
Adaptive Data Storage and
Placement in Distributed Database

Systems

by

Michael Abebe

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Michael Abebe 2022



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Aaron Elmore
Associate Professor,
Dept. of Computer Science
University of Chicago

Supervisor: Khuzaima Daudjee
Associate Professor,
School of Computer Science
University of Waterloo

Internal Members: M. Tamer Özsu
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Abstract

Distributed database systems are widely used to provide scalable storage, update and
query facilities for application data. Distributed databases primarily use data replication
and data partitioning to spread load across nodes or sites. The presence of hotspots in
workloads, however, can result in imbalanced load on the distributed system resulting in
performance degradation. Moreover, updates to partitioned and replicated data can re-
quire expensive distributed coordination to ensure that they are applied atomically and
consistently. Additionally, data storage formats, such as row and columnar layouts, can sig-
nificantly impact latencies of mixed transactional and analytical workloads. Consequently,
how and where data is stored among the sites in a distributed database can significantly
affect system performance, particularly if the workload is not known ahead of time. To ad-
dress these concerns, this thesis proposes adaptive data placement and storage techniques
for distributed database systems.

This thesis demonstrates that the performance of distributed database systems can be
improved by automatically adapting how and where data is stored by leveraging online
workload information. A two-tiered architecture for adaptive distributed database systems
is proposed that includes an adaptation advisor that decides at which site(s) and how
transactions execute. The adaptation advisor makes these decisions based on submitted
transactions. This design is used in three adaptive distributed database systems presented
in this thesis: (i) DynaMast that efficiently transfers data mastership to guarantee single-
site transactions while maintaining well-understood and established transactional seman-
tics, (ii) MorphoSys that selectively and adaptively replicates, partitions and remasters
data based on a learned cost model to improve transaction processing, and (iii) Proteus
that uses learned workload models to predictively and adaptively change storage layouts
to support both high transactional throughput and low latency analytical queries.

Collectively, this thesis is a concrete step towards autonomous database systems that
allow users to specify only the data to store and the queries to execute, leaving the system
to judiciously choose the storage and execution mechanisms to deliver high performance.
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Chapter 1

Introduction

Data storage and management is at the core of nearly every software application. Database
systems provide these features by presenting an interface to efficiently store and query data.
Recently, the continuous growth in data processing demands has led to a renewed focus
on large-scale distributed database management systems (DBMSs) [183, 122, 17, 145]. For
example, consider an e-commerce organization that must process new online orders and
analyze these orders for trends, such as the effects of a promotional sale. It is now common
for such organizations to receive hundreds of thousands of order requests per second from
clients, which places the underlying database under high load [38, 50]. These stringent
demands exceed the capabilities of a single machine and therefore require a DBMS to scale
and operate in a distributed environment.

Data replication and data partitioning are the two primary means of scaling out a
DBMS, which I show in Figure 1.1, in contrast to a single node DBMS storing four data
items (Figure 1.1a). Both data replication and partitioning distribute data over multiple
database machines (nodes, or sites) to spread load. Replication creates copies of data
and spreads them across nodes (Figure 1.1b). A client may access any node hosting its
desired data to perform computations and retrieve results, which increases the amount
of computing power available and can bring data closer to clients. Data partitioning
(Figure 1.1c) spreads load across nodes by splitting data among the nodes. Partitioning
enables a request to be processed by any node that holds the requested data and increases
the amount of storage and compute power available to a request.

Although data replication and partitioning can improve the performance of data sys-
tems, these techniques also pose several challenges. Administrators must decide where and
how to store data among the nodes in the distributed DBMS to support their workload
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(a) Single Node DBMS (b) Data Replication (c) Data Partitioning

Figure 1.1: A database with four data items (D1,...D4), and examples of distributed data
replication (1.1b) and data partitioning (1.1c).

demands. Choosing where and how to store data is generally a difficult problem, as each
choice presents trade-offs, and a poor choice for the workload leads to low levels of system
performance [53].

Partitioning data can result in contention, and skewed load on a node, that arises from
high frequency data access concentrated on a subset of data or a hotspot. Consequently,
rather than evenly distributing load among nodes, hotspots can result in the load being
concentrated on a single database node. Furthermore, when data updates span multiple
nodes, expensive distributed coordination protocols are required to ensure that the updates
are applied atomically and consistently. Replication, while beneficial for bringing data
closer to clients, consumes additional storage space. Moreover, replicated data must be
maintained to ensure data consistency, which costs compute resources. Thus, the cost to
store and manage replicated data must be carefully managed to ensure resources are being
used efficiently.

Next, I examine the above trade-offs in more detail.

Partitioned DBMSs such as H-Store [96], and VoltDB [187] divide data among the
nodes in the system, such that each data item is stored on one node (Figure 1.1c). This
data partitioning allows transactions to execute at each site, limiting access to only the
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data stored there. Consequently, these partitioned DBMSs spread both the update and
read load over multiple sites in the distributed system, but, the presence of hotspots or
skewed access in the workload can result in uneven load distribution. Therefore, carefully
partitioning where the data is stored, and thus partitioning the workload among the sites
in the distributed system, is necessary to distribute the load evenly among the nodes.
A performance concern with transactions that access, and in particular update, data at
multiple sites is that they require costly synchronization and coordination across the sites
at which they execute to guarantee transactional atomicity and consistency [94, 113, 76].
A popular coordination protocol used by both H-Store and VoltDB is two-phase commit,
which significantly degrades the performance and scalability of distributed DBMSs due to
multiple rounds of messages and blocking [94, 114, 76, 39].

Replicated DBMSs such as Amazon Aurora [196] and Postgres-R [205] maintain data
copies at multiple sites (Figure 1.1b). Replication allows transactions to execute on copies
of data. A key challenge with data replication is that updates to one copy of the data causes
other copies to become stale [70]. Moreover, replicas risk being inconsistent in the face of
multiple updates across the distributed system. Synchronous or eager update application
at replicas are expensive due to the duplication of work at replicated sites during the critical
path of the database operation. Consequently, lazy, or asynchronous, replica maintenance
is used, which defers replica maintenance to outside transaction boundaries. Aurora and
other replicated DBMSs [205, 196, 6, 99, 38, 5] adopt the lazy master replication model
in which update transactions execute at a single node called the master site that holds
all updateable or master copies of data. The remaining nodes in the distributed system
hold read-only data replicas that are synchronized lazily. By placing the master copies
of all data items at a single master site, all update transactions can execute and commit
locally at that site. Similarly, read-only transactions can execute and commit locally
at any replica. Thus, the single master architecture guarantees single-site transaction
execution for all transactions, eliminating the need for expensive distributed transaction
coordination. However, as the update workload scales up, the performance of the replicated
system suffers as the single master site that executes all update transactions becomes a
bottleneck [107, 36, 150].

Finally, deciding how to store data at a site also poses a critical challenge. Online-
transaction processing (OLTP) systems such as VoltDB [187] and X-Engine [85] store data
tuples contiguously as rows, using the n-ary storage model [96, 33, 186]. Row-oriented
storage is optimized for OLTP workloads that operate on a single record at a time and
access many attributes. However, row formats result in poor support for analytical work-
loads that access many tuples at a time but only a subset of tuple attributes, as entire rows
of data must be processed instead of only the relevant attributes. Thus, online-analytical
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processing (OLAP) systems such as MonetDB [34] and C-Store [182] store tuples attribute-
at-a-time in columns using the decomposition storage model [9, 49, 34]. Although a column
format works well for analytics, it is inefficient for OLTP workloads that update multiple
columns within a transaction as each stored column is affected. Thus, neither storage
format is efficient for hybrid workloads that span transaction and analytical processing.

These examples demonstrate that deciding how and where to store data in a distributed
system is challenging, as each choice presents trade-offs. Offline tools [53, 156, 155, 176,
209, 75, 34, 158] help administrators decide where and how to store data, but generate
offline, static decisions. These static decisions are not suitable if extensive information
about the workload, such as the set of transactions that the DBMS will execute, is not
available a priori. Additionally, these tools take time to execute and use. Consider the
offline Schism [53] tool that can be used to select a static master placement scheme for
distributed data in a DBMS. This tool requires collecting a representative trace of the
workload, sampling transactions and data item accesses from this trace, constructing an
access graph, running the graph partitioning algorithm Metis [98] over the graph, and then
performing an explanation pass over the partitioning to generalize to data items that were
not sampled. For example, running the Schism tool on a 1% sample of a 10-minute TPC-C
workload trace takes 7 minutes to execute (generating the access graph takes 4 minutes,
and partitioning the graph takes 3 minutes). This significant running time makes these
tools undesirable for use in an online setting.

1.1 Workload Characteristics and Patterns

I now examine the characteristics of workloads that make them time-consuming and com-
plex for administrators to understand. However, these properties typically result in work-
load patterns that a system can observe and utilize to make decisions effectively.

As previously mentioned, workloads can have hotspots. For example, consider Shopify’s
e-commerce database workload [143]. Users place orders for items; hence popular items
in the real world will have more updates to their underlying database representation than
unpopular items, which results in hotspots and contention on these data items in the system
[143, 85]. Moreover, these hotspots can shift over time as the popularity of items changes or
as a result of follow-the-sun cycles from geo-distribution of clients [191] resulting in access
patterns with temporal locality. The DBMS can also suffer from short-term load spikes
that occur because of a short burst of increased demand, such as during popular windows
of online shopping [190, 85]. For example, the request rate can increase between 10 and
100 times on days like Black Friday, Cyber Monday, or Single’s Day [85, 143]. Database
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workloads can also change over time as recent data becomes historical and less likely to be
updated [26].

(a) TPC-C (b) Twitter

Figure 1.2: Measured Co-Access Probabilities for the TPC-C and Twitter workloads.

There is also spatial locality in how data is accessed: shoppers may frequently place
an order for groups of items together (e.g., wrapping paper and birthday cards), resulting
in data co-access patterns. Consider Figure 1.2 which measures the spatial locality of
transactions within two well known database benchmark workloads: TPC-C (Figure 1.2a)
and Twitter (Figure 1.2b). Specifically, in Figure 1.2, on the x- and y-axis, I show data
items grouped by partition and measure the percentage of transactions that co-access both
partitions on the x and y-axis. As shown in Figure 1.2 both TPC-C and Twitter exhibit
locality in how data is accessed. The locality in TPC-C arises from the schema structure,
which is a tree-based schema derived from the warehouse and district structure. In this
case, there are 5 warehouses with regular access patterns following the tree-based schema.
However, there are still regions of data with seemingly less structured access patterns within
a warehouse, such as on the stock table. The locality pattern in Twitter is not as easily
interpretable as the access pattern arises from the relationships among users and tweets
in a many-to-many relationship. Consequently, administrators may not fully understand
or discern data co-access patterns ahead of time in both workloads, whereas a system can
learn these patterns on the fly.
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Figure 1.3: Wikipedia Access Frequency per Minute Over a Month

Figure 1.2 presented a summary of data locality statistics that were collected over a
20 minute period. However, workload patterns may change over time, as workloads are
not static. These changes occur because of (i) changes in end-user behaviour resulting in
changes in access frequency, (ii) short term load spikes because of increased demand, (iii)
changes in access pattern types as data ages and becomes historical, and (iv) change over
time due to follow the sun cycles. This is evident in Figure 1.3, which shows temporal
access patterns arising from access frequency to Wikipedia [195] over a month. Hence,
decisions made based on the workload at one time may yield poor performance as the
workload evolves and changes.

1.2 Designing Adaptive Distributed DBMS

The prior observations about workload characteristics and the performance of distributed
DBMS that rely on static data placement and storage decisions motivate systems that can
dynamically change these decisions on the fly based on the workload. That is, if the system
can adapt, or alter, how they store or place data, then such adaptive systems can provide
several opportunities for performance improvements.

As discussed, workloads are not always static nor understood ahead of time. Adapting
data storage and placement based on the workload at hand ensures that the system can
continually operate at a desirable level of performance. Additionally, by making data
storage and placement decisions adaptively, the system can converge to a set of decisions
that a system administrator may not normally consider. For example, the prior discussion
has contrasted the partitioned and replicated architectures, which differ in their replication
choices, i.e., none or complete, respectively. However, an adaptive system can bridge the
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gap between the two architectures, making granular replication decisions for each data
item: none, partial or complete.

There are several other challenges to building an adaptive distributed DBMS. The
system must execute transactions efficiently while it adapts. It is not practical for the
system to stop processing requests while changing how or where data is stored. Adaptive
systems must perform their changes efficiently; if it takes minutes or hours to complete
a change, then that change may no longer be beneficial to the system. Additionally, an
adaptive system should not require prior workload knowledge, that is, information about
the set of transactions that will execute and when, but should adapt based on the workload
it observes as it executes. That is, the system’s knowledge of the workload should be based
on the transactions executed by the system at any point in time. By contrast, requiring
prior knowledge of the workload restricts the set of workloads that the system can support.
Finally, adaptive systems must prudently select beneficial changes and avoid unnecessary
changes that they will undo in the immediate future. If changes are repeatedly made and
undone, then the system wastes resources in making these changes.

1.3 Contributions

The prior discussion highlights the challenges of statically selecting where and how to store
data in a distributed DBMS, along with the potential benefits of making these decisions
adaptively. In this thesis, I demonstrate that the performance of distributed database
management systems can be improved by automatically adapting how and where data is
stored using online workload information.

To this end, I design and develop three adaptive distributed DBMSs, each addressing
key research issues that I discussed above. Collectively these systems demonstrate the
benefit of adaptive data management. Next, I will motivate the three systems and the
research problems each address that allow them to adapt data storage and placement in a
distributed setting.

1.3.1 Adaptive Dynamic Mastering for Replicated Systems

Recall that the single-master architecture guarantees that transactions execute at a sin-
gle site, thereby avoiding expensive distributed coordination. However, the single-master
becomes a bottleneck as the update workload scales up. In contrast, the multi-master ar-
chitecture, distributes master copies of data, and therefore updates, to multiple sites [184].
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However, the distribution of master copies results in transactions updating data at multiple
sites [53, 76, 94] which require expensive distributed commit protocols, such as two-phase
commit, to ensure transactional consistency and atomicity for multi-site update transac-
tions, multi-master systems must employ a distributed commit protocol, e.g., two-phase
commit. Unfortunately, such commit protocols significantly degrade the performance and
scalability of replicated multi-master systems due to multiple rounds of messages and block-
ing [94, 114, 76, 39]. Hence, where the master copies of data are placed can significantly
affect system performance.

This examination of the two architectures poses the following challenging question: can
I design a replicated database system that preserves the benefits of the single-master and
multi-master architectural approaches while addressing their shortcomings? Such an archi-
tecture should support scalability by distributing the update load over multiple sites while
also avoiding expensive multi-site transaction coordination. That is, the new architecture
should (i) allow single-site transaction execution for all transactions (read-only and up-
date), and (ii) support system scalability by distributing load of both update and read-only
transactions by changing the location of master copies.

While the design of this new architecture brings significant benefits, it poses several
research challenges. First, the system must support dynamic single-site transaction execu-
tion, that is, the system needs to select one site at which to execute a transaction without
constraining execution to this same site for all transactions. Thus, the replicated system
should be flexible so as to support one-site execution at any site in the system, thereby
offering opportunities to distribute load among sites. Second, all master copies of data
that a transaction needs to update as well as read need to be located at the execution site.
Deciding where to locate master copies of data while ensuring that transactions see, and
install, a consistent view of the data adds to the set of challenging problems to solve.

In this thesis, I address these challenges by designing and building a new replicated
system called DynaMast [12] that provides all of the above desirable properties while
addressing the deficiencies of prior approaches. DynaMast guarantees one-site transaction
executions by dynamically transferring data mastership among sites in the distributed
system while maintaining transactional consistency. I call this technique remastering,
which also distributes update and read load among sites in the system.

DynaMast decides the master location of each data item using comprehensive strategies
that consider data item access patterns to balance load among sites and minimize future
remastering. When remastering occurs, it is efficient as DynaMast uses a lightweight
protocol that exploits the presence of replicas to transfer mastership using metadata-only
operations. These design decisions enable DynaMast to significantly reduce transaction
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latency compared to both the single-master and multi-master replicated architectures.
Moreover, I show DynaMast’s ability to flexibly and dynamically select physical transaction
execution sites in the distributed system by learning workload data access patterns, thereby
delivering superior performance in the face of changing workloads.

The contributions of this work are three-fold:

• A novel replication protocol that efficiently supports dynamic mastership transfer to
guarantee single-site transactions while maintaining well-understood and established
transactional semantics.

• I propose remastering strategies that learn workload data-access patterns and ex-
ploit them to remaster data adaptively. The strategies transfer the mastership of
data among sites to minimize future remastering, which in turn reduces transaction
processing latency.

• I empirically compare DynaMast with single-master and multi-master architectures,
demonstrating DynaMast’s superiority on a range of workloads.

1.3.2 Automatic Physical Design for Distributed DBMS

Recall that data replication and partitioning are two primary means of scaling out a DBMS.
The chosen data replication and partitioning schemes for a distributed database form its
physical design. Constructing a distributed physical design includes making the following
key decisions (i) what the data partitions should be, (ii) which data partitions to replicate,
and (iii) where master copies and their replicas should be placed. These decisions, in turn,
determine the sites where transactions execute.

For example, the partitioned database is a well-known distributed physical design [96,
187] that distributes partitioned data such that transactions execute at different sites,
thereby spreading both the update and read load over multiple sites in the distributed
system. Similarly, replicating data to multiple sites [196, 205], which allows transactions
to execute on data copies, represents another distributed physical design. Each of these
designs presents performance trade-offs, that a system administrator or offline tool must
select based on prior workload knowledge. However, these static decisions cannot adapt
to workload changes or are not suitable if extensive information about the workload, e.g.,
access patterns, is not available a priori. Thus, static distributed physical designs fall short
in delivering good performance in the presence of hotspots, changing workloads or when
workload information is not available a priori to inform physical design decisions.
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Chapter 4 presents MorphoSys [13], a distributed database system that I have de-
signed and built that makes decisions automatically on how to partition data, what to
replicate, and where to place these partitioned and replicated data. MorphoSys learns
from workload locality characteristics what the partitions should be, and where to place
master and replica partitions, dynamically. This dynamism frees the system from having
to know workload access patterns a priori, allowing MorphoSys to change or metamor-
phosize the distributed physical design on the fly. Moreover, to avoid expensive multi-site
transaction coordination, MorphoSys dynamically alters its physical design to co-locate
co-accessed data and to guarantee single-site transaction execution.

The contributions of this work are four-fold:

• A system that dynamically constructs physical designs using a set of physical design
change operators.

• A novel concurrency control algorithm and update propagation protocol to support
efficient execution of transactions and physical design changes.

• A cost model that drives physical design decisions to improve transaction processing
performance by learning and exploiting workload patterns.

• An extensive evaluation that establishes MorphoSys’ efficacy to deliver superior per-
formance over prior approaches.

1.3.3 Adaptive Storage for Hybrid Database Workloads

As discussed, DBMSs optimized for OLTP workloads utilize row-based data formats while
OLAP focused systems use column-based data layouts. To show that neither row-oriented
nor column-oriented storage format is optimal for processing both transactional and analyt-
ical workloads concurrently, I conducted microbenchmark experiments. The microbench-
marks update 100 rows, or perform a scan of 10,000 rows over 1 column out of 10 with
10% selectivity or 100% selectivity.

As Figure 1.4 shows, a row-oriented format supports updates at half the latency of the
column-oriented storage. However, column-oriented storage can support analytical (scan)
operations 7× faster than row-oriented storage. This experiment demonstrates the perfor-
mance impact, and importance, of storage format on a hybrid workload. Neither a row
format nor a column format alone is suited for a workload consisting of both transactional
updates and analytical queries, as the performance of one type of the workload suffers due
to the static format of the data.
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(a) Update (b) Scan (select=10%) (c) Scan (select=100%)

Figure 1.4: The average latency of 100 updates (1.4a) and scans of 10,000 data items (1.4b
and 1.4c) on row and column formats.

To mitigate the effect of storage formats on latencies, the traditional architecture for
hybrid transaction/analytical processing (HTAP) workloads periodically migrates new data
from an OLTP system to an OLAP system using extract-transform-load (ETL) utilities
[144]. While this procedural transformation allows organizations to continue executing
OLTP and OLAP workloads concurrently, periodic data migration results in recent (OLTP)
updates that are absent in the OLAP system. Thus, organizations cannot obtain real-
time insights from their data [26]. Modern HTAP systems address these concerns by
storing data in both OLTP and OLAP formats and executing queries across both formats
in a single integrated system [26, 71, 84, 125, 25]. However, replicating all data within
a system consumes at least double the storage resources, particularly for expensive in-
memory processing, and requires costly maintenance across replicas to guarantee data
freshness and consistency.

Although modern HTAP systems improve performance compared to ETL pipelines,
there are four essential aspects of system design that no system has considered integrally.
First, a scale-out, distributed HTAP system can meet the data storage and processing
demands of large scale workloads that exceed the capabilities of a single node [84, 125, 25,
206, 68]. Additionally, the overheads of distributed transaction coordination mean that
applying standard partitioning techniques to existing single-node systems limits scalability.
Moreover, scale-out systems allow for parallel execution both within and among queries.

Second, HTAP systems should selectively store the same data item in different formats
(e.g., row and column) and in different storage tiers (e.g., memory and disk), simultane-
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ously if desirable, using an efficient replication scheme [158, 125, 25]. HTAP systems that
mandate data storage in a single format or storage tier at a time suffer when transac-
tion processing and analytics occur concurrently. Such concurrent workloads frequently
occur as a consequence of real-time data analysis (as in the e-commerce example), fraud
detection, IoT, and logistics domains [26, 144, 153, 152, 120].

Third, HTAP systems should leverage layout and storage-specific optimizations, such
as per-column sort orders and compression [9, 89, 90, 213, 8, 10, 97], which reduce CPU
and storage overheads, or row splitting [87] to avoid conflicts. Using these optimizations
enables HTAP systems to match the performance of specialized systems.

Fourth, based on the workload, HTAP systems should adapt their physical storage
layout autonomously, that is, without manual intervention [26, 151]. The rising complexity
of workloads means that system administrators cannot decide on a single efficient data
layout that both effectively utilizes resources and reduces transaction latency [26, 13].
Furthermore, when workloads change, a layout that works well for one workload is unlikely
to work well for another type of workload, as depicted in Figure 1.4.

Chapter 5 of this thesis presents Proteus [14, 15], a distributed database system that
delivers the aforementioned requirements of an integral HTAP system. Proteus adaptively
stores data in multiple formats and storage tiers to support HTAP workloads efficiently.
Based on the workload, Proteus makes adaptive storage decisions autonomously and lever-
ages layout-specific optimizations that enable it to concurrently achieve OLTP throughput
comparable to row-oriented storage systems and OLAP query latencies that are on par
with column-oriented storage systems. Consequently, Proteus significantly outperforms
other state-of-the-art distributed HTAP systems.

The contributions of this work are four-fold:

• The case for adaptive storage for HTAP workloads.

• The architecture and design of adaptive storage in Proteus and how transaction and
query execution is supported in this environment.

• A model to learn workload patterns and make cost-based layout decisions to support
high throughput transactions and low latency queries for HTAP workloads.

• An extensive experimental evaluation that demonstrates the effectiveness and per-
formance benefits of Proteus.
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Table 1.1: A summary of the contributions in this thesis.

Summary of
Contributions

System

Context What is Adapted?
Techniques for

Efficient Execution

How are
Decisions

Made?

DynaMast
(Chapter 3) [12]

Replicated DBMS Master location of data Remastering protocol
Heuristic
Strategies

MorphoSys
(Chapter 4) [13]

Distributed DBMS
Distributed Physical Design
(data replication, data
partitioning, data mastership)

Physical Design
Change Operators

Partition-based
multi-version
concurrency control

Learned Cost
Model

Proteus
(Chapter 5)
[14, 15]

HTAP DBMS

Storage layout of data
(storage format, tier,
replication, partitioning,
mastership)

Storage Layout Changes

Storage Aware Operators

Estimating
access latencies
and arrivals

1.3.4 Summary of Contributions

Table 1.1 summarizes the contributions of this thesis by system. Each system operates in
a different context and adapts different aspects of the DBMS. Moreover, each system de-
scribes novel techniques to execute transactions and adaptations efficiently and techniques
to make adaptation decisions. Collectively, this work is an exciting step towards the vision
of autonomous database systems that allow users to specify only the data to store and the
queries to execute, leaving the system to choose the storage and execution mechanisms
[45, 151].

