if the file is downloaded only on open. In future

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA Michael Abebe, Brad Glasbergen, Khuzaima Daudjee

versions of the WatDFS assignments, we plan to be clearer that
all operations are to be performed locally, even if that necessitates
downloading the file first to support the upload-download model se-
mantics. We say this while keeping in mind that practice can deviate
from theory where system design and development is concerned.

While reviewing student grades for the upload-download model
(Figure 3b), we observed more variation compared to the remote-
access model. A majority of students (60%) passed all of the basic
upload-downloadmodel tests, with 33% of students passing all of the
cache consistency tests. Overall, more than 80% of students passed
the majority of the programming tests. Inspection of submissions
that passed all of the upload-download tests, but did not pass all
of the cache consistency tests (27% of students) revealed that these
submissions either did not check the freshness condition and/or
enforce mutual exclusion, or had errors in implementing these
requirements. We gave students three weeks to work on the upload-
download model and through weekly reminders emphasized the
importance of beginning the assignment early. Indeed, we observed
a significant difference in the average grade between students who
had at least one submission to the Marmoset test servers 48 hours
before the assignment deadline and those who did not (Figure 3c).
70% of students who received less than half of the programming
marks had no submissions until within 48 hours of the assignment
deadline, indicating that they may have run out of time. Moreover,
45% (8%) of students who had their first submission within (prior
to) 48 hours of the deadline did not pass the majority of tests.2
Figure 3f displays the average lines of code in student submissions
for the remote-access (758 lines) and upload-download (1425 lines)
assignments, including provided code (294 lines).

Finally, as noted in Section 2.4, 25% of the marks in the upload-
download model were allocated for a system manual describing
design choices. We encouraged students who did not complete the
full functionality of the assignment to describe how they would
have implemented the functionality in WatDFS. Importantly, this
requirement allows students to express their understanding of the
concepts even if they had a partial implementation.

Overall, our experience has been that the WatDFS assignments
exposed students to the core aspects of distributed systems and key
systems technologies. Although anecdotal, a student summarized
their experience as: “This assignment was probably my favorite
part of the course and the most fun I’ve had programming for any
assignment [...] FUSE was a brilliant way to integrate the course
concepts into something very practical and I was really happy that I
could actually test my work by trying to edit the remote files in Vim.”

3.3 Extensions to WatDFS
There are several opportunities for extending the WatDFS assign-
ments. Both the remote-access model and the upload-download
model could be extended to include operations on file system di-
rectories, which students were not required to support. To do so
in the upload-download model would require managing a cache of
different object types with different rules for files and directories.
The WatDFS assignment currently operates with all clients interact-
ing with a single server. Students could be tasked with managing
multiple WatDFS servers or using a quorum protocol to keep server

265% of students had at least one submission more than 48 hours prior to the deadline.

state consistent while supporting file replicas.
With the exception of the libfuse release call, WatDFS op-

erations are synchronous. Consequently, in the upload-download
model, the entire file must be downloaded before any operations
can take place. Students could implement asynchronous features in
WatDFS to support downloading a file in the background, or predic-
tively prefetching a file. Alternatively, WatDFS could support Coda
file system style callbacks that indicate a file has been modified,
and allow the application to force a new download of the file [27].

Finally, although WatDFS follows a design similar to NFS, there
exist a wide variety of distributed file systems including those that
provide varying consistencymodels [32], fault tolerance schemes [17,
37], metadata management [13], or interfaces [22]. The WatDFS
assignments could be modified to incorporate these ideas.

4 RELATEDWORK
The WatDFS assignments are most closely related to the user-level
distributed file systems projects described by McDonald [20]. How-
ever, any application can use WatDFS as a file system because
FUSE maintains standard file system interfaces. Thus, students use
standard tools and language features to interact with WatDFS, as
opposed to a limited number of rewritten applications [20]. Fur-
thermore, WatDFS focuses on the consistency of distributed file
systems and allows students to examine the differences between the
remote-access model and the upload-download model. McDonald’s
assignment is in the context of a computer-networks class, so it fo-
cuses on the implementation of specific networking protocols [10].
Although there has been discussion on using libfuse for educa-
tional systems [12, 19, 21], WatDFS focuses on the different models
of distributed file systems and core distributed systems concepts.

A typical operating systems course assignment is to develop
file system functionality inside an educational operating system.
Such assignments may implement an alternative file system design,
ensure crash-consistency, or extend file system functionality with
key-value stores [6, 15]. WatDFS differs by focusing on file access
and management in distributed systems and the challenges that
arise in a distributed environment. Finally other user-space systems
assignments [28] for tasks traditionally done in kernel-space (e.g.,
memory management), share our experience that it is easier for
students to debug and develop outside of the kernel while learning
the core concepts and challenges associated with the task.