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces an adaptive distributed
database system architecture that is used in the design of the systems presented in this
thesis. Chapters 3, 4, and 5 present these three systems, DynaMast, MorphoSys and
Proteus, respectively. Related work is presented in Chapter 6. I present the conclusion of
this thesis and directions for future research in Chapter 7.
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Chapter 2

Architecture

To support both efficient transaction execution and adaptation in a distributed DBMS,
I propose a shared-nothing [181] two-tier architecture consisting of an adaptation advisor
and data sites, as shown in Figure 2.1. Data sites and adaptation advisors execute on
separate physical nodes (servers), each equipped with local memory and secondary storage.
Communication between nodes occurs over a local area network.

Clients submit transactions to the adaptation advisor that decides where (at which
site(s)) and how (execution plan) a transaction will execute. The adaptation advisor does
so by: (i) identifying the location of the data that the transaction needs to access, which
it collects and stores as metadata, (ii) initiating changes to how and where data is stored
based on the submitted transaction, (iii) forwarding the transaction to the relevant data
sites for execution, and (iv) tracking statistics about submitted transactions to model the
workload for use when making its decisions.

Deciding where and how to store data for every data item results in a large set of
possible decisions to make and manage. Thus, data items are grouped together into data
partitions and the decision of how and where to store data is made on a per-partition
basis. A partition is a contiguous range of one or more rows and columns based on the
primary key of each row (row id) and column identifiers. A partition may range from a
single cell to an entire table, however every cell belongs to exactly one partition. The
master, or updateable copy, of a partition is located at a single data site in the system,
though different partitions may be mastered at different sites. Partitions may have read-
only replicas at other data sites. Updates to the partition must always occur at the site
that masters the partition, while reads to the partition can occur at either master or replica
sites. It is the responsibility of the adaptation advisor to track this partition metadata.
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Figure 2.1: An architecture for an adaptive distributed database management system.
The adaptation advisor receives requests from clients, and routes them to data sites for
execution. To improve system performance, the adaptation advisor adapts how and where
the system stores data.

Data sites store data as prescribed by the adaptation advisor and execute transactions.
Data sites coordinate transactions amongst each other to ensure that transactions observe
a consistent state. Data sites persist transactions by committing their updates to a redo-
log (Chapter 2.2). If a data site contains a replica of data mastered at another site, the
replica subscribes to updates to the data via the log, and lazily (asynchronously) applies
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the update as a refresh transaction consistently.

2.1 System Model

The system architecture supports transactions and provides strong-session snapshot isola-
tion (SSSI) [56], which strengthens the guarantees provided by snapshot isolation (SI). SI
is a standard [31, 52, 16] and popular isolation level in both single node DBMSs [189, 160]
and distributed DBMSs [84, 206, 179, 32], while SSSI is common for distributed and repli-
cated database systems [47, 103, 35, 107]. SSSI strengthens SI by preventing transaction
inversion and ensures that client transactions always see all updates from their previous
transactions. Under SSSI, every transaction T is assigned a begin timestamp such that
T sees the updates made by transactions with earlier commit timestamps. SSSI systems
select begin timestamps that are larger than the latest commit timestamps of prior trans-
actions submitted by the client to prevent transaction inversion. SSSI systems also ensure
that if two transactions update the same data item and have overlapping timestamps, only
one transaction successfully commits [31]. Additionally, for every update transaction T ,
its corresponding refresh transaction R(T ) is applied to replicas in an order that ensures
transactions observe a consistent snapshot of data.

Both the data site’s concurrency control and adaptation advisor make use of transac-
tional read/write information. For analytical queries, clients determine this information
from the columns accessed in each table necessary to execute each query. For OLTP
transactions, clients have this information based on primary keys, or if needed, execute
reconnaissance queries [119, 194].

2.2 The Redo-Log

The redo-log is implemented using Apache Kafka [102] and serves as the single persistent
source of truth of the database state. The redo-log also acts as an asynchronous event log
between data sites. The redo-log has the following properties:

Property 1. Log entries from a data site are delivered at least once to other data sites.

Property 2. Log entries written to the redo-log are persistent.

The implementation creates creates distinct Apache Kafka [102] logs for updates from
each site, which provides Properties 1 and 2.
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Each data site writes all data item updates and adaptive changes to a site-specific
redo-log on commit. Each entry in this log has a sequence number, which depends only on
site-specific state, that can be used to de-duplicate and re-order log entries. The simplest
sequence number is a site local counter that is atomically incremented on each transaction
commit or adaptation.

When consuming log entries, the data site maintains state on a per-site basis. This
state is (i) the next expected log entry sequence number n, and (ii) a (priority) queue of
buffered log entries, q, based on sequence number. Data sites skip log entries with sequence
number k if k < n or there is a log entry in q with sequence number equal to k, which
eliminates duplicate log entries. The replication layer consumes log entries from q if there
is an entry with sequence number equal to n, the next expected entry. If such an entry
exists, it must be the minimum, an efficient operation for a priority queue. When the
replication layer consumes this entry, it increments n. Hence, from the perspective of the
replication layer, per-site log entries are consumed exactly once and are ordered by log
entry sequence number.

2.3 Fault Tolerance and Recovery

The distributed database system uses redo-logs as the basis of recovery and to guarantee
fault-tolerance.

If a data site fails, it first recovers to an initial snapshot state by consulting an existing
replica or stored checkpoint of data and copying this state. Next, the data site begins
replaying the persistent redo-logs (Property 2) from the log entry sequence number asso-
ciated with this initial snapshot state. Once the recovered data site applies all updates in
its redo-log, then it has recovered and can begin serving transactions. The data site will
continue to apply propagated updates from other data sites, becoming indistinguishable
from a data site lagging in applying propagated updates. Recovery at a data site is guar-
anteed to complete because the site’s redo-log is bounded in size and cannot grow during
the recovery process. A data site cannot execute any new transactions while failed, or
when recovering, hence it cannot add to its redo-log.

The adaptation advisor stores metadata about how and where data is stored at the
data sites, such as whether a stored partition is a master or replica copy. Thus, to recover
a failed adaptation advisor, the advisor must discover this metadata. The advisor contacts
each data site to determine what data is stored there. The adaptation advisor cannot make
any changes while failed, or when recovering. The adaptation advisor can only reload the
location of data items and whether they are replicas or a master copy.
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If either: (i) at least one copy of each data partition is available or (ii) a checkpoint
is accessible, then the system can recover from multiple simultaneous failures. Each failed
data site can recover independently of others, and once all data sites have recovered, the
adaptation advisor can subsequently recover.

Finally, the prior discussion assumes that a data site can be recovered. If the site
cannot be recovered, then any of its mastered data items must be remastered to other
data sites. To do so, a lease mechanism can be used [69]. Specifically, the data site can
periodically signal its continued ability to store and manage data as part of periodically
reporting workload observations to the adaptation advisor (Figure 2.1). If a data site fails
to renew its lease, then the adaptation advisor revokes the lease and treats the data site as
failed, which stops routing transactions to the site. For each data item to be remastered,
the adaptation advisor must select the new master data site and follow a modified recovery
procedure. Specifically, the new site should redo all updates to the data item stored in the
failed site’s persistent redo-log (Property 2). Once all data item updates are redone, the
site can become the master of the data item.1

2.4 Summary

In this Chapter, I presented a two-tiered architecture for an adaptive distributed database
system. The two-tiered architecture consists of an adaptation advisor, which decides how
and where to store data, and data sites, which store data and execute transactions. The
architecture is also well-suited to support the strong-session snapshot isolation level, a pop-
ular and intuitive isolation level for distributed database systems. Finally, the architecture
is fault-tolerant by using redo-logs as the mechanism for both replication and recovery. In
the subsequent Chapters, I use this architecture as a basis for all three systems described
in this thesis.

1This protocol is equivalent to performing only the grant operation described in Chapter 3.
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Chapter 3

DynaMast: Adaptive Dynamic
Mastering for Replicated Systems

Recall from Chapter 1 that the single-master architecture guarantees that transactions
execute at a single site thereby avoiding expensive distributed coordination. In contrast, the
multi-master or partitioned architecture, distributes master copies of data items to multiple
sites [184]. However, the distribution of master copies results in transactions updating data
at multiple sites [53, 76, 94], requiring expensive distributed commit protocols, such as
two-phase commit, to ensure transactional consistency and atomicity. Unfortunately, such
commit protocols significantly degrade the performance and scalability of replicated multi-
master systems due to multiple rounds of messages and blocking [94, 114, 76, 39]. Hence,
where the master copies of data are placed can significantly affect system performance.

In this Chapter, I present DynaMast, a replicated DBMS that adaptively transfers the
mastership of data items among sites to guarantee single-site transactions. This dynamic
transfer of mastership provides the advantages of both the multi-master architecture —
load distribution – and the single-master architecture — single site transactions.

3.1 Background

I now discuss the limitations of the single-master and multi-master replication approaches
and illustrates the benefits of dynamic mastering.
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(a) Single-Master (b) Multi-Master (c) Dynamic Mastering

Figure 3.1: An example illustrating the benefits of dynamic mastering over single-master
and multi-master replicated architectures. Uppercase bolded letters represent master
copies of data items, with read-only replicas distributed to the other sites. Single-master
bottlenecks the master site as all transactions execute there. Multi-master requires a dis-
tributed commit protocol for both transactions T1 and T2 as the write set is distributed.
In dynamic mastering, d1 is remastered before T1 executes, allowing T1 and T2 to execute
as single-site transactions at Site 2. The load is distributed by executing T3 at Site 1.

3.1.1 Limitations of Single-Master & Multi-Master Architectures

Replicated single-master systems route all update transactions to a single site, eliminating
multi-site transactions but overloading that site. Figure 3.1a illustrates this problem by
example; a client submits three update transactions that all execute on the master copies
(indicated by bold, uppercase letters) at the single-master site (Site 1). Hence, the up-
date workload overloads the single-master site as it cannot offload any update transaction
execution to a replicated site (Site 2).

By contrast, the replicated multi-master architecture distributes updates among the
sites to balance the load. In the example in Figure 3.1b, updates to data item d1 and
d3 execute at Site 1, while updates to d2 execute at Site 2. However, transactions that
update both d1 and d2, such as T1 are forced to execute at multiple sites (Site 1 and Site
2), requiring a distributed commit protocol to ensure atomicity. As discussed in Chapter 1,
such protocols are expensive as they incur overhead from blocking while waiting for a global
decision and suffer from latencies due to multiple rounds of communication. I illustrate
this using the popular two-phase commit (2PC) protocol [177] in Figure 3.1b (Steps 2-4).
Observe that all transactions with distributed write sets, such as T2 in Figure 3.1b, must
execute as expensive distributed transactions. Only transactions with single-site write
sets, such as T3, are free to execute as local transactions in the multi-master replicated
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architecture.

3.1.2 Dynamic Mastering

Figure 3.1c shows how transactions T1, T2 and T3 execute using the dynamic mastering
protocol, which, as in the single-master case, guarantees single-site execution while al-
lowing the distribution of load as in the multi-master architecture. Like a multi-master
architecture, observe that both sites contain master copies of data. Executing T1 at one
site requires changing the mastership of either data item d1 or d2. Our adaptation ad-
visor recognizes this requirement and, without loss of generality, decides to execute the
transaction at Site 2, and therefore dynamically remasters d1 from Site 1 to Site 2. To do
so, the adaptation advisor sends a release message for d1 to Site 1, which releases d1’s
mastership after any pending operations on d1 complete (Step 1). Next, the adaptation
advisor informs Site 2 that it is now the master of d1 by issuing the site a grant message
for d1 (Step 2). In Step 3, T1 executes unhindered at Site 2 by applying the operations and
committing locally, requiring no distributed coordination. Through careful algorithmic
and system design that enables remastering outside the boundaries of transactions and
using metadata-only operations, DynaMast ensures that dynamic mastering is efficient
(Chapter 3.2).

Remastering is necessary only if a site does not master all of the data items that a trans-
action will update. For example, in Figure 3.1c, a subsequent transaction T2 also updates
d1 and d2, and therefore executes without remastering, amortizing the first transaction’s
remastering costs. Unlike the single-master architecture (Figure 3.1a), dynamic mastering
allows T3 to execute at a different site, thereby distributing the write load through multiple
one-site executions. Thus, it is important that the adaptation advisor adaptively decides
where to remaster data to balance load and minimize future remastering — objectives the
remastering strategy takes into account (Chapter 3.3).

I consider a model in which data is fully replicated so that every site has a copy of
every data item, allowing flexibility in mastership placement.

3.2 Dynamic Mastering Protocol

Having presented an overview of remastering and its benefits, I now detail the dynamic
mastering protocol and its implementation.
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3.2.1 Maintaining Consistent Replicas

The dynamic mastering protocol exploits lazily maintained replicas to transfer ownership of
data items efficiently. Lazily-replicated systems execute update transactions on the master
copies of data, and apply updates asynchronously to replicas as refresh transactions.

I now describe how the dynamic mastering protocol guarantees snapshot isolation (SI)
that is popularly used by replicated database systems [179, 32, 56], and later outline the
provision of session guarantees on top of SI. Recall from Chapter 2.1 that supporting SSSI
requires that (i) if two transactions update the same data item and have overlapping times-
tamps, only one transaction successfully commits, and (ii) for every update transaction T ,
its corresponding refresh transaction R(T ) is applied to replicas in an order that ensures
transactions observe a consistent snapshot of data.

To apply refresh transactions in a consistent order, DynaMast track each site’s state
using version vectors. In a dynamic mastering system with m sites, each site maintains an
m-dimensional vector of integers known as a site version vector, denoted svv i[ ] for the ith

site (site Si), where 1 ≤ i ≤ m. The j-th index of site Si’s version vector, svv i[j], indicates
the number of refresh transactions that Si has applied for transactions originating at site
Sj. Therefore, whenever site Si applies the updates of a refresh transaction originating at
site Sj, Si increments svv i[j]. Similarly, svv i[i] denotes the number of locally committed
update transactions at site Si.

DynaMast assigns update transactions an m-dimensional transaction version vector,
tvv [ ] that acts as a commit timestamp and ensures that updates are applied in an order
consistent with this commit timestamp across sites. When an update transaction T begins
executing at site Si, it records Si’s site version vector svv i[ ] as T ’s begin timestamp
(tvvB(T )[ ]). During commit, T copies tvvB(T )[ ] to tvvT , increments svv i[i] and copies that
value to tvvT [i]. Thus, tvvT [ ] (the commit timestamp) reflects T ’s position in Si’s sequence
of committed update transactions, while tvvB(T )[ ] (the begin timestamp) represents the
updates visible to T when it executed.

Recall from Chapter 2.1 that SSSI prevents transaction inversion by adding session
freshness rules. To enforce the client session-freshness guarantee, the system tracks each
client’s state using a client version vector cvv c[ ] and ensures that a client’s transaction
executes on data that is at least as fresh as the state last seen by the client. Specifically,
transactions respect the following freshness rules : when a client c with an m-dimensional
client session version vector cvv c[ ] accesses data from a site Si with site version vector
svv i[ ], c can execute when svv i[k] ≥ cvv c[k],∀k ∈ (1, . . . ,m). After the client accesses the
site, it updates its version vector to svv i[ ].
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The transaction version vector and site version vector indicate when a site can apply
a refresh transaction. Given a transaction T that commits at site Si, a replica site Sj ap-
plies T ’s refresh transaction R(T ) only after Sj commits all transactions whose committed
updates were read or updated by T . Formally, T depends on T ′ if T reads or writes a data
item updated by T ′. That is, R(T ) cannot execute and commit at Sj until Sj commits all
transactions that T depends on. The transaction version vector (tvvT [ ]) encapsulates the
transactions that T depends on, while the site version vector (svv j[ ]) indicates the updates
committed at Sj. Hence, site Sj blocks the application of R(T ) until the following update
application rule holds (Equation 3.1):(∧

k 6=i

svv j[k] ≥ tvvT [k]
)
∧
(
svv j[i] = (tvvT [i]− 1)

)
(3.1)

As an example of the update application rule, consider the three-sited system in Fig-
ure 3.2. In the first two steps, transaction T1 updates a data item and commits locally at
site S1, which increments the site version vector from [0, 0, 0] to [1, 0, 0]. Next, T1’s refresh
transactions, R(T1), begin applying the updates to sites S2 and S3. R(T1) commits at S3,
and sets svv 3[ ] to [1, 0, 0] (Step 4), but site S2 has not yet committed R(T1) (Step 5). In
Step 6, transaction T2 begins after R(T1) and commits at site S3, and therefore sets svv 3[ ]
to [1, 0, 1], capturing that T2 depends on T1. The update application rule blocks S2 from
applying R(T2) until R(T1) commits (Step 7). Without blocking the application of T2, it
would be possible for T2’s updates to be visible at site S2 before T1’s updates have been
applied, despite the fact that T2 depends on T1. Finally, after site S2 applies and commits
R(T1), it applies R(T2), which results in svv 2[ ] being set to [1, 0, 1] and ensures a globally
consistent order of update application.

3.2.2 Transaction Execution and Remastering

The dynamic mastering protocol is implemented within the architecture shown in Fig-
ure 2.1 consisting of an adaptation advisor and data sites composed of a transaction ex-
ecution layer, concurrency control and replication layer and data storage layer. Clients
submit transactions to the adaptation advisor, which remasters data items if necessary
and routes transactions to an appropriate data site. The concurrency control layer at each
data site interacts with the data storage layer to maintain version vectors, apply propa-
gated updates as refresh transactions, and handle remastering requests. The transaction
execution layer processes transactions and sends transactional updates to the replication
layer, which forwards them to the other sites for application as refresh transactions.
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Figure 3.2: An example showing how commits and update propagation affect site version
vectors.

Clients and the system components interact with each other using remote procedure
calls (RPCs). Clients issue transactions by sending a begin transaction request contain-
ing the transaction’s write set to the adaptation advisor, which decides on the execution
site for the transaction using the routing and remastering strategies discussed in Chap-
ter 3.3. If necessary, the adaptation advisor transfers the mastership of relevant data items
to the execution site via remastering.

To perform remastering (Algorithm 1), the adaptation advisor issues parallel release
RPCs to each of the data sites that hold master copies of data items to be remastered (Line
7). When a data site receives a release message, it waits for any ongoing transactions
writing the data to finish before releasing mastership of the items and responding to the
adaptation advisor with the data site’s version vector. Immediately after a release request
completes, the adaptation advisor issues a grant RPC to the site that will execute the
transaction (Line 8). This data site waits until updates to the data item from the releasing
site have been applied to the point of the release. The data site then takes mastership
of the granted items and returns a version vector indicating the site’s version at the time
it took ownership. After all necessary grant requests complete, the adaptation advisor
computes the element-wise max of the version vectors that indicates the minimum version
that the transaction must execute on the destination site (Line 9). Finally, the adaptation
advisor notifies the client of the site that will execute its transaction and this minimum
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Algorithm 1 Remastering Protocol

Require: Transaction T ’s write set w
Ensure: The site S that will execute the update transaction T , and version vector out vv

indicating T ’s begin version
1: S = determine best site(w) // execution site
2: data item locs = group by master loc(w)
3: out vv = {0} ×m //zero vector
4: // In parallel:
5: for (site Sd, data item d) ∈ data item locs do
6: if Sd 6= S then
7: // Sd currently masters d
8: rel vv = send release(Sd, d)
9: grant vv = send grant(S, d, rel vv)

10: out vv = elementwise max(out vv , grant vv)
11: end if
12: end for
13: return (out vv , S)

version vector. release and grant are executed as transactions, and consequently a data
item waits to be remastered while being updated.

Appendix A.1 formalizes the correctness of DynaMast’s remastering protocol and how
it preserves SSSI through detailed proofs.

Remastering ensures correctness in the presence of failures, with the key event being
when the failure happens with respect to writes to the redo-log. If a site fails before the
release writes to the log, or after the grant writes to the log, then recovery proceeds
as described in Chapter 2.3. If failure at the new master site happens between these log
writes, then no site will master these data items upon recovery. The adaptation advisor
may then select a new master site and send a grant request. Thus, at all times, at most
one site masters a data item at a time.

Parallel execution of release and grant operations greatly speed up remastering,
reducing waiting time for clients. Clients begin executing as soon as their write set is re-
mastered, benefiting from the remastering initiated by clients with common write sets. A
client then submits transactions directly to the data site. Client commit/abort operations
are submitted to the data site. Note that since data is fully replicated, clients need not
synchronize with each other unless they are waiting for a release or grant request. Fur-
ther, read-only transactions may execute at any site in the system without synchronization
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across sites.

A key performance advantage is that coordination through remastering takes place out-
side the boundaries of a transaction, and therefore does not block running transactions.
Once a transaction begins at a site, it executes without any coordination with any other
sites, allowing it to commit or abort unilaterally. By contrast, in a multi-master architec-
ture, changes made by a multi-site transaction are not visible to other transactions because
the database is uncertain about the global outcome of the distributed transaction. Thus,
distributed transactions block local transactions further increasing transaction latency [94].
To illustrate this benefit, consider a transaction T4 that updates B concurrently with T1

in our example from Figure 3.1. T4’s update to B can occur while A is being remas-
tered, unlike during 2PC in multi-master that blocks T4 while the global outcome of T1 is
unknown.

Thus, remastering operations (i) change only mastership location metadata, (ii) occur
outside the boundaries of transactions, (iii) do not physically copy master data items,
and (iv) allow one-site transaction execution once a write set is localized. These features
make our dynamic mastering protocol lightweight and efficient, resulting in significant
performance advantages over existing approaches (Chapter 3.5).

3.3 Adaptation Advisor Strategies

In Chapter 3.2, I described the dynamic mastering architecture and the importance of
adaptive remastering decisions. The DynaMast system implements this dynamic master-
ing architecture and efficiently supports it using comprehensive transaction routing and
remastering strategies. I will now describe these strategies in detail, deferring descriptions
of their implementation to Chapter 3.4.

Transaction routing and remastering decisions play a key role in system performance.
Routing and remastering strategies that do not consider load balance, data freshness, and
access patterns for data items can place excessive load on sites, increase latency waiting
for updates, and cause a ping-pong effect by repeatedly remastering the same data be-
tween nodes. Thus, DynaMast uses comprehensive strategies and adaptive models to make
transaction routing and remastering decisions.

26



3.3.1 Write Routing and Remastering

When the adaptation advisor receives a write transaction request from client c, it first
determines whether the request requires remastering. If all items the transaction wishes
to update are currently mastered at one of the sites, then the adaptation advisor routes
the transaction there for local execution. However, if these items’ master copies are dis-
tributed across multiple sites, the adaptation advisor co-locates the items via remastering
before transaction execution. DynaMast makes remastering decisions prudently: data is
remastered only when necessary, employing strategies that choose a destination site that
minimizes the amount of remastering in the future.

These remastering strategies consider load balance, site freshness, and data access pat-
terns. DynaMast uses a linear model that captures and quantifies these factors as input
features and outputs a score that represents an estimate of the expected benefits of re-
mastering to a site. Concretely, DynaMast computes a score for each site, indicating the
benefits of remastering the transaction’s write set there and then remasters these data
items to the site that obtained the highest score.

Balancing Load

Workloads frequently contain access skew, which if left unaddressed can result in resource
under-utilization and performance bottlenecks [191]. Consequently, DynaMast’s remaster-
ing strategy balances data item mastership allocation among the sites according to the
write frequency of the items, which in turn balances the load.

When evaluating a candidate site S as a destination for remastering, DynaMast con-
siders both the current write load balance and the projected load balance if it were to
remaster to S the items that the transaction wishes to update. For a system mastership
allocation X, I express the write balance as the distance from perfect write load balancing
(where every one of the m sites processes the same volume of write requests):

fbalance dist(X) =

√√√√ m∑
i=1

(
1

m
− freq(Xi)

)2

where freq(Xi) ∈ [0, 1] indicates the fraction of write requests that would be routed to site
i under mastership allocation X. If each site receives the same fraction of writes ( 1

m
), then

fbalance dist(X) = 0; larger values indicate larger imbalances in write load.
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DynaMast uses fbalance dist to consider the change in load balance if it were to remaster
the items a transaction T wishes to update to a candidate site S. Let B be the current
mastership allocation and A(S) be the allocation resulting from remastering T ’s write set
to S. The change in write load balance is computed as:

f∆balance(S) = fbalance dist(B)− fbalance dist(A(S)) (3.2)

A positive value for f∆balance(S) indicates that the load would be more balanced after
remastering to site S; a negative value indicates that the load would be less balanced.

Although f∆balance(S) gives an indication of a remastering operation’s improvement
(or worsening) in terms of write balance, it does not consider how balanced the system
currently is. If the current system is balanced, then unbalancing it slightly, in exchange
for less future remastering, may yield better performance. However, for a system that
is already quite imbalanced, re-balancing it is important. DynaMast incorporates this
information into a scaling factor fbalance rate(S) that reinforces the importance of balance
in routing decisions:

fbalance rate(S) = max
(
fbalance dist(B), fbalance dist(A(S))

)
(3.3)

DynaMast combines the change in write load balance, f∆balance , with the balance rate,
fbalance rate , to yield an overall balance factor. This factor considers both the magnitude of
change in write load balance and the importance of correcting it:

fbalance(S) = f∆balance(S) · exp
(
fbalance rate(S)

)
(3.4)

Estimating Remastering Time

After a candidate site S is chosen as the remastering destination for a transaction, the
grant request blocks until S applies the refresh transactions for all of the remastered items.
Additionally, the transaction may block at S to satisfy session-freshness requirements.
Thus, if S lags in applying updates, the time to remaster data and therefore execute the
transaction increases.

DynaMast’s strategies estimate the number of updates that a candidate site S needs
to apply before a transaction can execute by computing the dimension-wise maximum of
version vectors for each site Si from which data will be remastered and client c’s version
vector (cvv c[ ]). DynaMast subtracts this vector from the current version vector of S and
perform a dimension-wise sum to count the number of necessary updates, expressed as:

frefresh delay(S) =
∥∥∥max

(
cvv c[ ],max

i

(
svv i[ ]

))
− svvS[ ]

∥∥∥
1

(3.5)
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Co-locating Correlated Data

Data items are often correlated; a particular item may be frequently accessed with other
items according to relationships in the data [37, 172, 53]. Thus, DynaMast considers the
effects of remastering data on current and subsequent transactions. DynaMast’s strategies
remaster data items that are frequently written together to one site, which optimizes
for current and subsequent transactions with one remastering operation. The goal of
co-accessed data items sharing the same master site is similar to the data partitioning
problem [172, 53], solutions to which typically model data access as a graph and perform
computationally expensive graph partitioning to decide on master placement. Instead, the
adaptation advisor’s strategy uses a heuristic that promotes mastership co-location based
on data access correlations.

DynaMast considers two types of data access correlations: data items frequently written
together within a transaction (intra-transaction access correlations) and items indicative
of future transactions’ write sets (inter-transaction access correlations). In the former
case, DynaMast wishes to keep data items frequently accessed together mastered at a
single site to avoid remastering for subsequent transactions (ping-pong effect). In the
latter case, DynaMast anticipates future transactions’ write sets and preemptively remaster
these items to a single site. Doing so avoids waiting on refresh transactions to meet session
requirements when a client sends transactions to different sites. Considering both of these
cases enables DynaMast to rapidly co-locate master copies of items that clients commonly
access together.

To decide on master co-location, DynaMast exploits information about intra-transact-
ional data item accesses. For a given data item d1, DynaMast tracks the probability that
a client will access d1 with another data item d2 in all transactions. DynaMast tracks this
probability as a conditional probability P (d2|d1). That is, given that a transaction accesses
d1, what is the likelihood that d2 is also accessed in that transaction. For a transaction with
write set w that necessitates remastering and a candidate remastering site S, DynaMast
considers all d1 in the write set w, all data items d2, and computes the intra-transaction
localization factor as:

fintra txn(S) =
∑
d1∈w

∑
d2

P (d2|d1)× single sited(S, {d1, d2}) (3.6)

where single sited returns 1 if remastering the write set to S would place the master
copies of both data items at the same site, -1 if it would allocate the master copies of d1

and d2 to different sites, and 0 otherwise (no change in co-location). Thus, single sited
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encourages remastering data items to sites such that future transactions would not require
remastering. Importantly, Equation 3.6 considers the effect of remastering on data items
that may not be in the transaction (d2). DynaMast normalizes the benefit of remastering
these items by the likelihood of data item co-access. Thus, DynaMast need only consider
data items d2 for a given d1 such that P (d2|d1) > 0, and therefore considers only d2 that
were in a transaction with d1, not all possible d2.

Consequently, a positive fintra txn score for site S indicates that remastering the trans-
action’s write set to S will improve data item placements overall and reduce future remas-
tering.

DynaMast also tracks inter-transactional access correlations, which occur when a client
submits a transaction that accesses item d2 within a short time interval of accessing a
data item d1. This interval, ∆t, is configured based on inter-transactional arrival times
and denote the probability of this inter-transactional access as P (d2|d1;T ≤ ∆t). For a
transaction with write set w and candidate remastering site S, DynaMast computes the
inter-transaction localization factor similarly to Equation 3.7, but normalize with inter-
transactional likelihood:

finter txn(S) =
∑
d1∈w

∑
d2

P (d2|d1;T ≤ ∆t)× single sited(S, {d1, d2}) (3.7)

finter txn(S) quantifies the effects of remastering the current transaction’s write set to
candidate site S with respect to accesses to data items in the future.

Putting It All Together

Each of the previously described factors come together to form a comprehensive model
that determines the benefits of remastering at a candidate site. When combined, fea-
tures complement each other and enable the adaptation advisor to find good master copy
placements.

fbenefit(s) =wbalance · fbalance(s) + wdelay · frefresh delay(s)+

wintra txn · fintra txn(s) + winter txn · finter txn(s)
(3.8)

DynaMast combines the scores for site S in Equations 3.4 through 3.7 using a weighted
linear model (Equation 3.8), and remaster data to the site that obtains the highest score.
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3.3.2 Read Routing

Site load and timely update propagation affect read-only transaction performance as clients
wait for sites to apply updates present in their session. Thus, DynaMast routes read-only
transactions to sites that satisfy the client’s session-based freshness guarantee. DynaMast
randomly chooses a site that satisfies this guarantee, which both minimizes blocking and
spreads load among sites.

3.4 The DynaMast System

DynaMast implements the dynamic mastering architecture and consists of an adaptation
advisor and data sites. The adaptation advisor uses the remastering strategies from Chap-
ter 3.3. System components communicate via the Apache Thrift RPC library [178].

3.4.1 Data Sites

A data site is responsible for executing client transactions. Integrating the transaction
execution, data storage and concurrency control layers improves system performance by
avoiding concurrency control redundancy within the data site while minimizing logging and
replication overheads. The replication layer propagates updates among data sites through
writes to a durable log that also serves as a persistent redo-log (Chapter 2.3). For fault
tolerance and to scale update propagation independently of the data sites, DynaMast uses
Apache Kafka [102] to store logs and transmit updates.

Data Storage and Concurrency Control

The data site stores records belonging to each relation in a row-oriented in-memory table
using the primary key of each record as an index. DynaMast system supports reading from
snapshots of data using multi-version concurrency control (MVCC), similar to Microsoft’s
Hekaton engine [105, 57], to exploit SSSI [56]. The data site stores multiple versions (by
default four, as determined empirically) of every record, which are called versioned records,
that are created when a transaction updates a record. Transactions read the versioned
record that corresponds to a specific snapshot so that concurrent writes do not block
reads [57]. To avoid transactional aborts on write-write conflicts, DynaMast uses locks to
mutually exclude writes to records, which is simple and lightweight.
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Update Propagation

Recall from the update application rule (Chapter 3.2.1) that when an update transaction
T commits at site Si, the site version vector index svv i[i] is atomically incremented to
determine commit order and the transaction is assigned a commit timestamp (transaction
version vector) tvvT [ ]. Site Si’s replication layer serializes tvvT [ ] and T ’s updates and
writes them to Si’s log. Each data site subscribes to updates from logs at other sites.
When another site Sj receives T ’s propagated update(s) from Si’s log, Sj’s replication
layer deserializes the update, follows the update application rules from Chapter 3.2.1, and
applies T ’s updates as a refresh transaction by creating new versioned records. Finally,
the replication layer makes the updates visible by setting svv j[i] to tvvT [i].

Avoiding the Long Fork Anomaly

DynaMast enforces a total commit order that transactions and data sites follow to avoid
the long fork anomaly [179]. The long fork anomaly is allowed under parallel snapshot
isolation, but not under snapshot isolation [31]. Hence, long forks cannot occur in strong
session snapshot isolation. The long fork anomaly occurs as a consequence of the write
skew anomaly, which is allowed under all forms of snapshot isolation. If transactions T1

and T2 experience write skew, then the long fork anomaly occurs if subsequent transactions
can possibly observe both states: T1’s effects but not T2’s effects, and T2’s effects but not
T1’s effect. If the long fork anomaly is eliminated, the system can only observe one of:
T1’s effects but not T2’s effects, or T2’s effects but not T1’s effects. That is, there is a total
commit order: either T1 commits before T2 or T2 commits before T1.

DynaMast uses the adaptation advisor to enforce the total commit order. The adap-
tation advisor tracks sites version numbers. When transactions are routed to data sites,
these versions numbers are used to enforce a total commit order as part of the begin and
commit timestamp information. Hence when two transactions T1 and T2 give rise to write
skew, as allowed in SI, where say T2 commits after T1, T2 will have a greater commit times-
tamp than T1. Hence, subsequent transactions observe one of three database states: (i)
the initial state in which no transactions have committed, (ii) T1’s update (but not T2’s),
or (iii) both T1 and T2’s updates. Transactions cannot see a state that includes T2’s update
but not T1’s update; thus, long fork is avoided.

DynaMast’s concurrency control algorithm is presented in Algorithm 2. DynaMast
initializes a transaction’s begin and commit timestamp to the client version vector to ensure
the transaction observes state at least as up to date as the latest previously observed state
from the same session (Line 3). To ensure transactions respect a total commit order, the
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Algorithm 2 DynaMast’s Concurrency Control Protocol

Require: Transaction T ’s sorted write set {pw}, session
timestamp cvvc[ ], and a site Si where T will execute

Ensure: The updated session timestamp
1: // Begin
2: // At the adaptation advisor
3: tvvB(T )[ ] = cvvc[ ]

4: for each Sj ∈ m sites do
5: read lock Sj metadata
6: tvvB(T )[j] = svvj [j]

7: end for
8: unlock {Sj} metadata
9: // At data site Si

10: // wait for Si’s version svv i[ ] to reach tvvB(T )[ ]

11: for p ∈ {pw} do
12: write lock p
13: end for
14: // update the begin timestamp
15: tvvB(T )[ ] = svv i[ ]

16: // Transaction Logic
17: Write uncommitted version of data items in partition pw

18: Read the largest versioned data items d in partition pr,

such that if d is mastered at site j, v(d) ≤ tvvB(T )[j]
19: // Commit
20: // Update the commit version number
21: if wrote data items then
22: increment svv i[i] and store as v
23: end if
24: // assign the commit timestamp
25: tvvT [] = tvvB(T )[]

26: tvvT [i] = v
27: // Set the updated data items to version v
28: unlock partitions that were locked
29: // At the adaptation advisor
30: for each Sj ∈ m sites do
31: wait for svvj [] to reach tvvB(T )[ ]

32: write lock Sj metadata
33: if Sj == Si then
34: svvj [j] = (max(tvvT [j], svvj [j])
35: end if
36: cvvc[j] = tvvT [j]
37: end for
38: unlock {Sj} metadata
39: return cvvc[ ]

adaptation advisor initializes the begin timestamp to the latest site version number at each
site (Line 6).

At the data site, the transaction waits for updates to be applied (Line 10), waiting
for the freshness rules to be satisfied, then locks the partitions in the write set (Line 11)
to ensure mutual exclusion of updates. As there may have been in-flight updates to the
partition, the data site updates the begin timestamp (Line 15). Once the transaction has
a begin timestamp, a transaction can execute its logic by writing new versioned data items
(Line 17) and reading the data items belonging to the snapshot determined by the begin
timestamp (Line 18).

When the transaction commits, if it updated data items it increments the site version
number (Line 22). Then it copies that value as its commit timestamp and stamps the
version on each newly created versioned data item (Line 27), which makes the updates
visible. The adaptation advisor then updates its view of the site version vectors (Line 34)
so that subsequent transactions abide by the commit order and avoid the long fork anomaly.
Finally, the adaptation advisor updates the client version vector (Line 36) so that clients
avoid transaction inversions within a session.
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3.4.2 Adaptation Advisor

The adaptation advisor is responsible for routing transactions to sites for execution and
deciding if, where and when to remaster data items using the strategies detailed in Chap-
ter 3.3.

To make a remastering decision, the adaptation advisor must know the site that contains
the master copy of the data item. To reduce the overhead of this metadata, the adaptation
advisor supports grouping of data items into partitions1, tracking master location on a per
partition basis, and remastering data items in partition groups. For each partition group,
DynaMast stores partition information that contains the current master location and a
readers-writer lock.

To route a transaction, the adaptation advisor looks up the master location of each
data item in the transaction’s write set in a concurrent hash-table containing partition
information. The adaptation advisor acquires each accessed partition’s lock in shared read
mode. If one site masters all partitions, then the adaptation advisor routes the transaction
there and unlocks the partition information. Otherwise, the adaptation advisor makes a
remastering decision and dynamically remasters the corresponding partitions to a single
site. To do so, the adaptation advisor upgrades each partition information lock to exclusive
write mode, which prevents concurrent remastering of a partition. Then, the adaptation
advisor makes a remastering decision using vectorized operations that consider each site as
a destination for remastering in parallel. Once the adaptation advisor chooses a destination
site for the transaction, it remasters the necessary partitions using parallel release and
grant operations, updates the master location in the partition and downgrades its lock
to read mode. When the site masters the necessary partitions, the transaction begins
executing, and the adaptation advisor releases all locks.

The adaptation advisor builds and maintains statistics such as data item access fre-
quency and data item co-access likelihood for its strategies (Chapter 3.3) to effectively
remaster data. Thus, the partition information also contains a counter that indicates
the number of accesses to the partition and counts to track intra- and inter-transaction
co-access frequencies. The adaptation advisor captures these statistics by adaptively sam-
pling [29] transaction write sets and recording sampled transactions, and each transaction
executed within a time window ∆t (Equation 3.7) of it — submitted by the same client
— in a transaction history queue. From these sampled write sets, the adaptation advisor
determines partition level access and co-access frequencies, which it uses to make its remas-

1By default, the adaptation advisor groups sequential data items into equally sized partitions [191]
though clients can supply their own grouping.
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tering decisions. Finally, DynaMast expires samples from the transaction history queue by
decrementing any associated access counts to adapt to changing workloads.

3.5 Performance Evaluation

I now present experimental results that show that DynaMast’s ability to dynamically
change data item mastership significantly improves system performance.

3.5.1 Evaluated Systems

To conduct an apples-to-apples comparison, I implemented all alternative designs within
the DynaMast framework. Hence, all systems share the same data site, including the stor-
age system, multi-version concurrency control scheme, and isolation level (strong-session
snapshot isolation). This allows for the direct measurement and attribution of DynaMast’s
performance to the effectiveness of the dynamic mastering protocol and adaptation strate-
gies.

DynaMast: I implemented the dynamic mastering protocol and adaptation strategies
as the DynaMast system described in Chapter 3.4. In each experiment, DynaMast has no
fixed initial data placement as it relies on its remastering strategies to distribute master
copies among the sites.

Partition-Store: is the partitioned multi-master database system that I implemented
in DynaMast. Partition-store uses table-specific partitioning (e.g. range, hash) to assign
partitions to data sites, but does not replicate data except for static read-only tables. By
using the offline tool Schism [53], I favoured partition-store to have superior partitioning
for the OLTP workloads that I benchmark against. Partition-store uses the popular 2PC
protocol to coordinate distributed transactions.

Multi-master: I implemented a replicated multi-master database system by aug-
menting partition-store to lazily maintain replicas. Thus, the multi-master system allows
read-only transactions to execute at any site. As each data item has one master copy,
updates to a data item occur only on the data item’s master copy.

Single-Master: I leveraged DynaMast’s adaptibility to design a single-master system
in which all write transactions execute at a single (master) site while lazily maintaining
read-only replicas at other sites. Single-master is superior to using a centralized system
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because the single-master system routes read-only transactions to (read-only) replicas,
thereby reducing the load on the master.

LEAP: like DynaMast, guarantees single-site transaction execution but bases its ar-
chitecture on a partitioned multi-master database without replication [114]. To guarantee
single-site execution, LEAP localizes data in a transaction’s read and write sets to the
site where the transaction executes. To perform this data localization, LEAP does data
shipping, copying data from the old master to the new master. I implemented LEAP by
modifying the partition-store implementation.

3.5.2 Benchmark Workloads

In the experiments, each data site executes on a 12-core machine with 32 GB RAM. I
also deployed an adaptation advisor machine and two machines that run Apache Kafka
to ensure that there are enough resources available to provide timely and efficient update
propagation. A 10Gbit/s network connects machines. All results are averages of at least
five, 5-minute OLTPBench [58] runs with 95% confidence intervals shown as bars around
the means.

Given the ubiquity of multi-data item transactions [58, 1] and workload access pat-
terns [54, 114] present in a broad class of OLTP workloads, I incorporated these realistic
characteristics into the YCSB workload. I used YCSB’s scan transaction that reads from
200 to 1000 sequentially ordered keys, and enhanced the read-modify-write (RMW) trans-
action to update three keys. These modifications induce access correlations and multi-
partition transactions, resulting in multi-site (distributed) transactions for multi-master
and partition-store, remastering for DynaMast, and data-shipping for LEAP.

Each YCSB experiment uses four data sites containing an initial database size of 5 GB
that grows to 30 GB of data by the end of the run, thereby taking up most of the available
memory.

The TPC-C workload evaluation contains three transaction types: New-Order, Pay-
ment and Stock-Level that represent two update intensive transactions and a read-only
transaction, respectively, and make up the bulk of both the workload and distributed
transactions. By default, I use eight data sites, 350 concurrent clients and a 45% New-
Order, 45% Payment, 10% Stock-Level mix that matches the default update and read-only
transaction mix in the TPC-C benchmark. The TPC-C database has 10 warehouses and
100,000 items that grows to more than 20 GB of in-memory data per site by the end of
an experiment run. Having more than this number of warehouses outstrips the physical
memory of a data site machine.
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The SmallBank workload models a banking application where users have checking and
savings accounts and can transfer money between accounts, or check account balances. In
the SmallBank transaction mix, there exist three types of transactions. First, single-row
update transactions that account for 45% of the workload, including the DepositCheck-
ing transaction that adds money to a users’ checking account. Second, two-row update
transactions that comprise 40% of the workload mix, as in the SendPayment transaction,
which atomically transfers money between two accounts. Third, the read-only Balance
transaction that reads two rows and returns the sum of these rows — a users’ checking
and savings accounts — and occurs 15% of the time.

3.5.3 Results

I now present DynaMast’s experimental results against partition-store, multi-master, single-
master, and LEAP to demonstrate that remastering is efficient and effective.

Write-Intensive Workloads

(a) Uni. 50% RMW/50% Scan (b) Uni. 90% RMW/10% Scan

Figure 3.3: Experiment results for DynaMast in Write-Intensive YCSB Workloads.

Schism [53] reports that the partitioning strategy that minimizes the number of dis-
tributed transactions is range-partitioning. Thus, I assigned partition-store and multi-
master a range-based partitioning scheme. DynaMast does not have a fixed partition
placement and must learn access patterns to place partitions accordingly. As shown in
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Figure 3.3a, DynaMast outperforms the other systems, improving transaction throughput
by 2.3× over partition-store and 1.3× over single-master. Partition-store performs poorly
compared to the other systems due to additional round-trips during transaction process-
ing. While LEAP’s transaction localization improves performance over partition-store by
20%, DynaMast delivers double the throughput of LEAP. DynaMast executes the scan
operations at replicas without the need for remastering while LEAP incurs data transfer
costs to localize both read-only and update transactions.

Single-master offloads scan transactions to replicas, thus avoiding distributed transac-
tions without overloading the master site. However, as the number of clients increases
in Figure 3.3a, the single-master site bottlenecks as it becomes saturated with update
transactions. Like single-master, multi-master’s replication allows scans to run at any site,
which improves performance compared to partition-store. Multi-master avoids the single-
site bottleneck as it distributes writes. However, its multi-site write transactions incur
synchronization costs that DynaMast eliminates. Consequently, DynaMast’s remastering
strategies avoid the pitfalls of both single and multi-master; they ensure master copies
of data are distributed evenly across the sites without executing distributed transactions,
resulting in better resource utilization and thus superior performance.

Next, I increased the proportion of RMW transactions to 90% (Figure 3.3b), which
increases the number of transactions that require remastering and increases contention.
DynaMast continues to outperform the other systems by delivering almost 2.5× more
throughput.

Complex Write Transactions

I studied the effect of a workload with more complex write transactions by using TPC-C.
The New-Order transaction writes dozens of keys as part of its execution, increasing the
challenge of efficiently and effectively placing data via remastering. TPC-C is not fully-
partitionable due to cross-warehouse New-Order and Payment transactions but Schism
confirms that the well-known partitioning by warehouse strategy minimizes the number
of distributed transactions. Thus, I partitioned partition-store and multi-master by ware-
house but force DynaMast to learn partition placements.

I first studied the differences in New-Order transaction latency among DynaMast and
its comparators (Figure 3.4a). On average, DynaMast reduces the time taken to complete
the New-Order transaction by a hefty 40% when compared to single-master. This large
reduction in latency comes from DynaMast’s ability to process New-Order transactions at
all data sites, thereby spreading the load across the replicated system unlike that of single
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(a) New-Order Lat. (b) Stock-Level Lat. (c) TPC-C Payment Lat.

Figure 3.4: Transactional Latency in the TPC-C workload.

(a) TPC-C Tail Lat. (b) TPC-C Throughput (c) Payment Tail Lat.

Figure 3.5: Tail latency and throughput for DynaMast in the TPC-C workload.

master. As shown in Figure 3.5a, the largest difference in transaction latency between
DynaMast and single master exists in 10% of transactions that suffer the most from load
effects. Specifically, DynaMast reduces the 90th and 99th percentile tail latency by 30%
and 50% respectively compared to single-master.

DynaMast reduces average New-Order latency by 85% when compared to partition-
store and multi-master, both of which perform similarly. DynaMast achieves this reduction
by running the New-Order transaction at a single site and remastering to avoid the cost
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of multi-site transaction execution, which partition-store and multi-master must incur for
every cross-warehouse transaction. Consequently, Figure 3.5a shows that both partition-
store and multi-master have significantly higher (10×) 90th percentile latencies compared
to DynaMast.

DynaMast reduces New-Order latency by 96% over LEAP, which has no routing strate-
gies and thus continually transfers data between sites to avoid distributed synchronization,
unlike DynaMast’s adaptive strategies that limit remastering. LEAP’s localization efforts
result in high transfer overheads and contention, manifesting in a 99th percentile latency
that is 40× higher than DynaMast’s (Figure 3.5a).

DynaMast has low latency for the Stock-Level transaction (Figure 3.4b) because effi-
cient update propagation rarely causes transactions to wait for updates, and multi-version
concurrency control means that updates do not block read-only transactions. As single-
master and multi-master also benefit from these optimizations, they have similar latency
to DynaMast. Partition-store’s average latency is higher because the Stock-Level transac-
tion can depend on stock from multiple warehouses, necessitating a multi-site transaction.
Although multi-site read-only transactions do not require distributed coordination, they
are subject to straggler effects, increasing the probability of incurring higher latency as
they must wait for all requests to complete. Thus, the slowest site’s response time deter-
mines their performance. By contrast, LEAP, which lacks replicas, has orders of magnitude
higher Stock-Level latency than DynaMast as it must localize read-only transactions.

Figure 3.5b shows how throughput varies with the percentage of New-Order transac-
tions in the workload. When New-Order transactions dominate the workload, DynaMast
delivers more than 15× the throughput of partition-store and multi-master, which suf-
fer from multiple round trips and high tail latencies. Similarly, DynaMast delivers 20×
the throughput of LEAP that lacks adaptive master transfer strategies and consequently
continually moves data to avoid distributed coordination. DynaMast’s significantly lower
New-Order transaction latency results in throughput 1.64× that of single-master.

In the TPC-C benchmark, the Payment transaction is an update transaction, which
records a payment by a customer. Similar to the New-Order transaction, 15% of the
time, the Payment transaction updates a remote warehouse and district to simulate a
customer paying for a remote order. However, unlike the New-Order transaction, the
Payment transaction is much lighter as it updates only four rows by inserting a history of
the payment and incrementing the payment totals for the relevant customer, district and
warehouse.

Figures 3.4 and 3.5 present the experimental results for the Payment transaction for the
TPC-C workload, with a 15% remote warehouse by default. As shown in Figure 3.4c, single-
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master has the lowest average latency at 0.3 ms, and DynaMast a mere 1.2 ms. However,
as shown in Figure 3.5b DynaMast has higher overall throughput for the TPC-C workload
overall. Consequently, DynaMast trades off a small increase in Payment transaction latency
for improvements in the workload overall.

There are two primary causes for this trade off in performance. First, routing all
Payment transactions to a single-master does not place a heavy load on this node, when
compared to the New-Order transaction. Hence, the single-master does not suffer from load
effects. Second, as the workload is not perfectly partitionable, DynaMast must perform
some remastering to execute transactions at a single site, an operation not necessary for
single-master. Figure 3.5c highlights the cost of this remastering on the Payment trans-
action, as DynaMast only differs from single-master significantly in the slowest 10% of
transactions. Although DynaMast could master all data items at a single-node, doing so
would significantly increase the latency of the New-Order transaction, as we show next.