5 CONCLUSION
In this paper, we described our experiences with a new pair of pro-
gramming assignments for a distributed systems class where stu-
dents develop a distributed file system called WatDFS. The WatDFS
assignments provide students with the opportunity to compare two
popular models of distributed file systems, and importantly, use
and apply concepts from the entire course. Our early analysis found
that the first assignment successfully introduced students to the
new technologies used in the assignment, and over 80% of students
passed themajority of the test cases in the second, more challenging,
assignment. We plan to use our experiences to continue to improve
the teaching and learning environment for students. We hope that
by sharing our experiences, other educators will be motivated to
pursue similar projects and benefit from our insights.

WatDFS: A Project for Understanding Distributed Systems SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

ACKNOWLEDGMENTS
We thank Byron Weber Becker and Heather Root for their help-
ful comments on this paper, as well as Mikhail Kazhamiaka, Sid-
dhartha Sahu and Zhiwei Shang who supported the deployment of
the assignment as teaching assistants. The University of Waterloo
provided funding for this project.

REFERENCES
[1] 2017. strace. https://www.cs.hmc.edu/~geoff/classes/hmc.cs135.201109/

homework/fuse/.
[2] 2018. libfuse. https://github.com/libfuse/libfuse.
[3] Daniel J Abadi. 2012. Consistency tradeoffs in modern distributed database

system design: CAP is only part of the story. Computer 2 (2012), 37–42.
[4] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. Computer Science

Curricula 2013. Technical Report. ACM Press and IEEE Computer Society Press.
https://doi.org/10.1145/2534860

[5] Jeannie R Albrecht. 2009. Bringing big systems to small schools: Distributed
systems for undergraduates. In ACM SIGCSE Bulletin, Vol. 41. ACM, 101–105.

[6] Jeremy Andrus and Jason Nieh. 2012. Teaching operating systems using an-
droid. In Proceedings of the 43rd ACM technical symposium on Computer Science
Education. ACM, 613–618.

[7] Andrew D Birrell and Bruce Jay Nelson. 1984. Implementing remote procedure
calls. ACM Transactions on Computer Systems (TOCS) 2, 1 (1984), 39–59.

[8] Navin Budhiraja and Keith Marzullo. 1992. Tradeoffs in Implementing Primary-
Backup Protocols. Technical Report. CORNELL UNIV ITHACA NY DEPT OF
COMPUTER SCIENCE.

[9] Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy, and Tom Anderson.
2009. Seattle: a platform for educational cloud computing. Acm sigcse bulletin 41,
1 (2009), 111–115.

[10] Martin Casado and Nick McKeown. 2005. The virtual network system. In ACM
SIGCSE Bulletin, Vol. 37. ACM, 76–80.

[11] Henrik Bærbak Christensen. 2016. Teaching DevOps and cloud computing using
a cognitive apprenticeship and story-telling approach. In Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 174–179.

[12] Jeffery Forrester. 2015. Platforms for Teaching Distributed Computing Concepts
to Undergraduate Students. (2015).

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file
system. Vol. 37. ACM.

[14] Sarah Heckman, Kathryn T Stolee, and Christopher Parnin. 2018. 10+ years of
teaching software engineering with itrust: the good, the bad, and the ugly. In
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering Education and Training. ACM, 1–4.

[15] David A Holland, Ada T Lim, and Margo I Seltzer. 2002. A new instructional
operating system. In ACM SIGCSE Bulletin, Vol. 34. ACM, 111–115.

[16] Mark A Holliday, J Traynham Houston, and E Matthew Jones. 2008. From sockets
and RMI to web services. In ACM SIGCSE Bulletin, Vol. 40. ACM, 236–240.

[17] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, Sergey Yekhanin, et al. 2012. Erasure Coding in Windows Azure
Storage.. In Usenix annual technical conference. Boston, MA, 15–26.

[18] Steve R Kleiman et al. 1986. Vnodes: An Architecture for Multiple File System
Types in Sun UNIX.. In USENIX Summer, Vol. 86. 238–247.

[19] Geoff Kuenning. 2011. CS 135 FUSE Homework Assignments, Fall 2011. https:
//www.cs.hmc.edu/~geoff/classes/hmc.cs135.201109/homework/fuse/.

[20] Chris McDonald. 1996. User-level distributed file systems projects. In ACM
SIGCSE Bulletin, Vol. 28. ACM, 333–337.

[21] Halli Elaine Meth. 2014. Decafs: A modular distributed file system to facilitate
distributed systems education. (2014).