As with the New-Order transaction, observe that LEAP, partition-store and multi-
master experience orders of magnitude higher transaction latency for the Payment trans-
action, and DynaMast reduces Payment latency by 99%, 97% and 96% over these com-
petitors, respectively (Figure 3.4c).

Decreasing Transaction Access Locality

(a) New-Order Lat. (b) Payment Lat.

Figure 3.6: Effects of Varying Cross-Warehouse Transactions in DynaMast
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As shown in Figure 3.6a, DynaMast reduces New-Order transaction latency by an aver-
age of 87% over partition-store and multi-master when one-third of New-Order transactions
cross warehouses. Partition-store and multi-master’s New-Order latency increases almost
3× over having no cross warehouse transactions to when one-third of the transactions cross
warehouses, which results in an increase of only 1.75× in DynaMast. LEAP increases the
New-Order latency by more than 2.2× as more distributed transactions necessitate more
data transfers while DynaMast brings its design advantages that include routing strategies
and remastering to bear, delivering better performance than LEAP.

Partition-store and multi-master’s latency increase because cross warehouse transac-
tions also slow down single warehouse transactions [94]. Recall that 2PC requires holding
locks during the uncertain phase to prevent uncommitted changes from being visible to
other transactions, which therefore also blocks local transactions from executing. As the
number of cross-warehouse transactions increases, DynaMast recognizes that being a more
dominant single-master system can bring performance benefits, and therefore reacts by
mastering more data items at one site. However, DynaMast knowingly avoids routing
all New-Order transactions to a single site to avoid placing excessive load on it. These
techniques allow DynaMast to significantly reduce New-Order latency by 25% over single-
master.

Figure 3.6b presents the average latency of the payment transaction as the rate of cross
warehouse Payment transactions increase. Observe that latency increases just a mere 0.2
ms for DynaMast whereas latency for partition-store and multi-master increase by nearly
10 ms as the number of cross warehouse Payment transactions increases from 0 to the
default 15%. As in the experiment with cross warehouse New-Order transactions, this
experiment demonstrates that DynaMast adds little overhead to transaction execution,
and has effective master placement strategies when compared to partition-store. Finally,
observe that single-master experiences little change in Payment transaction latency as the
number of cross-warehouse transactions increase because the lightweight transactions do
not increase contention as was the case for the New-Order transaction.

Skewed Workloads

I evaluated DynaMast’s ability to balance load in the presence of skew via remastering
with a YCSB-based Zipfian 90%/10% RMW/scan workload (Figure 3.7a).

DynaMast significantly outperforms its comparators, improving throughput over multi-
master by 10×, partition-store by 4×, single-master by 1.8×, and LEAP by 1.6×. Partition-
store’s performance suffers as it cannot distribute heavily-accessed partitions to multiple
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(a) Skew 90% RMW/10% Scan (b) Skew Transaction Routing

Figure 3.7: Effects of Skew on DynaMast in YCSB

sites (Figure 3.7b), resulting in increased transaction latency due to resource contention.
Multi-master suffers the same fate while additionally having to propagate updates, which
further degrades performance. LEAP shows better throughput than partition-store as it
executes transactions at one site but suffers from co-location of hot (skewed) partitions.
Resource contention degrades performance for single-master as all update transactions
must execute at the single master site. DynaMast mitigates the performance issues of its
competitors by spreading updates to master data partitions over all sites in the replicated
system evenly, resulting in balanced load and superior performance.

Learning Changing Workloads

Figure 3.8: DynaMast’s Adaptivity Over Time
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Access patterns in workloads often change [191] resulting in degraded performance when
data mastership/allocation is fixed. A key feature of DynaMast is its ability to adapt to
these workload changes by localizing transactions.

To demonstrate this adaptive capability, I conducted a YCSB experiment with master-
ship allocated manually using range partitioning but with the workload utilizing random-
ized partition access. Hence, DynaMast must learn new correlations and remaster data to
maintain performance.

I deployed 100 clients running 100% RMW transactions accessing data with skew. This
challenges DynaMast with high contention and the remastering of nearly every data item.
As Figure 3.8 shows, DynaMast rises to this challenge, continuously improving performance
over the measurement interval resulting in a throughput increase of 1.6× from when the
workload change was initiated. This improvement showcases DynaMast’s ability to learn
new relationships between data partitions and its strategies, leveraging this information
effectively to localize transactions via remastering.

Remastering Analysis

Figure 3.9: Co-Access Sensitivity in DynaMast

Recall that DynaMast makes remastering decisions by employing a linear model (Equa-
tion 3.8) that contains four hyperparameters (wbalance , wdelay , wintra txn , winter txn). To
determine the effects of these parameters on the adaptation advisor’s master placement
decisions and subsequently on performance, I performed sensitivity experiments using a
skewed YCSB workload. I varied each parameter from its default value (normalized to 1)
by scaling one or two orders of magnitude up, and down. I also set each parameter, in
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turn, to 0 to determine the effect of removing the feature associated with that parameter
from the adaptation advisor’s strategy.

When every parameter is non-zero, throughput remains at 8% of the maximal through-
put, demonstrating DynaMast’s robustness to variation in parameter values.

When wbalance is 0, throughput drops by nearly 40% as DynaMast increasingly masters
data at one master site since no other feature encourages load balance. Figure 3.7b shows
the effects on transaction routing when wbalance is scaled to 0.01 of its default: 34% of
the requests go to the most frequently accessed site while 13% of requests go to the least
frequently accessed site, compared to even routing (25%) by default.

The wintra txn and winter txn hyperparameters complement each other; when one is 0, the
other promotes co-location of co-accessed data items. To further examine these effects, I
induce workload change, as before, so that learning and understanding data item access
patterns is of utmost importance.

Figure 3.9 shows throughput increasing as wintra txn increases from 0 to the relative
value of 1 used in experiments. This 16% improvement in throughput demonstrates that
the adaptation advisor captures the intra-transactional co-access patterns, using them to
co-locate the master copies of co-accessed data items. Observe that a similar trend of
throughput increasing by 10% occurs when the inter-transactional co-access parameter
(winter txn) varies.

Scalability Results

To show that DynaMast can support larger database sizes, I evaluated its performance
on the YCSB workloads using an initial database size of 30 GB. Over the course of the
experiment, the database size grows to 120 GB given that the system keeps at least 4
versions of each record. Consequently, I added memory to the database machines to
bring them to 128 GB of RAM. No other aspects of the system were changed for these
experiments.

Figure 3.10a shows DynaMast’s throughput for the YCSB workloads with initial database
sizes of 5 GB and 30 GB that grow to occupy nearly all of the memory of the data site ma-
chines. Observe that there is little variation in performance as the database size increases
for the uniform 50/50 (50-50U) and 90/10 RMW/Scan workloads (90-10U), though Dyna-
Mast does experience a slight performance degradation on the write-intensive workload due
to increased data tracking and management overheads at the adaptation advisor and in-
creased remastering. DynaMast’s performance on the skewed workload (90-10S) increases
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(a) Data Size Scalability (b) Scaling Across Data Sites

Figure 3.10: DynaMast’s Scalability

because the access skew is spread across more items, and therefore decreases contention.
These experiments show that DynaMast’s adaptive remastering strategies and underlying
infrastructure continue to perform well as database size grows.

To assess DynaMast’s ability to scale across an increasing number of data sites, I
evaluated DynaMast using 4, 8, 12 and 16 data sites using the uniform YCSB workload
with a 50% RMW and 50% scan mix. I used a balanced read-write workload and a 5 GB
database size to reduce write contention on individual partitions and attribute DynaMast’s
scaling capabilities to effective resource utilization.

Figure 3.10b shows a maximum throughput comparison for DynaMast as the number
of data sites increase. Observe that DynaMast improves throughput by more than 3× as
the number of sites grows by a factor of 4. DynaMast achieves this near-linear scalability
because it can effectively distribute requests among sites and therefore leverage their re-
sources to improve performance. As the number of sites increases, the rate of increase in
throughput slows, a consequence of maintaining full replicas at each data site by applying
transactional updates. Finally, even as nearly 900,000 transactions per second proceed
through the system, the adaptation advisor is not a bottleneck.

Effect of Short Transactions

To stress the transaction protocol, I next evaluate DynaMast using a workload that contains
short transactions. In this workload, unlike TPC-C and YCSB, transactions access at most
two records, which are the minimum necessary for different sites to master data accessed in
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(a) SmallBank Throughput

(b) Two-Row Update (c) Single-Row Update (d) Two-Row Read

Figure 3.11: Experimental results for the SmallBank workload showing maximum through-
put and the tail latency for SmallBank’s three transaction classses.

the transaction, and trigger remastering in DynaMast, 2PC in partition-store and multi-
master, or data shipping in LEAP. Such a workload places a different burden on systems
than the heavier TPC-C transactions as the underlying transaction protocol dominates
transaction execution time, not the actual transaction logic. To do so, I use the SmallBank
workload, which models a banking application.

As shown in Figure 3.11a, DynaMast has the highest throughput in the SmallBank
workload, when compared to partition-store (by 15%), multi-master (by 10%), single-
master (by 40%) and LEAP (more than 600%). To understand DynaMast’s improvement
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in throughput, I examined the distribution of transaction latencies for the three transaction
types within the workload, and present their tail latencies in Figures 3.11b, 3.11c and
3.11d. Comparing DynaMast with single-master, observe that the load effect of routing
all updates to a single-site is more than 7× higher tail latencies for update transactions
(Figures 3.11b and 3.11c), whereas DynaMast dissipates the update load among sites.
By contrast, read-only transactions (Figure 3.11d) run at replicas for single-master and
therefore have similar latencies to DynaMast.

LEAP initially has slightly lower single-row update latencies than DynaMast (Fig-
ure 3.11c), as DynaMast requires system resources to maintain replicas asynchronously.
However, LEAP suffers from high tail latencies for these single-row transactions, as they
must wait for data migration that is necessary for multi-row transactions to complete. As
LEAP does not have smart routing strategies, LEAP suffers from frequent and expensive
data migration, which increases multi-row transaction latency by nearly 40 × that of Dy-
naMast (Figures 3.11b and 3.11d). As with LEAP, partition-store initially has a similar
single-row transaction latency to DynaMast (Figure 3.11c); however, the requirements of
the uncertain phase during distributed transaction processing force blocking — even for
single-row transactions — which increases tail latency. At the tail of multi-row transactions
(Figures 3.11b and 3.11d), which require the expensive two-phase commit for partition-
store, observe that DynaMast has latency that is a quarter of partition-store. Multi-master
exhibits similar trends to partition-store for update transactions, as both systems incur dis-
tributed transactions, however, multi-master must propagate updates which increases tail
latency slightly when compared to partition-store. For read transactions, multi-master
can leverage the existence of replicas and execute at a single site, which reduces trans-
action latency to levels closer to that of single-master and DynaMast. This reduction in
read-transaction latency compared to partition-store contributes to multi-master’s higher
throughput.

In summary, DynaMast significantly reduces the tail latency of transactions in Small-
Bank, thereby demonstrating the benefits of the dynamic mastering protocol and the trans-
action routing strategies.

Performance Breakdown

DynaMast is designed to be a system that delivers significant performance benefits with
low overhead. The latencies for routing decisions, wait time for pending updates and
transaction commit time are low. DynaMast’s comprehensive strategies that learn access
correlations are effective at minimizing remastering as less than 3% of transactions require
remastering.
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Figure 3.12: A breakdown of transactional latencies in DynaMast.

Figure 3.12 plots a breakdown of DynaMast’s average transaction execution time (Fig-
ure 3.12) during a Uniform 50/50 RMW/Scan YCSB experiment. I divide latency into six
categories: the time that it takes the adaptation advisor to lock and identify the location
of data items, which accounts for 10% of the overall average response time; the time taken
to make a routing decision — including remastering — that takes less than 1% of the
overall time as DynaMast amortizes the cost of remastering across many transactions; the
amount of time that requests spend in the network between system components, which is
more than 40% of the time; the actual execution time of the database stored procedure
(actual transaction logic) accounts for 45% of overall latency; the time to begin a transac-
tions, including lock acquisition at the data site and waiting for any session state, which
takes less than 1% of the overall time; and the time to commit a transaction that takes
just over 1% of the overall time.

Transaction routing accounts for less than 1% of the overall transaction time due to the
amortization of remastering across many transactions. DynaMast achieves this low over-
head because its strategies aim to minimize future remastering by modelling inter- and
intra-transactional data access correlations. Consequently, less than 1% of transactions in
the YCSB and SmallBank workloads and less than 3% in TPC-C require remastering. I
additionally measured the network overhead of remastering and DynaMast as a whole. In
a YCSB workload that generated an average of 43 MB/s of stored procedure arguments,
propagating refresh transactions consumed 155 MB/s of network traffic — traffic neces-
sary in any replicated system. Remastering requests accounted for a meager 3 MB/s of
network traffic. These results indicate that DynaMast adds minimal overhead to transac-
tion execution, while significantly outperforming the other systems for different workload
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characteristics.

3.6 Summary

In this Chapter, I presented DynaMast, a multi-master replicated database system that
guarantees one-site transaction execution through dynamic mastering. As shown experi-
mentally, DynaMast’s novel remastering protocol and adaptive strategies are lightweight,
ensure balanced load among sites, and minimize remastering as part of future transac-
tions. Consequently, DynaMast eschews multi-master’s expensive distributed coordination
and avoids the single-master site bottleneck. These design strengths allow DynaMast to
improve performance by up to 15× over prior replicated system designs.
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Chapter 4

MorphoSys: Automatic Physical
Design Metamorphosis for
Distributed Database Systems

Recall from Chapter 1, that distributed DBMSs use data replication and partitioning to
distribute data among sites. The data replication and partitioning schemes, chosen by
an administrator or system, form a distributed database’s physical design. A distributed
physical design must decide (i) what the data partitions should be, (ii) which data partitions
to replicate, and (iii) where (at which site) to place the master (or updateable) copy of
a partition, and where to place any replicas (or secondary) copies of partitions. These
decisions, in turn, determine the sites where each transaction executes. Consequently, how
data is stored (partitioning and replication) and where (location of master and replica
copies) influences transaction execution.

In this chapter, I present how MorphoSys automatically decides how to partition data,
what to replicate, and where to place these partitioned and replicated data. MorphoSys
learns from workload locality characteristics what the partitions should be, and where
to place master and replica partitions, dynamically. This dynamism frees the system
from having to know workload access patterns a priori, allowing MorphoSys to change or
metamorphosize the distributed physical design on-the-fly. Moreover, to avoid expensive
multi-site transaction coordination, MorphoSys dynamically alters its physical design to
co-locate co-accessed data and guarantee single-site transaction execution via dynamic
replication and the remastering protocol described in Chapter 3.

Remarkably, once MorphoSys starts executing, it requires no administrator interven-
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tion. Unlike prior approaches [172, 201], MorphoSys adapts its physical design continuously
and iteratively, adjusting both its replication and partitioning schemes to cater to the work-
load. MorphoSys uses a learned cost model based on workload observations to decide how,
and when, to alter its physical design.

4.1 System Model

For every partition, MorphoSys decides the site that stores the master copy of the partition
and the sites that lazily replicate the partition. A change in any of these decisions results in
a physical design change. MorphoSys acts on these decisions, using physical design change
operations (Chapter 4.2) to dynamically change the system’s data replication, partitioning
and mastering schemes.

A data partition is defined a contiguous range of data items based on their row id ’s.
Partition p contains all data items with row id ’s in an inclusive row range between the
partition start and end, denoted as (start(p), end(p)). A partition is mastered at a single
site and has replicas on a possibly empty set of sites.

4.2 Physical Design Change Operations

MorphoSys supports a variety of dynamic physical design change operations. These opera-
tions are flexible building-blocks that MorphoSys effectively combines to produce efficient
distributed database physical designs.

Figure 4.1 exemplifies MorphoSys’ physical design change operations by example, using
two data sites. Figure 4.1a shows the initial design, while Figures 4.1b–4.1e illustrates the
series of physical design changes that culminate in a new physical design.

In the initial physical design (Figure 4.1a), transaction T1 writes data item 3, and
transaction T2 writes data item 7, hence both update the partition (0, 9) located on data
site 1. Thus, there is physical lock contention on the partition even though the updates
logically do not conflict. Splitting the partition, a dynamic partitioning operation, changes
the data partition that data items belong to and dissipates the contention (Figure 4.1b)
as transactions T1 and T2 subsequently update disjoint partitions.

In Figure 4.1c, three transactions execute on data site 1, including the read-only trans-
action T3, adding load to the site. As replicas service read-only transactions, dynamically
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(a) Initial State (b) Split (c) Add Replica (d) Remaster (e) Remove/Merge

Figure 4.1: An overview of physical design change operators in MorphoSys, and their
effects.

replicating to add a replica of partition (5, 9) to data site 2 allows T3 to execute there,
thereby distributing load among sites.

In Figure 4.1d transaction T2 updates data items 7 and 12. To guarantee single-site
transaction execution, MorphoSys ensures that one data site contains the master copies
of the partitions containing data items 7 and 12 — partitions (5, 9) and (10, 19) — by
dynamically changing the location of the master of partition (5, 9) from data site 1 to
data site 2 via remastering. Single-site transaction execution ensures that transactions are
not blocked waiting for distributed state during 2PC’s uncertain phase that increases lock
holding time while blocking local and distributed transactions [94, 76, 12, 119]. Observe
that data site 2 was previously replicating partition (5, 9), which ensures remastering is
efficient [119, 12].

Replicas require space for storage and their maintenance consumes resources. Mor-
phoSys dynamically removes replicas of partitions if there is little benefit in maintaining a
replica, such as when no transactions read from the replica, as in Figure 4.1e for partition
(5, 9) at data site 1.

Finally, to reduce the metadata overhead of tracking partitions, MorphoSys merges
co-accessed partitions together, as shown in Figure 4.1e for partitions (5, 9) and (10, 19)
creating partition (5, 19).

The examples in Figure 4.1 show the benefits of physical design changes. MorphoSys
performs changes prudently by considering the workload to avoid unnecessary changes or
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changes that it will undo in the immediate future.

4.2.1 Formal Definitions of Physical Design Change Operators

I have previously outlined the definition of a partition, the requirements for transactions,
and the five physical design change operators. I now formalize these definitions.

A partition of data p contains all data items with row id ’s that fall in the inclusive range
(start(p), end(p)). The partition p has its master copy located at site Si = master(p), and
replicas placed at a (possibly empty) set of sites {Sj|j 6= i} = replicas(p).

I formally define the data items in a transaction’s read set as {dr}, and the data
items in its write set as {dw}. Given these data items, the adaptation advisor identifies
the set of partitions {pr} and {pw} as the read and write set, respectively. To identify
a partition given a data item d, the adaptation advisor finds the partition p such that
start(p) ≤ d ≤ end(p) holds. A transaction can execute at a site S if for all pw in the write
set master(pw) = S holds, and if for all pr in the read set S ∈ {master(pr)} ∪ replicas(pr)
holds

The definition of the five physical design change operators is as follows.

split: given a partition p, and k such that start(p) < k ≤ end(p), then split(p, k),
creates new partitions pL and pH and removes p. Partitions pL and pH are defined such
that pL = (start(p), k − 1) and pH = (k , end(p)), master(pL) = master(pH) = master(p),
and replicas(pL) = replicas(pH) = replicas(p).

merge: given partitions pL, and pH then merge(pL, pH), creates new partition p, and
removes pL and pH . For merge to succeed, pL and pH must satisfy the following end(pL) =
start(pH) − 1, master(pL) = master(pH), and replicas(pL) = replicas(pH). Partition p is
defined such that p = (start(pL), end(pH)), master(p) = master(pL) = master(pH), and
set replicas(p) = replicas(pL) = replicas(pH).

add replica: given partition p, with replicas(p) = R, and Sj, such that Sj 6= master(p)
and Sj 6∈ R then
add replica(p, Sj) sets replicas(p) = R ∪ {Sj}.

remove replica: given partition p, with replicas(p) = R, and Sj, such that Sj ∈ R
then remove replica(p, Sj) sets replicas(p) = R \ {Sj}.

remaster: given partition p, with replicas(p) = R, and Sj, such that Sj ∈ R, and
master(p) = Si, then remaster(p, Sj), sets master(p) = Sj, and sets replicas(p) = R \
{Sj} ∪ {Si}.
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4.3 Transaction Execution and Physical Design Change

I now describe MorphoSys’ novel concurrency control and update propagation mechanisms
and how they provide efficient physical design changes and transaction execution. I begin
by presenting the design to achieve efficient transaction execution followed by the mechanics
of the physical design operators.

4.3.1 Transaction Isolation and Concurrency

MorphoSys decouples read and write operations as these operations do not conflict under
SSSI. This decoupling allows concurrent execution of reads at replicas while data sites apply
propagated updates. MorphoSys uses multi-versioning [105, 57] to efficiently decouple reads
and writes.

All of MorphoSys’ operations, including transactions and physical design change opera-
tions, occur on a per partition basis. That is, operations access a partition or its metadata
only if accessed in a transaction’s read or write set or as part of a design change operator.
Per partition operations minimize contention and blocking as the system accesses only
relevant partitions, and replicas wait for only the necessary updates to relevant partitions
to preserve consistency.

4.3.2 Partition-Based Multi-version Concurrency Control

Guided by the design requirements of supporting session consistency with SI, decoupling
reads and writes, and performing operations on a per partition basis, MorphoSys uses a
novel concurrency control algorithm. The algorithm maintains per partition version infor-
mation and a lock per partition. Any update to a partition by transactions or physical
design change operators acquires the partition’s lock using lock ordering to avoid dead-
locks. Consequently, at most one writer to a partition executes at a time, which prevents
unnecessary transactional aborts. Concurrent writes and design changes to different par-
titions are supported since these are conflict-free with locks held on a per partition basis.
Dynamic partitioning, through split and merge operators, ameliorates contention within
and across partitions. Read operations leverage multi-versioning to execute freely without
acquiring partition locks.

MorphoSys uses per partition version information and tracks transactional dependen-
cies to implement a dependency-based concurrency control protocol [147, 146], which allows
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MorphoSys to apply updates in parallel and on a per partition basis at replicas (Chap-
ter 4.3.3). To track partition dependencies, each partition p maintains a version number
v(p). Multiple versions of each data item d are kept, and each version is called a versioned
data item, consisting of a version number v(d) that coincides with the version number v(p)
of the partition p that contains d when d was updated. When a transaction T updates data
item d in a partition p, it creates a new version of the data item and its associated data.
On commit, T increments the partition version number v(p) and assigns that number as
v(d) for the new versioned data item.

In addition to storing per partition version numbers, MorphoSys maintains dependency
information to ensure transactions read from a consistent snapshot of data. In particular,
for version v(pi) in partition pi, MorphoSys stores the version number of partition pj
belonging to the same logical snapshot as v(pi), which I denote as depends(pi, v(pi), pj).

To track dependencies, MorphoSys uses the following dependency recording rule. If
a transaction T updates data items in partitions pi and pj, MorphoSys assigns parti-
tion version numbers v(pi) and v(pj) when T commits. MorphoSys then records v(pj) as
depends(pi, v(pi), pj), and similarly v(pi) as depends(pj, v(pj), pi). To capture any existing
transitive dependencies, MorphoSys extends the recording rule to the rule presented in
Equation 4.1, which applies to any partition pk that MorphoSys has not already recorded
dependencies for as part of the transaction update, and partitions pi and pj in the write
set. Equation 4.1 captures direct dependencies that involve partitions updated in the
same transaction, and transitive dependencies that are inherited from previous transac-
tions. Taking the maximum of a partition’s direct and inherited dependencies ensures
transactions observe consistent state.

depends(pi, v(pi), pk) = maxj (depends(pi, v(pi)− 1, pk), depends(pj, v(pj)− 1, pk)) (4.1)

MorphoSys efficiently maintains tracked dependencies by storing them in recency order
with partition metadata at a data site. As OLTP transactions typically access a small
amount of data relative to the database size [113, 58], tracked dependencies are often small,
while long-running transactions accessing many partitions induce more dependencies for
the system to track. To ensure tracked dependencies do not grow unbounded, MorphoSys
garbage collects versioned data items and dependency information of partitions with version
numbers lower than a watermark version number, which is the smallest most recent version
number at any site.
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Strong Session Snapshot Isolation

To enforce SSSI, MorphoSys uses the recorded dependencies to guarantee that transactions
read data from a consistent snapshot state using the consistent read rule: a transaction
T reads versions v(pi) of every partition p in its read set such that v(pi) ≥ depends(pj,
v(pj), pi) if pj is also in T ’s read set. T reads the latest version of data item d such that
v(d) ≤ v(pi).

MorphoSys uses the depends relationship as the basis of transaction timestamps. When
a transaction T intends to read partitions {pr} and write partitions {pw}, T acquires write
locks on each pw. T then reads the version number for each partition v(p) in its read and
write set, and stores this value as TB(p). As defined by the consistent read rule, T then
determines the version TB(pi) of each partition such that TB(pi) ≥ depends(pj, T

B(pj), pi)
for pi and pj in T ’s read and write set. The values {p, TB(p)} form T ’s begin timestamp
TB. T then reads and writes transactionally.

On commit, MorphoSys generates a commit timestamp TC by incrementing v(pw) for
each pw in T ’s write set and follows the dependency recording rule. Mutual exclusion of
partition writes ensures that the updated version v(pw) = TB(pw) + 1, which is assigned
to TC(pw), and along with TB(pr) for each read partition forms the commit timestamp.

Formalizing MorphoSys’ Concurrency Control Protocol

Given the previous description of different aspects of MorphoSys’ concurrency control pro-
tocol, I now describe the complete algorithm. I first explain how MorphoSys modifies
transaction timestamps to eliminate transaction inversions and long fork anomalies. Then
I present the complete concurrency control algorithm.

To prevent transaction inversion, MorphoSys maintains per client session state called
a session timestamp. A client, C, maintains session state CS = {p,maxT T

C(p)} for all
transactions T submitted by the client, which represents the latest version number of all
partitions it has accessed. MorphoSys initially sets TB(p) = CS(p) for every partition p in
T ’s read and write set. Hence, when T executes, it observes the state at least as up-to-date
as the last observed state.

MorphoSys like DynaMast, uses the adaptation advisor to enforce the total commit
order and avoid the long fork anomaly. However, in MorphoSys the adaptation advisor
tracks the committed version numbers of partitions.

MorphoSys’ concurrency control algorithm is presented in Algorithm 3. MorphoSys
initializes a transaction’s begin and commit timestamp to the session timestamp to ensure
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Algorithm 3 MorphoSys Concurrency Control Protocol

Require: Transaction T ’s sorted write set {pw}, read set
{pr}, and session timestamp, CS

Ensure: The updated session timestamp
1: // Begin
2: // At the adaptation advisor
3: TB = CS

4: {p} = sort {pw} ∪ {pr}
5: for p ∈ {p} do
6: read lock p metadata
7: TB(p) = p.commit version number
8: end for
9: unlock {p} partition metadata
10: // At the data site
11: for p ∈ {p} do
12: wait for p’s version to reach TB(p)
13: if p ∈ {pw} then
14: write lock p
15: TB(p) = p’s version number
16: end if
17: end for
18: partitions to check = {p}
19: for pi ∈ partitions to check do
20: remove pi from partitions to check
21: for pj ∈ {p} do
22: if TB(pi) < depends(pj , T

B(pj), pi) then
23: TB(pi) = depends(pj , T

B(pj), pi)
24: TC(pi) = TB(pi)
25: wait for p’s version to reach TB(p)
26: insert pi into partitions to check
27: end if
28: end for
29: end for
30: TC = TB

31: for p ∈ {pw} do

32: TC(p) = TB(p) + 1
33: end for
34: // Transaction Logic
35: Write versioned data items in partition pw with version

TC(pw)
36: Read the largest versioned data items d in partition pr,

such that v(d) ≤ TB(pr)
37: // Commit
38: loc depends = TC

39: for pi ∈ {p} do
40: for pj ∈ depends(pi, T

B(pi)) do
41: if depends(pi, T

B(pi), pj) > loc depends(pj)
then

42: loc depends(pj) = depends(pi, T
B(pi), pj)

43: end if
44: end for
45: end for
46: for p ∈ {pw} do
47: depends(pi, T

C(pi)) = loc depends
48: set p’s version to TC(p)
49: unlock p
50: end for
51: // At the adaptation advisor
52: for p ∈ {p} do
53: if p ∈ {pw} then
54: wait for p.commit version number to reach

TB(p)
55: write lock p metadata
56: p.commit version number = TC(p)
57: end if
58: CS(p) = max(TC(p), CS(p))
59: end for
60: unlock {pw} partition metadata
61: return CS

the transaction observes state at least as up to date as the latest previously observed state
from the same session (Line 3). To ensure transactions respect a total commit order, the
adaptation advisor initializes the begin timestamps to the commit version number (Line 6).
At the data site, the transaction locks the partitions in the write set (Line 13) to ensure
mutual exclusion of updates. As there may have been in-flight updates to the partition,
the data site updates the begin timestamp for partitions in the write set (Line 15). Then,
the data site ensure the transaction observes a consistent snapshot by following the consis-
tent read rule (Lines 22 and 23). Once the transaction has a consistent begin timestamp,
MorphoSys constructs the commit timestamp (Lines 30 to 32) by copying the begin times-
tamp for read partitions, and incrementing the begin timestamp for write partitions. Once
begin and commit timestamps are assigned, a transaction can execute its logic by writing
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new versioned data items (Line 35) and reading the data items belonging to the snapshot
determined by the begin timestamp (Line 36). When the transaction commits, the data
site builds the new depends relationship following the dependency recording rule (Lines 38
to 42), and records this dependency information (Line 47). The data site then makes any
updates visible by updating the partition version (Line 48). Finally, the adaptation advi-
sor, updates the commit number (Line 56) followed by the session timestamp (Line 58) so
that subsequent transactions abide by the commit order and avoid the long fork anomaly,
and within a session clients avoid transaction inversions.

Appendix A.2 provides a proof of MorphoSys’ concurrency control protocol provides
SSSI in the presence of physical design changes.

4.3.3 Update Propagation

To support dynamic replication of lazily maintained partitions, MorphoSys propagates and
applies updates on a per partition basis. If a transaction T updates a partition p then the
data site maintains a redo buffer of T ’s changes. When T commits, for each updated
partition p, the data site serializes the changes made to p, consisting of the updated data
items, p’s version number (v(p)), and the recorded dependencies (TC). The data site writes
this serialized update to a per partition redo-log. Data sites replicating p subscribe to the
partition’s log, asynchronously receive the serialized update, and apply the update as a
refresh transaction.

Replicas ensure a snapshot consistent state by applying T ’s refresh transaction to par-
tition p only after applying all previous updates to the partition, based on the partition
version number. The refresh transaction installs T ’s updates to p by creating new versioned
data items and makes the update visible by incrementing p’s version number.

MorphoSys’ design choices reduce the overhead of maintaining replicas because: (i)
multi-versioning allows concurrent execution of read-only transactions and refresh transac-
tions on replica partitions, and (ii) tracking transaction dependencies allows per partition
execution of refresh transactions, which eliminates blocking on updates to other partitions.

4.3.4 Physical Design Change Execution

To execute the five physical design change operators efficiently, MorphoSys integrates them
with the concurrency control algorithm and the update propagation protocol.
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Adding and Removing Replicas

MorphoSys leverages multi-versioning to efficiently add a partition replica by snapshotting
the partition’s master state without acquiring locks. A data site snapshots a partition p by
reading the last written position in its redo-log, the version number of the partition (v(p)),
p’s dependency information, and a snapshot of all data items in the partition at version
v(p). At the newly created replica, the data site installs this snapshot of the partition,
records the version number, and subscribes to updates to the partition beginning from
the last known position in the redo-log. At this point, the data site continues to apply
propagated updates.

A data site removes a replica of a partition by stopping its subscription to the partition’s
updates. The data site then deletes the partition structure so future transactions do not
access the partition. MorphoSys uses reference-counted data structures [88] to access
partitions, which ensures that ongoing transactions can read from the removed partition
replica without blocking the physical design change operation.

Splitting and Merging Partitions

MorphoSys’ partition-based concurrency control executes the splitting and merging of par-
titions as transactions. These transactions update only partitions’ metadata and not any
data items. Hence, when splitting a partition p to create new partitions pL and pH , the
data site mastering p acquires a partition lock on p. Thus, no other updates to p can take
place during the split. Then, the data site creates new partitions pL and pH and assigns
them both a version number equal to the version number of the original partition v(p). The
data site logically copies the reference-counted data items from p to the corresponding new
partition, pL or pH . Committing the split operation induces a dependency between the
three partitions (p, pL, pH) and results in pL and pH receiving p’s dependency information,
which ensures that transactional accesses to the new partitions observe a consistent state.
On commit, the data site removes p. The bidirectional tracking of the depends relationship
among partitions allows MorphoSys to split partitions without updating other partitions’
states, thus reducing overhead.

Data sites replicating partition p observe the split operation in the redo-log. Replicas
apply the split as a refresh transaction as outlined at the master data site, subscribe to
updates of the newly created partitions pL and pH and remove their subscription to p.
While a split is in progress, ongoing read transactions can access p but all subsequent
transactions run on the newly created pL and pH .
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Data sites merge partitions by following the reverse of splitting a partition, with two
differences. First, when merging two partitions pL and pH to create partition p, the data
site assigns the version of p as the maximum of pL’s and pH ’s version numbers. Second,
at a replica, the merge operation does not complete until both pL and pH are at the same
state (as indicated by version numbers) as when the merge occurred at the master site.

Changing Partition Mastership

MorphoSys changes the mastership of a partition from site Si to Sj as a metadata-only
operation via update propagation of the mastership change information to all partition
replicas, following the grant and release protocol described in Chapter 3.2.2. MorphoSys’
concurrency control and update propagation protocol reduce blocking times when changing
mastership as the new master waits only for the partition undergoing remastering to reach
the correct state. By contrast, prior approaches [119, 12] require all data items in the
system to reach the same, or later, state as the prior master.

4.4 Physical Design Strategies

As a workload executes, MorphoSys automatically decides: (i) how to alter its physical
design with the aforementioned operators, and (ii) when to do so. The adaptation advisor
makes these decisions by quantifying the expected benefit of the feasible design changes
and greedily executing the set of changes with the greatest expected benefit. MorphoSys
quantifies the benefit of a physical design change by modelling the effect that a design
change will have on the future workload as well as the cost of performing the change. The
adaptation advisor uses a workload model (Chapter 4.4.1) and learned costs of transactions
and physical design changes (Chapter 4.4.2) to make its design decisions (Chapter 4.4.3).

4.4.1 Workload Model

MorphoSys continuously captures and models the transactional workload to make design
decisions. The adaptation advisor samples submitted transactions and captures data item
read and write access frequencies. MorphoSys maintains these statistics on a per partition
basis, tracking per data item statistics only for frequently accessed partitions.

For a partition p, the adaptation advisor maintains the probability of reads R(p), and
writes W (p), to the partition compared to all partition accesses. The adaptation advisor
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Table 4.1: MorphoSys’ cost functions and their use in predicting costs for transactions and
physical design change operators.

Cost Function Arguments
Operations

transaction remaster split merge add replica remove replica
Fservice(cs) cs = CPU utilization of site S X X X X X X

Fwait updates(
vn, vr, us)

vn = partition version necessary
vr = version of partition at replica
us = fraction of updates to partition
compared to all replicas at site S

X (If reads) X

Flock(w) w = write contention of partitions X (If writes) X X X
Fread write(

rd, wd)
rd (wd) the number of data items
read (written)

X X

Fcommit(rp, wp)
rp (wp) the number of partitions
read (written)

X X X X

computes R(p) (or W (p)) by dividing the per partition read (write) count by the running
count of all reads and writes to all partitions.

As data item accesses are often correlated [12, 53, 172], MorphoSys tracks data item co-
access likelihood. MorphoSys leverages these statistics to determine the effect of a proposed
physical design change on future transactions (Chapter 4.4.3). Formally, P (r(p2)|r(p1))
represents the probability that a transaction reads partition p2 given the transaction also
reads p1. I define similar statistics for write-write (P (w(p2)|w(p1))), read-write (P (r(p2)|
w(p1))), and write-read (P (w(p2)|r(p1))) co-accesses.

MorphoSys adapts its model to changing workloads using adaptable damped reservoir
sampling [29]. The reservoir determines sampling of transactions, generation of their access
statistics and expiration of samples based on a configurable time window. MorphoSys uses
statistics from these transactions in the reservoir to adapt its design to workload changes.

4.4.2 Learned Cost Model

Given a physical design, the adaptation advisor estimates the costs of executing transac-
tions and applying physical design changes using a learned cost model. This cost model
predicts the latency of design change and transaction execution operations. MorphoSys’
implementation of these operations (Chapter 4.3) translates to a natural system latency
decomposition: waiting for service at a site, waiting for updates, acquiring locks, reading
and writing data items, and commit. Thus, MorphoSys decomposes the cost model into
five corresponding cost functions (Table 4.1) that it learns and combines to predict the
latency of operations.

The adaptation advisor learns these cost functions continuously using linear regression
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models because they are easy to interpret, do not require large amounts of training data,
and are efficient for both inference and model updates [78]. In general, MorphoSys favour
cost functions with few input parameters as such functions tend to be robust and accurate
(Chapter 4.6.3). The adaptation advisor continuously updates the weights in the learned
cost functions based on its predictions and corresponding observed latencies.

Next, I discuss the five cost functions in Table 4.1 and how MorphoSys combines them to
predict latency of operations. Chapter 4.4.3 details how MorphoSys uses the cost functions
to compute the expected benefit of different physical designs.

Waiting for Service

The load at a site determines how quickly the site services a request, with a site under
heavy load taking longer. As MorphoSys is an in-memory system, and thus CPU bound
[110, 77], it models data site load based on average CPU utilization, which the adaptation
advisor polls for regularly. Hence, MorphoSys models the service time at a data site S as
Fservice(cs = cpu util(S)). To compute the service time, MorphoSys subtracts the latency
of the operation measured at the data site from the observed latency at the adaptation
advisor. Hence, network latency is captured in the service time. All operations take into
account the service time at a site. In the case of operations that involve multiple sites
(remaster , add replica), MorphoSys computes Fservice for each involved site.

Waiting for Updates

Recall that remastering does not complete until all necessary updates have been applied
to the partition being remastered (Chapter 4.3.4). Similarly, transactions may wait when
reading a replica partition to observe a consistent state. The waiting time depends on the
number of propagated updates needed and the relative frequency of those updates, both of
which implicitly include an estimate of the network latency. MorphoSys models the waiting
time at a partition p as Fwait updates(vn, vr, us), where vn is the version of the partition
required at the replica, vr is the current version of the replica partition, and us is the fraction
of updates applied at the replica S relevant to partition p. MorphoSys determines us using
Equation 4.2; the denominator represents the total likelihood of updates to partitions that
have replicas at S, which MorphoSys aggregates.

us =
W (p)∑

pi:S∈replicas(p) W (pi)
(4.2)
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MorphoSys uses the session timestamp to determine vn for transactions while remastering
uses the latest polled version from the old master. As data sites apply updates in parallel
that a transaction may require, MorphoSys considers the largest predicted Fwait updates from
all partitions in the read set.

Acquiring Locks

Recall from Chapter 4.3.2 that update operations acquire per partition locks. Hence, in-
creased write contention on a partition results in longer partition lock acquisition time.
Thus, MorphoSys predicts lock acquisition time as Flock(w) where w represents write con-
tention. MorphoSys estimates w using W (p), the probability of writes to a partition. For
operations that access multiple partitions such as transactions or partition merging, data
sites acquire locks sequentially. MorphoSys defines w =

∑
pW (p) for all relevant p, i.e.,

partitions pL, pH for merge, and all partitions in a transaction’s write set.

Reading and Writing Data Items

The primary function of transactions is to read/write data. Hence, MorphoSys estimates
the time spent reading and writing data items using the cost function Fread write(rd, wd),
where rd and wd represent the number of data items read and written, respectively. The
adaptation advisor determines rd and wd from a transaction’s read and write set. Adding a
replica of a partition requires reading a snapshot of the partition and installing it into the
newly created replica. Hence when estimating the latency of adding a replica, MorphoSys
also considers Fread write using the number of data items in the partition as the number of
data items read and written.

Commit

Data sites commit operations by updating partition version numbers and dependency in-
formation (Chapter 4.3). The number of updates depends on the number of partitions
involved in the operation. MorphoSys uses the number of partitions read (rp) and written
(wp) by the operation to estimate the commit time as Fcommit(rp, wp). Given that adding
and removing a replica of a partition does not entail committing, MorphoSys omits commit
latency for these operations.
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Putting it Together

The adaptation advisor predicts the latency of each operation by summing the values of
the cost functions shown in Table 4.1 that are associated with the operation. For example,
to predict the latency of a split at a site, MorphoSys uses the recorded CPU utilization of
the site (cs) and write contention of the partition (w) to compute Fservice(cs) +Flock(w) +
Fcommit(0, 3). The system tracks the latency of the entire split operation, as well as the
portion of the time spent in the network waiting for service, locking and committing. Given
these observed latencies and latency predictions (e.g. Fservice(cs)), the adaptation advisor
uses stochastic gradient descent [167] to update its cost-functions.

4.4.3 Physical Design Change Decisions

MorphoSys makes physical design and routing decisions to improve system performance
and to execute transactions at one site. The adaptation advisor considers each data site
as a candidate for transaction execution and develops a physical design change plan for
the site. A site’s plan consists of a set of physical design change operators that allow
the transaction to execute at the site, including adding or removing replicas, splitting or
merging partitions, and remastering. For a data site S, the adaptation advisor computes
the cost of executing the plan, C(S), and expected benefit, E(S). The adaptation advisor
selects the data site, and plan, that maximize the net benefit net(S) = λ · E(S) − C(S).
The magnitude of λ(> 0) controls the relative importance of the expected benefit of the
plan. I will use the split operation of partition (0, 9) from Figure 4.1b as a running example
to illustrate MorphoSys’ decisions.

The cost of executing a plan C(S) is the sum of the execution costs of each of the
plan’s operators, as defined in Chapter 4.4.2. A low execution cost indicates that the plan
will execute quickly. The input parameters for these costs correspond to the statistics
from the existing physical design. In the split operator example, MorphoSys estimates
C(S) by computing Fservice(c1)+Flock(W(0,9))+Fcommit(0, 3), where c1 represents the CPU
utilization at data site 1 and W(0,9) represents contention of the partition being split.

To determine the expected benefit E(S), MorphoSys predicts the latency of transactions
under the current physical design and subtracts the predicted latency of transactions under
the physical design that would result from executing the plan. A good plan decreases
predicted latencies, which increases E(S) and thus increases net(S). To determine E(S),
MorphoSys samples transactions and uses the learned cost model with input parameters
that correspond to the plan’s new physical design of the database.
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Consider the effect splitting partition (0, 9) has on transactions T1 and T2 from Fig-
ure 4.1b. First, MorphoSys predicts the latency of T1 and T2 executing at site 1 under the
current physical design. As both transactions update partition (0, 9), MorphoSys estimates
Flock(W(0,9)) as part of the transaction latency, which I call Lcurrent. MorphoSys then esti-
mates the effect of splitting the partition into (0, 5) and (6, 10), each of which has less write
contention than partition (0, 9). Then, MorphoSys uses the contention of partitions (0, 5)
and (6, 10) to estimate the latency of transactions T1 and T2 on the future design, which I
call Lfuture. Finally, MorphoSys computes E(S) as Lcurrent − Lfuture. If E(S) is positive,
then the design change is predicted to reduce latency and improve system performance.
Design changes with non-positive E(S) values are unlikely to improve system performance
and are thus avoided.

Sampling Transactions

Computing the expected benefit of a design change plan ideally requires knowledge of fu-
ture transactions to be submitted to the system, which is not available. Thus, MorphoSys
draws samples of transactions from its reservoir of previously submitted transactions to em-
ulate a workload of future transactions, for example T1 and T2, from the running example.
MorphoSys also generates emulated transactions based on its workload model to ensure ro-
bustness in design decisions. To generate these transactions, MorphoSys selects a partition
p1 at random following the partition access frequency distribution. Then, MorphoSys sam-
ples a second partition p2 co-accessed with p1 and generates four transactions that access p1

and p2, based on all combinations of read and write co-accesses, and weight any expected
benefit by the likelihood of co-access.1 If MorphoSys generates a transaction T that reads
p1 and updates p2, then it weighs the expected benefit to T by R(p1) × P (w(p2)|r(p1)),
when computing E(S). MorphoSys selects data item accesses to the partition uniformly
at random.

Adjusting Cost Model Inputs

The adaptation advisor predicts the latency effect of physical design changes by predicting
changes to inputs of its cost model. This is done by considering how design changes affect
CPU utilization, update application rate, and contention.

Recall that Fservice(c) predicts the time spent waiting for a data site to service a request.
Data sites use resources to perform database reads, writes, and apply propagated updates.

1p1 and p2 can represent the same partition if a transaction accesses the same partition more than once.
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MorphoSys predicts CPU utilization based on the frequency of reads (rS), writes (wS), and
propagated updates applied (uS) using the cost function FCPU(rS, wS, uS). Remastering
a partition p, and adding or removing partition replicas affect rS, wS and uS based on
the probability of reads and writes to p. Morphosys uses the output of FCPU as input to
Fservice when predicting the time spent waiting for a data site to service a transaction. By
considering Fservice, MorphoSys favors designs that distribute the load to all data sites,
which minimizes wait time.

Splitting a partition reduces the probability of reads and writes to the newly created
partitions, which store fewer data items. The reverse holds for merging partitions. To
reduce tracking overheads, MorphoSys assumes uniform accesses to data items within a
partition when modelling the effects of a design change on write contention (w in Flock),
and update frequency (fS in Fwait updates). If the design change occurs, then over time, the
partition statistics reflect the partition access likelihood. Partition splits and merges also
change the number of partitions accessed by a transaction, which MorphoSys considers
when predicting commit latency (Fcommit).

A physical design change may enable future transactions to execute at a single site
without further design changes. MorphoSys encourages such design changes as they ac-
count for data locality in the workload by incorporating the expected benefit of not needing
future design changes. To do so, MorphoSys predicts the latency of previously required
physical design changes, which the plan saves, and adds these savings to the expected
benefit. Conversely, MorphoSys discourage plans that induce designs precluding single-site
transactions by subtracting the predicted latency of future physical design changes from
the plan’s expected benefit. Hence, MorphoSys avoids generating design changes that it
could shortly undo.

Generating Plans

The adaptation advisor generates a physical design change plan for a site by adding oper-
ations necessary for single-site transactions: remastering and adding replicas of partitions
in the write and read sets, or removing replica partitions to satisfy space constraints.
The adaptation advisor then adds further beneficial design changes to the plan: splitting
or merging partitions, and remastering or adding replicas of partitions co-accessed with
written and read partitions. The partition split in Figure 4.1b is an example of a benefi-
cial design change, while the partition remaster in Figure 4.1d is necessary for single-site
execution.

The adaptation advisor considers partitions in the transaction’s read or write set as
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candidates for splitting or merging. If a partition in the read or write set has above-average
access probability, indicating contention on the partition, and the split is beneficial then the
adaptation advisor adds the partition split to the plan. Conversely, merging infrequently
accessed partitions reduces the number of partitions in the system, which reduces metadata
overheads. Thus, if a partition in the read or write set, and one of its neighbouring
partitions, have below-average access likelihood and it is possible and beneficial to merge
the two partitions, then MorphoSys adds the merge operation to the plan. Considering
access frequencies ensures that MorphoSys does not undo the effects of a split with a merge,
or vice versa, in the immediate future unless the access pattern changes significantly.

When a plan for a site includes remastering, addition or removal of a partitions replica,
MorphoSys piggybacks other design change operations for correlated partitions. Piggy-
backing operations promotes data locality and future single-site transactions. For exam-
ple, when remastering partition p1, MorphoSys tries to piggyback the remastering of a
partition p2 frequently co-written with p1, which occurs when both of P (w(p1)|w(p2)) and
P (w(p2)|w(p1)) are high. This probability-driven remastering with piggybacking amortizes
partition remastering cost while promoting co-location of co-accessed partitions. Similarly,
if remastering p1, MorphoSys will try to piggyback replica addition of a frequently read
partition p2 if P (w(p1)|r(p2)) and P (r(p2)|w(p1)) are high.

MorphoSys removes replica partitions when they are no longer beneficial to maintain
or to satisfy memory constraints. If a data site is within 5% of its memory limit, then
the adaptation advisor removes replica partitions by computing the expected benefit of
removing a partition and iteratively removes partitions with the least expected benefit
first until the memory constraint is satisfied.

MorphoSys’ generated plans use the cost and workload models to produce design
changes that reduce contention, encourage data locality and single-site transactions, and
maximize expected benefit when compared to execution costs — all without immediately
undoing or redoing changes.

4.5 The MorphoSys System

I implemented MorphoSys following the architecture described in Chapter 2. The imple-
mentation includes (from Chapters 4.3 and 4.4) the concurrency control protocol, update
propagation scheme, physical design change operators, workload model, learned cost model,
and physical design strategies.

Following the architecture from Chapter 2, MorphoSys uses Apache Kafka [102] as
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the redo-log, and cooperatively applies propagated updates at data sites. Application
of updates is shared between the thread receiving updates from the Kafka redo-log and
transaction execution threads waiting for specific partition versions.