[22] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
et al. 2014. f4: FacebookâĂŹs warm blob storage system. In Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation. USENIX
Association, 383–398.

[23] David Oppenheimer, Jeannie Albrecht, David Patterson, and Amin Vahdat. 2005.
Design and implementation tradeoffs for wide-area resource discovery. In High
Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE Inter-
national Symposium on. IEEE, 113–124.

[24] Sushil K Prasad, Almadena Yu Chtchelkanova, et al. 2011. NSF/IEEE-TCPP
curriculum initiative on parallel and distributed computing: core topics for un-
dergraduates.

[25] Ariel S Rabkin, Charles Reiss, Randy Katz, and David Patterson. 2012. Experiences
teaching MapReduce in the cloud. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education. ACM, 601–606.

[26] Aditya Rajgarhia and Ashish Gehani. 2010. Performance and extension of user
space file systems. In Proceedings of the 2010 ACM Symposium on Applied Com-
puting. ACM, 206–213.

[27] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,
Ellen H. Siegel, and David C. Steere. 1990. Coda: A highly available file system
for a distributed workstation environment. IEEE Transactions on computers 39, 4
(1990), 447–459.

[28] Sam Silvestro, Timothy T Yuen, Corey Crosser, Dakai Zhu, Turgay Korkmaz, and
Tongping Liu. 2018. A User Space-based Project for Practicing Core Memory
Management Concepts. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. ACM, 98–103.

[29] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K
Hollingsworth, and Nelson Padua-Perez. 2006. Experiences with marmoset:
designing and using an advanced submission and testing system for program-
ming courses. ACM Sigcse Bulletin 38, 3 (2006), 13–17.

[30] Michael Stonebraker, Sam Madden, and Pradeep Dubey. 2013. Intel big data
science and technology center vision and execution plan. ACM SIGMOD Record
42, 1 (2013), 44–49.

[31] Red Hat Storage. 2011. Linus Torvalds doesn’t understand user-
space filesystems. https://redhatstorage.redhat.com/2011/06/28/
linus-torvalds-doesnt-understand-user-space-storage/.

[32] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J
Spreitzer, and Carl H Hauser. 1995. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In ACM SIGOPS Operating Systems Review,
Vol. 29. ACM, 172–182.

[33] Maarten van Steen and Andrew S Tanenbaum. 2016. A brief introduction to
distributed systems. Computing 98, 10 (2016), 967–1009.

[34] Maarten Van Steen and Andrew S Tanenbaum. 2017. Distributed Systems. Pearson
Education.

[35] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. 2017. To FUSE or
Not to FUSE: Performance of User-Space File Systems. In Proceedings of FAST’17:
15th USENIX Conference on File and Storage Technologies. 59.

[36] Ivan Voras and Mario Zagar. 2006. Network distributed file system in user space.
In Information Technology Interfaces, 2006. 28th International Conference on. IEEE,
669–674.

[37] Sage AWeil, Scott A Brandt, Ethan LMiller, Darrell DE Long, and CarlosMaltzahn.
2006. Ceph: A scalable, high-performance distributed file system. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 307–320.

[38] Joel Wein, Kirill Kourtchikov, Yan Cheng, Ron Gutierez, Roman Khmelichek,
Matthew Topol, and Chris Sherman. 2009. Virtualized games for teaching about
distributed systems. ACM SIGCSE Bulletin 41, 1 (2009), 246–250.

https://www.cs.hmc.edu/~geoff/classes/hmc.cs135.201109/homework/fuse/
https://www.cs.hmc.edu/~geoff/classes/hmc.cs135.201109/homework/fuse/
https://github.com/libfuse/libfuse
https://doi.org/10.1145/2534860
https://www.cs.hmc.edu/~geoff/classes/hmc.cs135.201109/homework/fuse/
https://www.cs.hmc.edu/~geoff/classes/hmc.cs135.201109/homework/fuse/
https://redhatstorage.redhat.com/2011/06/28/linus-torvalds-doesnt-understand-user-space-storage/
https://redhatstorage.redhat.com/2011/06/28/linus-torvalds-doesnt-understand-user-space-storage/

	Abstract
	1 Introduction
	2 Design of the WatDFS Assignments
	2.1 Architecture of WatDFS
	2.2 Remote-Access Model
	2.3 Upload-Download Model
	2.4 Assessment of WatDFS Assignments

	3 Outcomes and Experiences
	3.1 Learning Goals and Objectives
	3.2 Experiences with WatDFS
	3.3 Extensions to WatDFS

	4 Related Work
	5 Conclusion
	References