The adaptation advisor tracks the state of each data partition in per table concurrent
hash-table structures for efficient lookups. This state contains a partitions range of data
items, the location of its master copy, its replica locations, and partition access frequen-
cies. The adaptation advisor updates partition state upon the successful completion of a
design change. To minimize latency, the adaptation advisor executes design change plan
operations in parallel.

4.6 Experimental Evaluation

I now present experimental results that show that MorphoSys’ ability to dynamically
change the physical design of a database significantly improves system performance.

4.6.1 Evaluated Systems

I evaluated MorphoSys against five alternative distributed database systems that employ
state-of-the-art dynamic, or popular static, physical designs. I implemented these com-
parative systems in MorphoSys using strong-session snapshot isolation and multi-version
concurrency control to ensure an apples-to-apples comparison. Recall that MorphoSys is
designed to deliver superior performance irrespective of its initial physical design. Thus, in
each experiment, MorphoSys starts with an initial physical design containing no replicas
and a randomized master placement of partitions, an unknown workload model, and must
learn its cost model from scratch. By contrast, as described next, I advantaged MorphoSys’
competitors by using a priori knowledge of the workload to optimize their initial physical
design.

Clay dynamically partitions data based on access frequency to balance load [172].
Clay performs this repartitioning periodically, with a default period of 10 seconds. Unlike
MorphoSys, Clay does not replicate data and uses 2PC to execute transactions that access
data mastered at multiple sites [172]. Clay begins with an initial master placement so that
each site masters the same number of data items, such as by warehouse in TPC-C [172].

Adaptive Replication (ADR) is a widely used algorithm to dynamically determine
what data to replicate, and where [201, 82, 131, 139]. Like Clay, ADR uses 2PC for multi-
site transactions. I advantaged ADR with offline master partition placement using Schism
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[53]. Schism is a state-of-the-art offline tool that uses a workload’s data access patterns to
generate partitioning and placement of master copies of data items and their replicas such
that distributed transactions are minimized while distributing load.

Single-Master and Multi-Master as described in Chapter 3.5.1.

DynaMast, presented in Chapter 3, is a fully-replicated database that dynamically
remasters data items to guarantee single-site transactions [12]. Unlike MorphoSys, Dyna-
Mast does not dynamically replicate or partition data. DynaMast begins each experiment
with the same starting master placement as Clay in which masters are uniformly placed
among sites.

Finally, I compared MorphoSys with the off-the-shelf commercial version of the par-
titioned, database system VoltDB that uses a static physical design [187]. I favoured
VoltDB using Schism’s initial design and followed VoltDB’s benchmarking configuration
[165] that reduces durability to optimize performance by disabling synchronous commit
to reduce commit latency and delaying snapshots to reduce overheads. VoltDB is also
configured to use the maximum available hardware resources on each node as well as the
optimized executable.

4.6.2 Benchmark Workloads

The experiments execute on up to 16 data sites with the same configuration as described
in Chapter 3.5.2.

I conducted experiments using the YCSB, TPC-C, Twitter and SmallBank benchmark
workloads [58, 48, 1] as they contain multi-data item transactions and access correlations
representative of real-world workloads. YCSB, TPC-C and Smallbank are configured as
described in Chapter 3.5.2.

Twitter models a social networking application, featuring heavily skewed many-to-
many relationships among users, their tweets, and followers. Consequently, Twitter’s pre-
dominantly read-intensive workload (89%) contains transactions with complex accesses
spread across the social graph data.

4.6.3 Results

I now discuss MorphoSys’ experimental results for varying access patterns, load, and read-
write mixes.
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(a) Read-Mostly (Skew) (b) Write-Heavy (Skew)

(c) Partition Size (d) Replication Factor

Figure 4.2: MorphoSys Performance results for Skewed YCSB.

Workloads With Skew

Skewed workloads generate contention and load imbalance, both of which MorphoSys mit-
igates using dynamic physical design changes. To evaluate MorphoSys’ effectiveness under
skewed data accesses, I used YCSB workloads with read-mostly (50% scans, 50% multi-key
RMW) and write-heavy (10% scans, 90% multi-key RMW) transaction mixes with Zip-
fian access skew. Throughput results for both workloads (Figures 4.2a and 4.2b) demon-
strate that MorphoSys delivers significantly better performance, about 98× to 1.75× higher
throughput than the other systems as it dissipates contention and balances load by dynam-
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ically repartitioning heavily accessed and contended data items into smaller partitions.

In Figure 4.2c, I classify data items as hot if they are in the top 10% of the most
frequently accessed data, medium if in the next 30%, and the remaining as cold data.
As Figure 4.2c shows, on average, MorphoSys groups the hottest data items into small
partitions containing up to 100 data items. By contrast, MorphoSys groups infrequently
accessed or cold data items into partitions that, on average, contain 5000 records. Such
dynamic partitioning of data reduces lock acquisition time by more than a factor of 7, from
nearly 850 µs to 110 µs compared to the other systems.

In addition to dynamic partitioning, MorphoSys employs dynamic replication. Fig-
ure 4.2d shows the replication factor for data items with different access frequencies. In
contrast to the fully replicated DynaMast, single-master and multi-master architectures,
MorphoSys replicates frequently accessed data items but avoids replicating infrequently
accessed data. By keeping, and maintaining, fewer replicated data items, MorphoSys
uses less compute resources to apply propagated updates, thereby freeing up resources to
improve throughput by 2.6× over the single-master architecture in the write-heavy work-
load (Figure 4.2b). Although multi-master fully replicates data, and ADR dynamically
adds replicas of frequently read partitions, they both suffer heavily from the compounding
effects of contention as a result of static partitioning and distributed transaction coordina-
tion. MorphoSys combines both dynamic replication and partitioning while guaranteeing
single-site transactions resulting in throughput improvements of up to 13× over ADR and
multi-master.

Both Clay and MorphoSys dynamically partition to mitigate the effects of contention.
However, unlike Clay, MorphoSys replicates hot partitions frequently to distribute read
load among sites and make remastering more efficient. MorphoSys groups together colder
co-accessed data items to reduce the metadata needed to track partitions, dependencies,
and version histories. MorphoSys converges to its final design faster than Clay as Mor-
phoSys uses every transaction as an opportunity to make design changes while guaranteeing
single-site execution, in contrast to Clay’s periodic operation and use of expensive 2PC.
Thus, MorphoSys improves throughput over Clay by 8.5× and 5× for the update-intensive
(Figure 4.2b) and read-heavy (Figure 4.2a) workloads, respectively. The scan-heavy work-
load exacerbates the effects of distributed reads in VoltDB as it requires enqueueing the
scan operator on every site blocking all other transactions from executing due to VoltDB’s
single-threaded execution model [165, 187]. VoltDB’s static design cannot adapt to heavy
skew effects, unlike MorphoSys that improves throughput over VoltDB by almost 100×.

By taking a holistic approach to dynamic physical design and considering all 3 factors,
namely, partitioning, replication and mastering, MorphoSys outperforms its competitors
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(a) Read-Mostly (Uniform) (b) Write-Heavy (Uniform)

Figure 4.3: MorphoSys Performance results for Uniform YCSB.

that consider only one of these multiple aspects of design.

Workloads with Uniform Access Patterns

Next, I evaluate MorphoSys in the presence of a uniform access pattern. In this workload,
MorphoSys groups data items into partitions containing approximately 3000 data items,
and on average replicates these partitions to one replica. This partial replication reduces
the computational resources needed to maintain replicas when compared to fully replicated
systems (single-master, multi-master and DynaMast). Hence, in the read-mostly case
(Figure 4.3a), MorphoSys improves throughput over fully replicated systems in the range
1.85× to 1.6×.

A replica partition in MorphoSys supports read transactions and flexibly provides mas-
tership opportunity when deciding on master placement. MorphoSys uses this flexibility to
guarantee single-site transactions and to judiciously amortize the cost of design changes.
As such, MorphoSys eliminates costly distributed coordination that Clay, ADR, VoltDB,
and multi-master continually incur.

Clay initiates data repartitioning only when it detects an imbalance in partition ac-
cesses. In this workload, Clay rarely detects any imbalance in accesses, and thus rarely
repartitions data. Hence, Clay must continually execute costly multi-site transactions,
which in the case of scans, are susceptible to stragglers. By contrast, MorphoSys performs

73



physical design changes as transactions execute, and co-locates co-accessed data together
via dynamic replication and mastering to execute single-site transactions.

ADR dynamically adds replicas, which allows for efficient single-site scan execution,
thus improving performance over Clay but falls short of MorphoSys. By considering master
placement, replication, and data partitioning, MorphoSys improves throughput over ADR
and Clay by almost 1.9×.

Next, I stress the systems’ ability to balance update load among data sites using a
write-heavy YCSB workload (Figure 4.3b). MorphoSys achieves even load distribution
among sites in the distributed system by predicting the time spent waiting for service at
a site, which is primarily determined by site load (Chapter 4.4.2). Evenly distributing
load improves throughput by 3× as compared to single-master, which executes all updates
at one master site. By contrast, multi-master must rely on Schism’s offline analysis to
ensure even routing of requests among all sites. Despite balancing the load, multi-master
fully replicates data and requires distributed transaction coordination; thus, MorphoSys
improves throughput over multi-master by 2.4×. ADR does not frequently replicate in
this write-heavy workload and improves performance compared to multi-master, but Mor-
phoSys remains unmatched outperforming ADR by 1.35×. The shorter read-modify-write
transactions improve VoltDB’s throughput compared to the scan-heavy workload. How-
ever, like ADR, VoltDB must coordinate transactions with 2PC, hence MorphoSys improves
throughput over VoltDB by over 38×.

Clay and DynaMast both aim to balance update load, but come with significant short-
comings that MorphoSys addresses. As in the read-mostly case, MorphoSys’ dynamic and
partial replication of data reduces the overhead of maintaining replicas that DynaMast in-
curs. While doing so, MorphoSys still ensures the flexibility necessary to support dynamic
mastership placement. Clay makes a static replication decision of never to replicate, but
suffers as it does not reduce distributed transaction coordination through effective master
placement. In this update-intensive uniform workload, MorphoSys’ comprehensive physical
design strategies and efficient execution result in 1.4× and 1.2× throughput improvement
over Clay and DynaMast, respectively.

Workloads with Complex Transactions

I now focus the evaluation on TPC-C, a workload that contains complex transactions
simulating an order-entry application. This workload features correlated data accesses
to warehouses and districts. However, MorphoSys has no knowledge of this pattern and
must learn this workload model and create an effective distributed physical design. Fig-
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Figure 4.4: Average Latency in the TPC-C workload.

(a) TPC-C Tail Latency (b) TPC-C Throughput

Figure 4.5: MorphoSys’ Performance results for the TPC-C workloads. In Figure 4.5b,
U ’s indicate that fully replicated systems (DynaMast, single-master and multi-master)
were unable to run due to memory constraints.

ure 4.4 shows that MorphoSys has the lowest average latency of transactions in the TPC-C
workload, reducing latency by between 99% and 50% over its competitors. MorphoSys sig-
nificantly reduces tail latency, as shown in Figure 4.5a, with reductions ranging from 167×
to 6×.

To understand why MorphoSys reduces latency, I examined the physical design decisions
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made by MorphoSys as well as the core properties of the New-Order transaction that
has the highest latency of all TPC-C transactions. The New-Order transaction reads
the warehouse data item to determine the purchase tax and updates the district with
the next order identifier. Schism determines that the best master placement is based on
the warehouse identifier of the district and customer as 90% of New-Order transactions
access data local to the customer’s warehouse. The remaining 10% execute cross-warehouse
transactions.

Examining the physical design decisions made by MorphoSys reveals that it creates
single data item partitions for the warehouse and district tables, and replicates these par-
titions to multiple sites. This data partitioning supports parallel execution of New-Order
transactions on different districts, while replication ensures efficient dynamic mastering for
cross-warehouse transactions. Additionally, I observed that MorphoSys heavily replicates
the read-only items table as its cost model correctly predicts that there is little overhead
required to maintain this table. MorphoSys selectively replicates the remaining tables in-
cluding the frequently updated customer and stock tables. For these tables, MorphoSys
adds and removes replicas of partitions to balance system load and ensure single-site trans-
action execution.

The TPC-C results show the benefit of MorphoSys’ comprehensive physical design
strategies. MorphoSys’ dynamic formation of data partitions produces per district par-
titions that reduces contention when assigning the next order identifier and decreases
New-Order transaction latency. Increasing the scale factor which controls the number
of warehouses while maintaining constant contention allows for increased load, which im-
proves throughput. However, increasing the scale factor increases the amount of data stored
in the system. Partial and dynamic replication allow MorphoSys to selectively replicate
and store more data than fully replicated systems. Thus, MorphoSys supports a higher
scale factor and improves throughput over the fully replicated systems by between 48× to
5.5× (Figure 4.5b). By considering master placement and guaranteeing single-site transac-
tions, MorphoSys improves throughput over systems that require distributed transactions
by 900× to 48×.

Figures 4.6a and 4.6b show the throughput and tail latency for the Twitter workload.
MorphoSys achieves between 32× and 3× greater throughput than its competitors and re-
duces tail latencies by between 58× and 4×. MorphoSys’ tail latency reductions primarily
come from reducing the time spent waiting for updates to tweets in the GetTweetsFrom-
Following transaction by maintaining per partition update queues. As in the read-mostly
YCSB workload, ADR and multi-master behave similarly, with ADR replicating the most
frequently accessed data. However, MorphoSys guarantees single-site reads, unlike ADR,
and hence does not suffer from straggler effects due to multi-site scans. As Clay and
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(a) Throughput (b) Tail Latency

Figure 4.6: Performance results for the Twitter workload.

(a) New-Order Latency (b) Adaptivity Over Time

Figure 4.7: MorphoSys’ Adaptivity in Changing Workloads

VoltDB cannot replicate, they suffer even more from these straggler effects.

Adaptivity

Next, we present MorphoSys’ ability to adapt to workload change in terms of shifting data
accesses and load imbalance. Such workload shifts occur, for instance, due to changes

77



in trends on a social network, or shifts in popularity of stocks on the stock exchange
[203, 109, 86, 64, 159, 154].

The TPC-C experiment in Figure 4.7a shows how MorphoSys’ adaptivity allows it to
cater to different workloads. The figure depicts New-Order latency as we increase the per-
centage of cross-warehouse transactions. When the percentage is zero, MorphoSys’ latency
is one-quarter of its closest competitor. When the percentage of cross-warehouse transac-
tions reaches about one-third, data locality decreases and MorphoSys’ latency approaches
that of single-master’s, decreasing MorphoSys’ relative benefit. Thus, when data locality
is low, MorphoSys adapts its physical design by increasingly mastering data at a single site
to avoid undoing and redoing physical design changes while distributing load among sites
as much as possible.

To highlight MorphoSys’ ability to react to workload changes, we experimented with
a shifting hotspot [191], a phenomenon that frequently occurs in transactional workloads
[85, 137]. We induce hotspots with a skewed YCSB workload and shift the center of
the skew to a different part of the database every 60 seconds. This challenging workload
causes MorphoSys to change its physical design to mitigate the effects of skew and load
imbalance. Figure 4.7b shows the average latency over five minutes and four workload
shifts. MorphoSys learns its initial design within the first 30 seconds, at which time
MorphoSys reaches its minimum latency that is a reduction of the initial latency by almost
60%, illustrating the benefit of design changes. When a hotspot shifts, MorphoSys’ latency
increases by at most 20% from its minimum, returning to the minimum latency within
20 seconds on average as MorphoSys quickly splits partitions, adds replicas of the hot
partitions and remasters to balance the load and mitigate the hotspot. These results show
MorphoSys’ effectiveness to rapidly adapt to workload changes due to its learned workload
and cost models, and low overhead design changes.

Scalability

To measure MorphoSys’ scalability, I scale the number of data sites from 4 to 16 in incre-
ments of 4 while also scaling the number of clients (60 per data site), and measure peak
throughput using the read-heavy uniform YCSB workload. As shown in Figure 4.8, Mor-
phoSys improves throughput by nearly 3× as the number of data sites grows from 4 to 16.
MorphoSys achieves this near-linear scalability because its dynamic physical design effec-
tively distributes transaction load among sites, minimizes replication overhead, eliminates
distributed transaction coordination, and, as I show next, has low overhead.
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Figure 4.8: MorphoSys’ Scalability using YCSB.

Figure 4.9: SmallBank Throughput in MorphoSys

Overhead and Model Accuracy

To understand MorphoSys’ overheads, including planning and executing physical design
changes, I evaluated performance using the SmallBank benchmark. Transactions in Small-
Bank access at most two data items using a uniform data access pattern. Thus, the time
spent executing transaction logic is small, making it easier through relative comparison
to identify where time goes in the system. Figure 4.9 shows the maximum throughput
for the SmallBank workload. Observe that MorphoSys outperforms its competitors by
between 104× and 1.5×, indicating that MorphoSys’ dynamism incurs little overhead.
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The performance of VoltDB is severely limited by distributed update transactions and the
single-threaded execution model that blocks non-conflicting transactions belonging to the
same thread of execution.

Table 4.2: Transaction latency breakdown within MorphoSys.

Operation Avg. Latency
Percent of
Txn. Time

Locating Partitions 27± 1.0 µs 2.1%
Plan Generation 49± 9.2 µs 3.8%

Workload & Cost Model 13± 6.8 µs 1.0 %
Design Change 42± 2.9 µs 3.3 %

Network & Queuing 252± 51 µs 19.8%
Locking 114± 39 µs 8.9%

Waiting for Updates 65± 5.9 µs 5.1%
Transaction Logic 550± 97 µs 43.0%

Commiting 158± 8.4 µs 12.4%
Total 1270± 310 µs 100%

Table 4.2 breaks down SmallBank transaction latency in MorphoSys. Observe that
the system spends the plurality of time (43%) executing transaction logic. At data sites,
just 25% of overall transaction latency is spent on MorphoSys’ concurrency control, includ-
ing waiting for any necessary updates, locking, and recording dependencies during commit.
Given the small transaction footprint, this translates to low overhead as the latency is com-
parable to the amount of time that transactions spend in the network. This low latency is
a consequence of the partition-based concurrency control and update propagation scheme.
Finally, transactions spent just 10% of their time at the adaptation advisor, including an
average of just 3.3% of time executing physical design changes. This small overhead re-
sults from MorphoSys amortizing the cost of design changes over many transactions, and
executing design changes in parallel when they do occur.

Table 4.3 shows the relative frequency and average latency of each of the physical design
operators. On average, MorphoSys executes a physical design change operator 30 times
for every 1000 transactions, taking just over 6 ms to execute. The most expensive physical
design change operators require physical copying of data, as in the case of adding a replica
of a partition or waiting for all updates to arrive at the soon to be designated new master.

Recall from Chapter 4.4.2 that MorphoSys uses a cost model to predict operation
latencies. Figure 4.10 examines the cost model’s accuracy by comparing the actual and
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Table 4.3: Design change operator frequency and latency in MorphoSys.

Operator
Frequency
(per 1000 Txns.)

Avg. Latency

split 3.9± 0.3 3.7± 0.67 ms
merge 0.15± 0.06 8.3± 1.7ms

remaster 14.4± 0.5 33.3± 2.3 ms
add replica 12.1± 0.4 40.4± 0.4 ms

remove replica 0.12± 0.01 0.79± 0.04 ms
Total 30.7± 1.2 6.1± 11.7 ms

Figure 4.10: MorphoSys’ Prediction Accuracy

predicted execution costs (latencies) of the split design change operator. The predicted
latency closely tracks the actual latency with a coefficient of determination (R2) of 0.81.
This result indicates that the cost model captures design change costs with high accuracy
while being easy to interpret and efficient to train.

Different Intial Physical Designs

In the experiments in Chapter 4.6 I provided ADR, VoltDB, and multi-master with of-
fline a priori knowledge of the workload, when initializing the physical design, by using
Schism [53] (Chapter 4.6.1). I advantaged DynaMast and Clay by balancing the number
of partitions mastered at each site. However, for MorphoSys, the initial physical design
was completely random. To examine the effect of these different initial physical designs
on performance, I ran experiments with the skewed read-mostly YCSB workload and mea-
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Table 4.4: YCSB Read-Mostly Skew Tput, under different initial physical designs: Schism
[53] and random. We additionally show the time the system takes to converge to peak
throughput for each initial physical design. Single-master uses the same physical design
for both Schism and random, as it always places master copies of partitions on a single
node.

System
Schism

Avg. Tput
(txn/sec)

Random
Avg. Tput
(txn/sec)

Schism
Time to

Peak Tput

Random
Time to

Peak Tput
MorphoSys 309 ± 11k 302 ± 11k 6 s 23 s

Clay 61.7± 2.9k 41.6± 1.5k 3 s 58 s
ADR 29.7± 3.0k 18.5± 1.3k 3 s 82 s

DynaMast 210± 3.5k 198± 2.2k 5 s 122 s
single-master 170± 1.5k 168± 3.5k 2 s 2 s
multi-master 46.1± 3.4k 21.8± 1.1k 4 s 9 s

VoltDB 3.21± 0.02k 1.98± 0.02k 7 s 6 s

sured peak throughput under two initial physical designs: Schism and a randomized design.
Additionally, for the initial randomized design, I measured the time it took for the system
to converge to within the confidence interval of its peak throughput. These results are
presented in Table 4.4.

As shown in Table 4.4, MorphoSys has the highest throughput under both initial phys-
ical designs. Furthermore, with a randomized initial physical design, MorphoSys converges
quickly (in 23 seconds) to within 2% of its throughput when initialized with a priori knowl-
edge. Without a priori workload knowledge, ADR and Clay reach only about two-thirds of
their peak throughput. Additionally, ADR and Clay take nearly 3× as long as MorphoSys
to converge to their peak throughput, a consequence of performing design changes peri-
odically. MorphoSys converges to its peak throughput faster than these systems because
it uses every transaction as an opportunity to make physical design changes, in contrast
to the periodic design changes made by ADR and Clay. DynaMast takes 5× longer than
MorphoSys to reach peak throughput when initialized with a random physical design. Fi-
nally, by taking a holistic approach to distributed physical design and considering all of
dynamic partitioning, replication and mastering, MorphoSys outperforms its competitors
that consider only one of these aspects of physical design.

Single-master, multi-master and VoltDB, all reach their peak throughput in a short
period of time as they do not change their physical designs in response to a workload.
Note that the throughput of single-master is nearly identical in the two experiments, as
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the single-master architecture imposes a single physical design: a single site masters every
partition, and each partition is replicated at all other sites. By contrast, the throughput of
multi-master and VoltDB drop by 50% and 40%, respectively, when a random physical de-
sign is used compared to Schism’s physical design. Throughput degrades for these systems
as the frequency of distributed transactions increases in the randomized initial physical
design, compared to Schism’s physical design that aims to place partitions to minimize
distributed transactions.

Effects of Record Size

Table 4.5: Effect of record size on physical design operations latency.

Metric
Record Size
(Bytes)

split
Avg. Lat.

(ms)

merge
Avg. Lat.

(ms)

add replica
Avg. Lat.

(ms)

remove replica
Avg. Lat.

(ms)

remaster
Avg. Lat.

(ms)
1 6.95± 1.9 19.1± 2.0 56.5± 1.2 3.07± 1.3 50.7± 9.1
10 7.05± 1.5 19.8± 2.4 58.7± 2.0 3.51± 2.3 52.9± 7.1
100 7.29± 2.1 20.3± 4.0 62.2± 2.3 4.65± 2.7 61.4± 8.6
1000 7.31± 1.5 21.3± 3.6 69.1± 1.3 4.96± 1.4 64.9± 10.5

Relative Change 5.17% 11.5% 22.3% 61.5% 28.0%

To understand the effect that record size has on both system performance and the
physical design change operators, I experimented with the read-mostly, skewed YCSB
workload. I use YCSB for this experiment, as it allows us to easily control the size of each
data item. Table 4.5 shows the results of this experiment as the record sizes vary by a
hefty 3 orders of magnitude, i.e., from 1 byte to 1000 bytes.

As the record sizes increase, the average latency of splitting and merging partitions
remains mostly the same, with only 5% and 11% increases, respectively. The split and
merge operations are not dependent on record size, because they operate on metadata of
partitions; they do not need to read or write any of the records.

Adding a replica requires physically reading record data, and sending it over the net-
work. Thus, as the data size increases, so too does the time taken to add a replica.
Similarly, removing a replica partition must free the memory associated with the replica
record, which results in increased latency for larger records. Finally, remastering may need
to wait for the system to propagate and apply updates that take longer for larger records.
Thus the latency of remastering increases as the record size increases.
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4.7 Summary

In this Chapter, I presented MorphoSys, a distributed database system that automati-
cally modifies its physical design to deliver excellent performance. MorphoSys integrates
three core aspects of distributed design: grouping data into partitions, selecting a parti-
tion’s master site, and locating replicated data. MorphoSys makes comprehensive design
decisions using a learned cost model and efficiently executes design changes dynamically
using a partition-based concurrency control and update propagation scheme. MorphoSys
improves performance by up to 900× over prior approaches while precluding the use of
static designs requiring prior workload information. MorphoSys ability to generate and
adjust distributed physical designs on-the-fly without prior workload knowledge paves the
way for the development of self-driving distributed database systems.
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Chapter 5

Proteus: Adaptive Storage for
Hybrid Database Workloads

In this chapter, I present how Proteus, a scale-out distributed DBMS, provides the bene-
fits of both OLTP and OLAP systems in an integral HTAP system. Proteus adaptively and
selectively stores data in multiple formats and storage tiers to support HTAP workloads
efficiently. Proteus makes storage decisions dynamically based on the workload and lever-
ages layout-specific optimizations that enable it to concurrently achieve OLTP throughput
comparable to row-oriented storage systems and OLAP query latencies that are on par
with column-oriented storage systems.

5.1 Adaptive Storage

As discussed in Chapter 1, neither row nor column format is optimal for an HTAP workload
that contains both OLTP transactions and OLAP queries. Furthermore, a system archi-
tecture that statically replicates all data in both formats suffers from maintaining replica
state efficiently and consistently [26, 144]. In contrast to these architectures, Proteus makes
granular storage layout decisions, replicating when it benefits system performance. I elu-
cidate the case for adaptive storage by introducing the set of storage decisions Proteus
makes and illustrating its benefits by example.
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(a) New Order (OLTP) (b) Delivery (OLTP)

(c) Query 6 (OLAP) (d) Query 14 (OLAP)

Figure 5.1: OLTP and OLAP operations from TPC-C and TPC-H benchmarks.

5.1.1 Storage Decisions

Proteus supports multiple – row or column – storage formats across multiple – memory or
disk – storage tiers in the distributed system. Thus, for a given data item, Proteus adopts a
storage layout given by its storage format and tier. Additionally, Proteus supports storage
layout optimizations, such as maintaining the data in sorted order or in a compressed form
[9, 89, 90, 213, 8, 10]. Because Proteus is a distributed database system, for each data
item it selects a master (or primary) site where update transactions execute and a storage
layout for that site. As Proteus selectively replicates data, it decides at which sites to store
replicas of a data item along with an associated layout for each replica.

Proteus autonomously manages data by changing its storage layout on-the-fly as the
workload executes. These changes include any or all of altering the storage format, storage
tier, master and replica locations, and data partition membership. Such changes enable
Proteus to adapt to the workload, as I illustrate next using a running example.

5.1.2 Example

Figure 5.2a shows a storage configuration with two data sites that store data from the
orderline table along with the item table. In this initial configuration, both the orderline
and item tables are partitioned across the two data sites: data partitions P1 and P3 at
the first data site and partitions P2 and P4 at the second data site. The data partitions
for the orderline table (P1, and P2) are in row format, while the partitions storing the
item table (P3 and P4) are in column format.

Figure 5.1 shows four transactions two OLTP transactions from TPC-C [1] and two
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(a) Initial State (b) Adapted State

Figure 5.2: An initial storage layout of data in Proteus, and adapted state after a series of
storage layout changes.

OLAP queries from TPC-H [4]. The two OLAP queries analyze the orderline table, with the
Query 6 (Figure 5.1c) finding total order amounts while Query 14 (Figure 5.1d) joining the
orderline and item tables to find promotional item order amounts. The OLTP transactions
insert a new order into the orderline table (Figure 5.1a), and update the delivery time of
a recent order (Figure 5.1b).

Observe that executing Query 6 (from Figure 5.1c) over row-oriented storage requires
accessing every attribute from the relevant rows. Furthermore, the results from each site
in the distributed system have to be combined to generate the final result. Observe that
executing Query 14 over this storage layout requires performing a distributed join of data,
i.e., data in partition P1 (order id 100) must be joined with data in partition P4 (item id
50). Executing a distributed join requires transferring over the network all of the data
necessary to perform the join, which is more expensive than transferring reduced partial
(join) results to be merged [117, 59].

In contrast to Figure 5.2a, Figure 5.2b shows the adapted data storage layout after a
sequence of layout changes made by Proteus. Relevant to Query 14, this adapted storage
layout replicates the item table as P34 at both sites. Consequently, Query 14 can perform
its join locally, reducing the distributed execution to only the merge of partial results.
Selective replication of the item table is an efficient choice as the table is read-only and
hence does not require update maintenance [13, 201]. A further change at data site 1
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is that the layout of the orderline table (P1A and P1B) is columnar, which accelerates
the execution of both queries 6 and 14 by reducing the amount of data accessed when
executing the queries. Finally, as the chosen storage layout of both partitions P1B and
P34 are sorted by the join key (item id), the system efficiently joins the data using merge-
join.

In Figure 5.2b, Proteus also changes the storage layout of the orderline table at data
site 2, fragmenting the data (originally P2) into three partitions (P2A, P2B, and P2C)
via horizontal and vertical partitioning. Hence, there is not one partitioning scheme for
the entire orderline table as tables are adaptively partitioned. Data in the delivery column
is stored in a row format, as is the data associated with order id 200 that was inserted as
a result of the NewOrder operation (Figure 5.1a). Note that historical orderline data is
stored in a column format (P2A). This storage layout is effective for analytical queries such
as 6 and 14, as these data are less likely to be updated. In contrast, recently (and likely
to be) updated data are stored in the OLTP-oriented row format. Vertically partitioning
the delivery column, a storage optimization also known as row splitting [87], reduces data
contention from updates to only delivery time for recent orders, such as in the Delivery
transaction (Figure 5.1b).

In summary, Proteus’ adaptive storage layout reduces both OLAP and OLTP execution
latency. Using cost-benefit analysis (Chapter 5.3), this latency reduction is achieved by (i)
distributing and pushing processing to local data sites, (ii) using a storage format aligned
with data access patterns, (iii) promoting and prioritizing data locality for in-memory
processing over disk-based residency, and (iv) employing optimizations such as sorting and
compression, which allows for the selection of query operators to attain efficient execution.

5.2 Proteus System Architecture

I now describe the design of Proteus with a focus on storage layouts and how Proteus
adaptively manages them to execute operations over data efficiently.

5.2.1 Data Storage

Proteus stores partition data in a row or column-oriented format, and on disk or in-memory.
All layouts support reads, writes and updates, as well as conversion between formats or
tiers.
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Row-Oriented Storage

In memory, Proteus stores each row of a partition using a fixed-size byte array, which is
optimized for OLTP transactional access to many cells within a row. To determine the size
of the byte array, Proteus uses the table schema and the columns contained in the relevant
partition. For example in Figure 5.2a, Proteus stores each row in P1 in a 32 byte array: 4
bytes for each of the integer columns (order id and item id), and 8 bytes for each of the
decimal and timestamp columns (quantity, amount, delivery). Proteus stores variable-sized
data, such as strings, using 12 bytes with 4 bytes to encode the data size and 8 bytes to
store a pointer to the data or the data itself if it fits within the 8 bytes to avoid additional
memory accesses. Multi-versioning is used to support efficient updates to data stored in
rows. Proteus uses the last 8 bytes in the byte array to store a pointer to a byte array
storing the previous version of the row. Thus, once a row is written as a byte array, the
data is read-only; updates rewrite the entire row. Proteus stores the partition’s data by
maintaining an array of pointers to each row’s most recently stored version, updating each
entry when updates occur.

To store row-oriented data on disk, Proteus divides data into two parts: an index and
stored data. Each row’s index entry contains an offset into where the row’s data is stored.
Data for each row is stored similarly to in-memory data; however, any variable-sized data
is inlined directly after its length. Proteus’ disk-based representation of row data allows
for both point-based reads – by reading the index and corresponding offset locations – and
data scans.

Proteus supports in-place updates if the update does not change the relative data size;
otherwise, Proteus rewrites the entire partition’s data on disk. Consequently, Proteus
buffers updates in memory and applies them as a batch to disk. Consequently, Proteus
buffers updates in memory and applies them as a batch to disk.

Column-Oriented Storage

To store a partition in a column-oriented format in memory, Proteus stores each column
in a fixed-sized data array [108] along with two index arrays. For columns with fixed-
size data, such as integers, each entry in the array corresponds to the data stored. For
variable-sized data, such as strings, each array entry is stored as a length (using a fixed
length of 4 bytes), followed by the bytes containing the actual data stored in its entirety.
The first index array is an offset array that stores the corresponding row id for each entry
in the data array. The second index array is a position array that stores the offset into
the data array that corresponds to the data stored for each row id. These index arrays
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allow Proteus to efficiently locate where cell data is stored in the column for point reads.
Proteus stores column data on disk using a format similar to Parquet [3], first storing the
metadata including the two index arrays followed by the values.

Proteus supports flexible ordering of data: each column in the partition may store data
in the same order — by row id or based on a total order over the columns such as in
partition P1B (Figure 5.2b), or each column may be sorted independently.

Additionally, Proteus supports compressing data stored in columnar format using run-
length encoding (RLE) [8] by prefixing each entry with 4 bytes to indicate the length of
the run, as shown in partition P1A (Figure 5.2b). Because RLE stores one value per
compressed run and stores data contiguously, database operators can operate directly over
compressed data. These properties have been identified as being key to allowing operating
directly over compressed data [8], compared to other compression techniques such as null
suppression or dictionary compression. For example, RLE allows the run length to be used
when performing aggregation or outputting the results of a join (Chapter 5.2.3). RLE
works best when data is already sorted or contains a high frequency of repeated elements.
Finally, updating compressed data may require decompression if the stored values change,
though run lengths can be updated directly.

Proteus buffers updates to column data in a delta store, which stores data in memory as
rows in a hash-table indexed by row id [106]. Thus, if scans or point-reads require accessing
more recent data than stored in the columns, Proteus combines the stored column data
with data from the delta store. Updates in the delta store are periodically merged with
the column data to create a new version of the data for storage on disk or in memory.

Zone Maps

Independent of the storage layout, Proteus maintains zone maps [59] that maintain the
minimum and maximum value for each column stored within a partition. Zone maps
allow skipping data in a partition if the minimum and maximum values indicate that a
predicate in a query cannot be satisfied by any data item in the partition. For example,
in Figure 5.2a, the zone map of partition P2C would indicate that there are no orderline
entries that satisfy the delivery predicates in Query 6 or 14. Proteus maintains zone maps
in memory and in row format, as they are of fixed size and accessed by point queries.
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5.2.2 Concurrency Control and Replication

To provide SSSI, Proteus uses the partition-based dependency-tracking concurrency control
algorithm introduced in Chapter 4.3.2 that tracks: (i) per-partition version numbers and
(ii) the dependencies among partitions and their versions to ensure that transactions read
from a consistent snapshot of data. To implement this concurrency control scheme, Proteus
uses a lock per-partition to ensure that updates within a partition do not conflict but keeps
multiple versions of data so that read-only operations do not conflict with updates.

When data is stored in a row format, each update creates a new copy of the row
(Chapter 5.2.1). In contrast, partition data stored in a column format represents the
snapshot of the partition data at a specific version, with new updates stored in the row
format delta store. Consequently, read operations over column format data only merge
data from the delta-store if the snapshotted column data cannot satisfy the SSSI versioning
requirement.

Proteus’ concurrency control scheme makes changes to the depdendency recording and
consistent read rules for distributed execution. Specifically, if a transaction executes at
multiple sites, sites exchange observed dependency information at the start of the transac-
tion to produce a single begin timestamp used at all sites. This state exchange ensures that
at all sites, the transaction reads the same version of replicated data. Hence, transactions
continue to follow the consistent read rule. Similarly, when committing an update trans-
action, the transaction uses a single commit timestamp across all involved sites, which the
transaction’s coordinator computes between the first and second phase of the two-phase
commit. Hence, all sites record the same dependency information for the transaction, en-
suring that subsequent transactions observe a consistent snapshot state, independently of
where they execute.

Both Proteus’ concurrency control and adaptation advisor logic make use of transac-
tional read/write information. For analytical queries, clients determine read cell ranges
from the columns accessed in each table necessary to execute each query, e.g., Query 14
(Figure 5.1d) accesses the i data, and i id columns in the item table and the item id,
amount, and delivery columns in the orderline table.

5.2.3 Transaction Execution

Given the storage layouts supported in Proteus, the system capably presents a uniform
transaction execution interface. Proteus’ adaptation advisor uses a query tree (Figure
5.3a) to develop a physical execution plan for each submitted transaction that specifies
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Table 5.1: Proteus’ cost functions and their arguments.

Cost Function Arguments

Storage Layout-Aware
Bulk Load
Insert/Update/Delete
Point Read

(i) # Cells accessed
(ii) Column sizes

Scan w/ predicate & projection
(Sequential, Sorted, Index)

(i) Cardinality
(ii) Column sizes (input & output)
(iii) Selectivity

Sort
Hash

(i) Cardinality
(ii) Column sizes

Join
(Hash, Nested Loop, Merge)

(i) Cardinality (left, right, output)
(ii) Column sizes (left, right, output)
(iii) Join selectivity

Aggregate
(Hash, Sort)

(i) Cardinality (input, output)
(ii) Column sizes

Storage Layout-Agnostic

Network Request
(i) CPU utilization at source & dest.
(ii) # Bytes (sent & received)

Lock Acquisition (i) Contention of partition
Waiting for Updates (i) # Updates needed

Commit
(i) # Partitions read and written
(ii) # Sites involved in transaction

where, and how, each operation should execute (Figure 5.3b). At a data site, the transac-
tion execution layer executes the physical execution plan including accessing stored data,
coordinating distributed execution with other data sites, and computing the transaction’s
result. To do so, Proteus applies operators such as scan, join, update, insert and delete that
iterate over partition(s) (Table 5.1). Proteus chains these operators together to execute
each transactional request. Thus, Proteus uses partition-at-a-time processing, which is a
hybrid approach [97] between tuple-at-a-time and vectorized processing [100], and reduces
the number of repeated accesses to data partitions.

Proteus’ operators come in two forms: storage-aware or storage-agnostic. Storage-
agnostic implementations use the same generic storage interface regardless of how the
system stores the relevant partition data. For example, acquiring a lock on a partition
is agnostic to the layout. Storage agnostic data accesses and updates use cell-based op-
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erations. Storage-aware operators leverage knowledge of the storage layout to optimize
execution. For example, in Figure 5.2b, partitions P1B and P34 are sorted on the join at-
tributes (item id and i id, respectively), hence a sorted column-storage aware join operator
that implements the merge join algorithm leverages this knowledge to efficiently execute
the join. Generally, the storage-aware operators are designed to (i) use column-specific
operators, such as the invisible join algorithm for hash-joins [9], (ii) operate directly over
compressed or sorted data, and (iii) use block-based accesses for data residing on disk.

Proteus uses column-specific operators for scans and column-specific operators for scans
and joins. Specifically, when performing hash-joins among column partitions, Proteus uses
the invisible join algorithm [9] that rewrites join conditions as predicates and evaluates
these predicates using hash-lookups to determine the intersection of positions that satisfy
the predicates. To perform scans, Proteus’ column operators scan each column in the
partition independently, recording which cells satisfy the predicate in bitmaps. Proteus
merges bitmaps together and extracts the relevant tuples to produce a result set that
satisfies the predicate [9].

When possible, Proteus operates directly over compressed and sorted data. For exam-
ple, if summing a compressed column (aggregating), Proteus can take the dot-product of
each value and encoded length rather than summing each cell individually. Proteus also
leverages the compressed length when performing joins to output the results of multiple
tuples in one pass [8]. When searching for values that satisfy predicates, over sorted data,
Proteus uses binary search to find the start or end position of values satisfying the predi-
cate values satisfying within a partition, rather than scanning the entire partition. Proteus’
adaptation advisor leverages sort order information to eliminate the need for sort opera-
tions in a physical execution plan when performing merge-joins or sort-based aggregations.

Proteus uses block-based algorithms for operations over data that reside on disk [157].
In general, these algorithms operate over a block of data at a time to reduce the number
of memory pages needed to execute the query, which allows Proteus to continue to store
partition data in memory without thrashing. Proteus uses block nested loop join, block
hash joins and a block merge-join via external sort.

As a distributed system, Proteus coordinates transactions that access data spanning
multiple sites. To execute distributed analytical queries, Proteus executes joins across sites,
coordinating both data transfers and aggregation of results. For example, in Figure 5.3b,
each data site executes a local join, but data site 2 coordinates the transaction by aggre-
gating the results globally. To do so, Proteus leverages the replicated item table partition
in the join at both data sites (Figure 5.3b). To ensure the correctness of the join result,
at least one side of a join executes over precisely one copy of each partition, which in the
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(a) Query Tree

(b) Physical Execution Plan

Figure 5.3: Proteus’ query tree and physical execution plan for TPC-H Query 14 (Fig-
ure 5.1d) under storage layout from Figure 5.2b.

example corresponds to partitions {P1B,P2A,P2B,P2C} all storing the orderline data.
Pipelined join execution over different partitions across all sites eliminates the need for
duplicate generation of results. Proteus coordinates distributed updates using two-phase
commit, if necessary. Since master partition placement is a storage layout decision, the
adaptation advisor can adaptively change the master placement if its cost-based model
determines the change to be beneficial (Chapter 5.3.4).
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5.2.4 Changing Storage Layouts

Proteus supports storage layout adaptivity by changing any or all of: (i) the storage format
or tier of a data partition (ii) adding or removing storage optimizations (iii) changing the
data partitioning (iv) adding or removing replicas of a partition (v) changing the location
of the master copy of a partition. Here, I focus on the mechanism for executing these
changes. Chapter 5.3 details how the adaptation advisor makes decisions for adapting the
system storage layout.

To change the storage format or tier, Proteus reads a consistent snapshot of the data
into memory and bulk loads the data into the respective storage layout. For example, to
bulk load row format data into memory, Proteus allocates a fixed-size buffer for every row
and updates each cell as it reads the data. By contrast, bulk loading row format data that
will reside on disk requires dynamic allocation of each row based on variable-sized columns,
which Proteus writes to disk sequentially. Enabling sorting entails changing data storage
using bulk load operations; removing a sort order does not change the data layout but
ceases to maintain the sort order on subsequent updates. Compressing and decompressing
stored data result in changing how it is stored, as the RLE scheme prepends the length of
each run before each data item.

Changes to data partitioning schemes occur dynamically by merging or splitting par-
titions, either horizontally (row-wise) or vertically (column-wise). For example in Fig-
ure 5.2b, Proteus forms partition P2C by vertically partitioning P2 in Figure 5.2a, while
a subsequent horizontal partitioning forms partitions P2A and P2B. By contrast, Pro-
teus forms partition P34 (Figure 5.2b) by merging partitions P3 and P4 (Figure 5.2a).
Changes to the horizontal partitioning of row formatted data simply require changing row
mapping from one partition to another. A similar operation occurs for vertical partition-
ing of column-format data. By contrast, horizontal partitioning of column data is bulk
reloaded into the new partitions.

As in Chapter 4.3.4, Proteus supports dynamically adding or removing partition repli-
cas, and changing partition mastership.

5.3 Proteus’ Adaptation Advisor

Proteus’ adaptation advisor generates a physical execution plan for each client request
based on the system’s storage layout, and adapts its layout based on the workload to
further improve system performance. The adaptation advisor accomplishes these tasks
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through (i) tracking the current storage layout using metadata, (ii) modelling the workload
to estimate access latencies under current and adapted storage layouts, and (iii) reusing
previous decisions to reduce the latency of planning. I expand on each of these techniques
next.

5.3.1 Partition Metadata

The adaptation advisor tracks the metadata state of each data partition in a concurrent
hash-table structure for efficient lookups. For each partition, the adaptation advisor main-
tains: (i) the partition bounds (minimum and maximum row id and columns) (ii) the
storage layout of each replica of the partition (iii) access frequencies over different time
scales (minutes and hours) for updates, point reads, and scans (iv) a zone map (v) the
set of partitions frequently co-accessed with the partition as a result of updates or joins.
Proteus uses access frequencies to predict upcoming accesses to the partition and to esti-
mate access costs under different storage layouts. The adaptation advisor uses the zone
maps to estimate the selectivity of predicates and joins. Tracking co-access likelihood en-
ables the adaptation advisor to reduce distributed coordination by co-locating co-accessed
partitions.

The adaptation advisor also maintains per table column statistics, including each col-
umn’s average size and per column access rates. Proteus uses these statistics to estimate
the storage space required to store a given partition and per column access trends.

5.3.2 Predicting Data Access Latency

To select a physical execution plan or decide on a storage layout change, Proteus quanti-
tatively evaluates the effects of its decisions. As physical operators enable layout changes,
an interpretable way to capture the cost of each operator is the time it takes to execute,
i.e. its latency. Using latency to compare the effects of different storage layouts on per-
formance also serves to directly minimize transaction latency [13, 80, 175, 191]. Hence,
Proteus predicts the latency of operations in the system using learned cost functions based
on the statistics described in Chapter 5.3.1.

Table 5.1 summarizes the different cost functions that are used to estimate the latency
of executing a query or a storage layout change. Recall that cost functions are classified
as storage layout-aware, such as updating data, or layout-agnostic, such as the latency of
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performing a network request. Proteus learns a single cost function for storage layout-
agnostic functions, while for storage layout-aware functions Proteus learns a cost function
per storage layout based on the storage tier, format, and enabled optimizations.

Formally, Proteus learns a cost function F for each storage operator in Table 5.1 that
consumes the arguments listed in the table.

Proteus decomposes each transaction into storage-aware operators that it chains to-
gether to execute the transaction. Proteus estimates the latency of the transaction by
summing the predicted latency of each operator. For example, to predict the latency of
the Delivery transaction (Figure 5.1b) in Figure 5.2a that updates a partition (P2) in a row
layout, Proteus combines the predictions of (i) sending a network request to the data site,
(ii) acquiring a lock, (iii) performing the update on the row, and (iv) committing. Each
of these predictions is parameterized; for example, the latency of performing the update is
parameterized by: (i) the number of cells accessed and (ii) the total average size of each
cell updated.

Using storage layout-specific cost functions and parameterizing the cost functions al-
lows Proteus to predict the latency of transactions under different physical designs. For
example, consider the example of the Delivery transaction but now Proteus wishes to com-
pute the latency of this transaction under a columnar layout. In this case, Proteus can
replace the row-format predictor of performing an update with the column-format pre-
dictor of performing an update. Similarly, if Proteus vertically partitions the data (as in
Figure 5.2b), then the parameters to the cost function are altered: as the contention on the
partition decreases (an argument for acquiring the lock), and the size of stored partition
data decreases (an argument for the update).

Predictors

Proteus learns the cost function F using three different learning algorithms: (i) linear
regression, (ii) non-linear regression and (iii) a neural network model. As shown in Chap-
ter 5.4.3, these algorithms have significantly different latencies for both inference (making
a prediction) and training (building the model), as well as accuracy differences. Proteus
uses the linear regression algorithm, which has the lowest inference latency when predict-
ing in latency-sensitive situations such as generating an execution plan. In contrast, the
non-linear regression and neural network algorithms are more accurate than the linear re-
gression algorithm but take longer to train and converge. Hence, Proteus asynchronously
updates the decision cache by averaging the predictions from all three models, so subse-
quent decisions take advantage of the more accurate models with lower latencies.
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I now describe each of the three algorithms used in the cost functions. Each algorithm
takes n arguments, as in F (a1, ..., an), and returns a scalar prediction y. The system also
collects the true observed value for a given estimated cost, o, which is the latency of the
specific operation. As an example, for an update transaction, each operator would report
different observed latencies; that is, one observed latency o would correspond to the time it
takes to update data. Periodically (by default every 15 seconds), with each observation o,
a function’s corresponding arguments (a1, ..., an) and prediction y are updated by Proteus
via training.

Linear Regression The linear regression algorithm makes the prediction F (a1, ..., an) =
y by learning weights w0, w1, ..., wn and predicting F (a1, ..., an) = w0+(a1·w1)+...+(an·wn).
Proteus uses stochastic gradient descent to update the weights (w0, w1, ..., wn) with a mean
squared error loss function: (o− y)2.

Non Linear Regression Proteus uses Dlib’s [101] kernel recursive least squares algo-
rithm (KRLS) [63] as its non-linear regressor. The KRLS algorithm works by learning
a linear regressor (using recursive least squares) over a higher-dimensional feature space.
This higher-dimension feature space is induced from the input arguments (a1, ..., an), ob-
servations o, and a kernel function. By default, Proteus uses the common and popular
radial basis function kernel.

Neural Network Regressor To support a neural network regressor, Proteus uses Dlib’s
[101] multilayer perceptron that uses backpropagation to update the internal weights of
the network. Dlib uses a sigmoid activation function at each node, so the network produces
an output between 0 and 1. Hence, Proteus scales the final output from the network to
between 0 and a predefined maximum latency (30 seconds). By default, neural networks
used for regression in Proteus have two hidden layers, allowing the model to learn arbitrary
functions. For a cost function F (a1, ..., an) with n arguments, the input layer has n + 1
nodes, an output layer with 1 node, and two hidden layers each have n+2

2
nodes, which

follows the principle of averaging the number of input and output nodes.

Collecting Observations

Data sites collect observed latencies of database operators and report these observations to
Proteus to train the cost functions. To collect these observed latencies, the data sites utilize
an observation collection API that records the start and end times and model arguments
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of each invocation of a storage operator. The storage operator is also responsible for
computing the input arguments associated with the operator. In the update transaction
example, the update operator invokes the API to record the start time of its execution,
the end time of its execution, reporting the number of cells written, and the size of the
columns of data read and written. The data site adds this to a per-thread observation data
structure, which stores a list of observed latencies and their arguments for each storage
layout and operator pair. The data sites report observations to Proteus by swapping each
thread’s observations with an empty set and merging the observations together. The data
sites report these merged observations to Proteus, which uses them as data to train its cost
functions.

5.3.3 Estimating Data Access Arrivals

Proteus considers the effect of adapting storage layouts on future requests. Recall from
Chapter 1 that both analytical and transactional workloads exhibit temporal and cyclic
trends in requests that arise due to follow-the-sun behaviour, or scheduled reporting [175,
121, 190]. Hence, Proteus uses learned models to predict the likelihood of future data
accesses and their arrival time. Doing so requires predicting the number of partition
accesses by type (e.g., scan versus update) in a given upcoming time window.

Predicting when data will be accessed and the volume of accesses entails: (i) predicting
trends at different temporal granularities, such as daily, weekly or yearly patterns, (ii)
handling growth and spikes in requests, which can occur on specific dates such as the
fiscal year-end, and (iii) adapting to changes in workloads over time, which may arise if the
submitted queries or transactions change due to user needs or preferences [193, 121]. Thus,
Proteus uses predictive models with both a periodic component to capture the long-term
periodic trend, and the local trend to capture short term transient effects such as spikes in
the number of requests.

Proteus tracks accesses on a per-partition basis by access type (update, point read, or
scan). These statistics are tracked over 5-minute intervals for the past day and hourly for
a month and supplied as input to Proteus’ predictive models.

Predictors

Formally, Proteus predicts δ(T, τ) that represents the number of requests of type T that
will arrive in time window τ . Proteus supports two different predictors to estimate δ(T, τ):
SPAR and a hybrid-ensemble. Both predictors combine a periodic trend prediction, that is,
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how access patterns change over a recurring period (e.g., accesses follow an hourly cycle),
and a short term effect component that considers the short term trend in accesses (e.g.,
accesses are becoming more common over an hour). For SPAR, the period is user-defined,
while the hybrid-ensemble learns the period.

For both predictors, Proteus considers τ in five-minute intervals over a day. For nota-
tional simplicity, if τ is less than the current time (that is, in the past), I define δ(T, τ) as
the actual number of accesses to T in the time window represented by τ . I describe how
Proteus efficiently collects this access history in Chapter 5.3.3.

SPAR Proteus uses SPAR [43] to combine long-term periodic trends with short term
effects. To learn the periodic trend, SPAR requires a user-defined period Ψ, and a number
of periods to examine Ψn. SPAR considers the number of requests to T in previous time
intervals (represented by δ(T, τ − iΨ) for 1 ≤ i ≤ Ψn). Proteus weights these previous
numbers of requests by coeffecients bi as shown in Equation 5.1. Coeffecients are learned
using linear regression.

Ψn∑
i=1

(bi · δ(T, τ − iΨ)) (5.1)

Proteus also uses SPAR to considers how short term access counts shift within the
period Ψ compared to the access counts in previous periods. SPAR averages this access
count, as γ(T, τ) in Equation 5.2.

γ(T, τ) = δ(T, τ)− 1

Ψn

Ψn∑
i=1

δ(T, τ − iΨ) (5.2)

To compute the short term shift within the period Proteus uses SPAR to weight γ(T, τ−
j) using learned coefficients cj for the j intervals within the period Ψ. There are Ψk such
intervals within a period. Consequently, Proteus computes the short term shift in access
counts as shown in Equation 5.3.1

Ψk∑
j=1

(cj · γ(T, τ − j)) (5.3)

Proteus combines the periodic prediction (Equation 5.1) with the short term trends
(Equation 5.3), via a sum to predict δ(T, τ), as shown in Equation 5.4.

1By default, Proteus uses a period of one hour, and considers the previous day; hence Ψn = 24. As
intervals are 5 minutes long, Ψk = 12.
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δ(T, τ) =
Ψn∑
i=1

(bi · δ(T, τ − iΨ)) +

Ψk∑
j=1

(cj · γ(T, τ − j)) (5.4)

Hybrid-Ensemble Proteus’ hybrid-ensemble (HE) predictor combines a periodic pre-
dictor using a recurrent neural network (RNN) to capture the periodic trend, and a short
term predictor using linear regression. Importantly, the HE predictor does not require
used-defined periods as the RNN learns the periodic trend.

Proteus’ linear regression predictor δL(T, τ) predicts the number of accesses to T at
time τ based on past access counts over a sliding window. As the regression is linear,
it captures only the short term access trend. That is, it captures whether accesses are
increasing or decreasing over time, and if so, by how much.

Proteus’ RNN predictor δR(T, τ) captures periodic trends without requiring prior knowl-
edge of the period. RNNs are a class of networks where nodes in the network have cycles
[200], and Proteus uses the long short-term memory (LSTM) architecture [81] for its RNNs.
This architecture allows the RNN to remember values over arbitrary time intervals, which
allows the RNN to learn the period. Proteus uses libtorch’s [149] implementation of LSTMs
with five internal layers determined empirically.

Proteus also accepts a user-defined custom holiday list that allows an administrator
to define periods where additional access counts should be added or removed following a
Gaussian function [193]. The holiday list allows Proteus to account for events that repeat
but not in a periodic cycle, such as Black Friday, which is not on the same date every year.
For each holiday, the user defines the time over which the holiday occurs (range between
hs and he), and parameters for the Gaussian function (peak value α, width σ2, and centre
between hs and he) that capture the access counts for that time as δH(T, τ). If τ is within
the defined time of the holiday (i.e., hs ≤ τ ≤ he) then Proteus computes δH(T, τ), given
in Equation 5.5; otherwise, δH(T, τ) = 0.

δH(T, τ) = α · exp

(
−
(
τ − he+hs

2

)2

2σ2

)
(5.5)

Proteus combines the three components of the HE to produce a final prediction δ(T, τ)
from the average of the linear trend and periodic behaviour, and any holiday adjustments
as shown in Equation 5.6
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δ(T, τ) =
δL(T, τ) + δR(T, τ)

2
+ δH(T, τ) (5.6)

Collecting Access History

To predict the number of accesses to a partition by type in a time window requires collecting
access history to train predictive models. The number of accesses to a partition by type
within a one-minute window (by default) is recorded by each data site. As the access
counts are kept on a per-partition basis, these counters have low levels of contention.
Proteus polls each data site to collect this information and aggregates the accesses across
data sites within five-minute windows (by default). Using these newly collected access
patterns, Proteus updates its access estimators via training. In the case of SPAR, the
collected observations must be stored until they will no longer be needed for inference, that
is, Ψn periods have passed. Proteus stores these access counts using a circular buffer, and
new access counts overwrite prior access histories. For the hybrid-ensemble, the collected
observations no longer need to be stored once the estimator has been updated; however,
Proteus keeps a sampled reservoir of access histories for use when updating the estimator
so that the model has access to long-term history.

Generalizability of Predictions

Finally, although not the focus of this thesis, the predictive techniques used by Proteus
are generalizable to other database systems. I have demonstrated this generalizability
by integrating Proteus’ predictive capabilities into two systems [15]. First, an OLAP
DBMS that performs cracking [74], a process that incrementally adapts indices to the
workload by reorganizing data based on accesses. By integrating Proteus’ capabilities, I
enable the DBMS to perform cracking predictively: if Proteus predicts an area of data
will be accessed in the future, it reorganizes (cracks) the area of data, thereby reducing
the latency of queries that access that data. Second, I also integrated Proteus’ predictive
capabilities into PostgreSQL to automatically add and remove secondary indexes based on
the predicted workload.

5.3.4 Query and Storage Layout Planning

The adaptation advisor generates physical execution plans based on its workload models
and the current storage layout. Next, I describe how Proteus generates physical execu-
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tion plans, makes storage layout decisions, and reuses past decisions to accelerate these
processes.

Physical Execution Plans

Proteus begins the physical execution plan generation process by starting out with a query
tree for the request, which is generated using PostgreSQL’s parser and analyzer. Using the
query tree, Proteus generates a physical execution plan by (i) replacing accessed tables in
leaf nodes with the relevant corresponding partitions at a specific site, (ii) instantiating
internal nodes with operators, and (iii) adding additional operators to handle distributed
operations as necessary.

Note that in Figure 5.3a, the leaves of the query tree are accesses to the orderline and
item tables. When generating the associated physical execution plan shown in Figure 5.3b,
Proteus replaces these leaves with accesses to the relevant partition data identified by
partition metadata. Figure 5.2b shows that with respect to the orderline table, there are
four relevant partitions: P1B,P2A,P2B, P2C. Thus, Proteus replaces the leaf with an
instantiation of access to partition P1B. Due to vertical partitioning of the data, accesses
to P2A,P2B, and P2C result in rewriting of the leaf nodes with separate accesses to the
partitions. Proteus inserts an internal join node to make the required columns available
together to the parent operator. Proteus also selects the sites where data access to the
partition will occur, enforcing that at least one side of any join operation executes at
exactly one site for each relevant partition.

Given an assignment of the site and data access to each leaf node in the query tree,
Proteus assigns a physical operator to each node in the query tree. For example, Proteus
selects to join partitions P1B and P34 using a merge-join algorithm over other alternatives
such as a hash or nested-loop join algorithm because its cost functions estimate the merge-
join to have the lowest cost. Proteus makes this decision greedily to effectively reduce
the physical execution plan search space. Operator(s) to the plan are added if a selected
physical operator needs them, such as inserting sort operators before merge-join.

Proteus adds nodes to combine and coordinate distributed operations, e.g., Figure 5.3b’s
distributed aggregation at data site 2.

Layout Changes

Proteus plans layout changes in response to three stimuli: (i) generating a physical ex-
ecution plan for a request (ii) requests predicted to arrive in an upcoming 10-minute
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(configurable) interval (iii) when a data site nears storage constraints, e.g., memory or disk
capacity limits. In each case, Proteus integrates the workload models into one equation,
the net benefit of a change defined by N(S) that quantifies how beneficial a change is to the
system overall. Proteus computes N(S) by estimating (i) the upfront cost U(S) to execute
the storage layout change based on the operations needed to perform the change (via the
cost functions in Table 5.1), and (ii) the expected cost effect E(S) on requests predicted
to arrive and on requests currently executing (C(S)). Proteus computes E(S) and C(S)
by computing the difference between predicted transaction latency under the current and
proposed layouts, weighted by the likelihood of the transaction executing. The adaptation
advisor computes the net benefit of adaptation N(S) as shown in Equation 5.7.

N(S) = λ(E(S) + C(S))− U(S) (5.7)

In the running example from Chapter 5.1.2 (Figure 5.2b), Proteus chose to vertically
partition P2 to produce partition P2C to mitigate the contention effects of OLTP opera-
tions, such as the delivery transaction (Figure 5.1b). The adaptation advisor estimated the
proposed layout will reduce transaction latency, resulting in a positive E(S). To perform
this vertical partitioning necessitates an upfront cost (U(S)), primarily induced by the
cost of scanning the original partition and bulk loading the new partitions. This change
affects other queries, such as the join in Query 14, slightly increasing its latency under the
proposed change as it induces another join (Figure 5.2b). However, Proteus estimates the
impact is small due to the selectivity of predicates over P2C, resulting in a low join cost
and a small negative C(S). Thus, N(S) is positive so Proteus proceeds with the change.

After generating a physical execution plan, the adaptation advisor performs a top-down
search to find the leaf that contributes the highest data access cost to the overall plan. In
the running example, the latency induced by contention when accessing partition P2 is the
highest leaf cost, and thus the adaptation advisor considers it a candidate for a storage
layout change, in this case vertical partitioning. The adaptation advisor considers if any
storage layout changes that affect the high-cost leaf induce a positive net benefit (N(S)).
If so, Proteus initiates the storage layout change and updates its physical execution plan.
Proteus repeats this process, stopping when further changes do not result in a positive
increase to the value of N(S). In the running example, vertically partitioning P2 to
produce P2C is beneficial, so it is added to the plan. Proteus horizontally partitions P2
to produce P2A and P2B but stops after this change as further changes do not improve
N(S).

To make effective changes without sacrificing efficiency, Proteus tracks the average es-
timated leaf access cost per type of operation, normalized by the number of cells accessed,
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and performs this planning step (i) if this normalized cost is above average or (ii) proba-
bilistically with probability inversely proportional to the normalized cost. Thus, Proteus
reduces cost by changing the storage layouts of partitions with high access costs to generate
higher potential latency savings.

Proteus periodically predicts upcoming accesses and considers storage layout changes
if the predicted access pattern differs from the recent pattern of accesses. For example, if
Proteus predicts frequent updates to a partition because of a cyclical access pattern but the
partition has been infrequently updated recently, then Proteus adapts the partition storage
layout. To do so, a physical execution plan is generated for a placeholder transaction
that accesses the partition. Proteus then predictively plans storage layout changes using
the aforementioned procedure. The placeholder transaction is instantiated with accesses
based on recorded partition co-access statistics (Chapter 5.3.1). Proteus constrains the
search space of potential predictive layout changes by considering the workload in only the
upcoming 10-minute (configurable) interval. As I show experimentally in Chapter 5.4.3,
Proteus executes layout change plans efficiently, in sub-second latencies on average, and
hence can execute many changes predictively within this time window.

Data sites track their storage usage per tier and report to the adaptation advisor as
they approach the capacity limit within a tier. In response, Proteus considers executing
storage layout changes that reduce the consumed storage capacity by: (i) removing replica
partitions (ii) changing partition mastership to another site (iii) compressing partition data
(iv) moving partition data to a lower storage tier. Proteus estimates the expected benefit
of each of these options for data partitions stored in the tier and selects the option that
maximizes the expected benefit N(S). To avoid considering all partitions, data partitions
are grouped into tiers by their access statistics, including estimated access arrival times and
estimated N(S) for each decision for a partition group as a whole. Once Proteus selects
a partition group and makes a decision, each partition within the group is repetitively
considered under the decision, executing storage layout changes until the site is under its
capacity limit(s).

Computing Net Benefit

Previously, I introduced how Proteus computes the net benefit of a storage layout change
S, as N(S) in Equation 5.7. I now formalize the computation of N(S).

Table 5.2 summarizes each storage layout change in Proteus and the cost functions that
the adaptation advisor combines to estimate the upfront cost of performing the storage
layout change. For example, in Figure 5.2b to change the storage format of partition
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Table 5.2: The upfront costs of different storage layout changes in Proteus, which are
computed by combining different cost functions.

Storage Layout
Changes

Cost Function
Bulk
Load

Scan Sort
Network
Request

Lock
Acquisition

Waiting
for Updates

Commit

Change Format X X X X
Change Tier X X X X

Sort X X X X X
Compress X X X X

Change Partitioning
(Horizontal in Row)
(Vertical in Column)

X X X

Change Partitioning
(Generic)

X X
X

(As needed)
X X X

Add Replica X X
X

(Sourc
& Dest.)

X
(Dest.)

X

Remove Replica X

Change Master
X

(Source
& Dest.)

X
(Source
& Dest.)

X
X

(Source
& Dest.)

P1B from a row to column format requires: (i) the adaptation advisor making a network
request to data site 2, (ii) reading all the data from the row formatted partition via a scan,
and (iii) bulk loading the data into a column format. The adaptation advisor uses the
layout-specific cost functions, including row-specific scan and column-specific bulk loader
estimators. Recall from Chapter 5.2.4 that horizontal partitioning of rows, or vertical
partitioning of columns, does not need to perform full data scans or bulk data loading,
simply the reassignment of pointers. Consequently, Proteus differentiates the upfront cost
for these changes to data partitions from the generic change of partitions.

To compute the expected effect of a storage layout change S on a request T , Proteus
estimates the latency of the request under the current layout Lcurrent(S, T ) and the la-
tency of the request under the adapted layout Ladapt(S, T ). Proteus estimates Ladapt by
using different storage layout aware cost functions — in the example for partition P1B
(Figure 5.2b), the adaptation advisor replaces the row format scan cost function with the
sorted column scan cost function. Alternatively, storage layout changes may alter the input
arguments to the same function; for example, the vertical partitioning of partition P2C
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Table 5.3: The expected change in transaction execution latency in Proteus, per cost
function for each storage layout change.

Storage
Layout

Changes

Cost Function

Bulk
Load

Insert/
Update/
Delete

Point
Read

Scan
Sort/
Hash

Join Aggregate
Network
Request

Lock
Acquisition

Waiting
for Updates

Commit

Change
Format

X X X X X X X

Change
Tier

X X X X X X X

Sort X X X X X X X
Compress X X X X X X X

Change
Partitioning

X X X X X X X X X X

Change
Replication

X X X X X X X X

Change
Master

X X

lowers the estimated contention of the partition, an argument for the lock acquisition cost
function. Table 5.3 summarizes the effect each storage layout change has on estimated
transaction latency for transactions that access the changed data partitions.

Proteus weighs the estimated effect of the storage layout change on T by the likelihood
of T ’s request arriving (Pr(T )), and the time to T ’s arrival (∆(T )). Pr(T ) and ∆(T ) are
derived from the prediction of δ(T, τ), which is the number of requests of type T that will
arrive in time window τ (Chapter 5.3.3). Given δ(T, τ), Proteus computes ∆(T ) at time t
as τ − t for the minimum τ > t such that δ(T, τ) > 1, that is the first time in the future
that Proteus estimates at least one request will arrive. Given such a τ , Proteus estimates
the probability of such an arrival as Pr(T ) as shown in Equation 5.8, which takes the
complement of a Poisson estimate of the probability that no requests will arrive at time τ .

Pr(T ) = 1− exp (−δ(T, τ)) (5.8)

Given these predictions, Proteus combines the estimated effect of the storage layout
change S on T as E(S, T ), as defined in Equation 5.9.

E(S, T ) =
(
Lcurrent(S, T )− Ladapt(S, T )

)
· Pr(T )

(∆(T ) + 1)
(5.9)

Observe that E(S, T ) is positive if Lcurrent(S, T ) > Ladapt(S, T ), which indicates that
Proteus expects the storage layout change to reduce the latency of executing the request.
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However, the magnitude of E(S, T ) is determined by: (i) the relative change in execution
latency, (ii) how likely the request is to arrive, and (iii) the estimated time to request
arrival.

Proteus computes E(S) and C(S), by summing E(S, T ) for each request that are on-
going (in which case ∆(T ) = 0 and Pr(T ) = 1), or predicted to arrive. Observe that
E(S, T ) ≈ 0 if Lcurrent(S, T ) ≈ Ladapt(S, T ), Pr(T ) ≈ 0, or ∆(T ) is sufficiently large. Con-
sequently, Proteus restricts the set of requests that it considers to those that access data
affected by the storage layout change, or are likely to arrive in an upcoming window.

Finally, Proteus combines E(S), C(S), and U(S) into one equation that defines the net
benefit of the storage layout change, as shown in Equation 5.7 as N(S). Observe that λ > 0
controls the importance of the expected benefit of the storage layout change, compared to
the upfront costs to perform the layout change. Note that if N(S) is greater than 0, the
storage layout change is considered beneficial.

Plan Reuse

To reduce planning overhead, Proteus caches previously used physical execution plans for
reuse. A plan is reused in its entirety if the current storage layout satisfies the layout
used in the cached plan. For example, consider Query 14 executed on the storage layout
shown in Figure 5.2b using the physical execution plan shown in Figure 5.3b. If Proteus
receives this same request again with the same storage layout, then it would reuse that same
physical execution plan. As Proteus adaptively changes its storage layout, a single change
invalidates a plan. Hence, Proteus carries out plan decision reuse. To do so, the input
arguments for each operator are bucketed and the decisions made given these arguments
are cached. If a subsequent decision has similar inputs, then Proteus reuses the decision
with the lowest estimated cost. Proteus also uses this technique to reuse decisions for
storage layout changes.

5.4 Experimental Evaluation

I now present an experimental evaluation to demonstrate the effectiveness of Proteus’
storage layout adaption and how it significantly boosts HTAP system performance for
varying HTAP mixes, access patterns and load.
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5.4.1 Methodology and Benchmarks

The experiments are conducted on up to 18 data sites (default 6 sites) following the same
configuration as described in Chapter 3.5.2.

I conduct experiments using three HTAP workloads: the CH-benCHmark (CH) [46],
transactional YCSB [48] and Twitter [58] benchmarks. CH consists of the TPC-C OLTP
[1] and TPC-H OLAP workloads [4]. The transactional YCSB workload consists of two
types of transactions: a 10-key (multi-key) read-modify write OLTP transaction and an
OLAP query that scans 500,000 rows, evaluates a predicate, and aggregates the results. As
described in Chapter 4.6.2, the Twitter workload models a social networking application.
The workload contains six OLAP transactions and three OLTP transactions with four
transactions added from the Twitter API [7] that update followers, get tweets from follow-
ers, get tweets within a timespan, and get tweets starting with specific text, introducing
more OLAP and OLTP transactions.

For all workloads, I follow CH’s model of a client submitting either OLTP or OLAP
transactions at any one time. As in prior work [46], I experimented with three mixes: OLTP
heavy (90% of clients submit OLTP transactions), balanced (50% OLTP), and OLAP heavy
(10% OLTP).

To conduct workload execution time experiments, I fixed the number of transactions
executed by each client. For YCSB, each client issues 1 OLAP transaction followed by a
proportional number of OLTP transactions by mix (10 for OLTP heavy, 6 for balanced,
and 3 for OLAP heavy) 10,000 times. For CH, each client issues 220 TPC-H queries
and the OLTP to OLAP proportions are 999:1 (OLTP heavy), 99:1 (balanced), and 19:1
(OLAP heavy). For Twitter, each client issues 300 OLAP queries and the OLTP to OLAP
proportions are 1000:1 (OLTP heavy), 100:1 (balanced) and 10:1 (OLAP heavy).2

The YCSB database (50 GB) consists of 50 million rows and 10 columns each storing
100 bytes. The YCSB workload uses skewed OLTP accesses to generate contention and
load imbalance. CH uses a scale factor of 100 (100 GB) while Twitter stores 10 million
user accounts (80 GB).

Additionally, I use two real-world traces of access counts aggregated by minute: Wikipedia
[195] and Azure BLOBs [166]. The Azure trace derives from a function-as-a-service work-
load and consists of many different client applications accessing data, which results in
higher variability in access patterns compared to the more homogeneous Wikipedia trace.

2Ratios represent the proportion of executed OLTP to OLAP transactions.
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5.4.2 Evaluated Systems

I evaluate Proteus against the alternative distributed HTAP database system architectures
of Janus [25] and TiDB [84], as well as a row-oriented distributed database (row store or
RS) targeted to optimize OLTP workload execution and a column-oriented distributed
database (column store or CS) designed to optimize OLAP workload processing. To ensure
an apples-to-apples comparison of techniques, I implemented the RS and CS architectures
in Proteus, which provides for an in situ comparison of the two specialized storage formats.
I implemented Janus in Proteus with Proteus’ adaptive features disabled. I used the
commercial open source version of TiDB. TiDB and Janus fully replicate data between
their OLTP-optimized and OLAP-optimized stores. Janus executes OLTP transactions on
the RS and OLAP transactions on the CS [25], and updates are propagated lazily from
the OLTP to the OLAP store. By contrast, TiDB uses Raft as its replication algorithm
and a cost model to determine where to run a given transaction [84].

I advantaged each comparison system implemented in Proteus with an optimized repli-
cation and partitioning scheme using Schism [53] that uses a priori knowledge of the
workload, including whether a table is read-only. These systems use the Least-Recently-
Used (LRU) scheme to determine storage tier placement as LRU is appropriate for both
skewed and uniform access patterns and is a popularly-used storage tier policy [141, 79].

5.4.3 Experimental Results

I now discuss Proteus’ experimental results for varying HTAP mixes, access patterns and
load.

Workload Execution/Completion Time

To establish Proteus’ ability to process HTAP workloads efficiently, I evaluate all systems
with the 3 YCSB HTAP workload mixes. I measured the (execution) time to complete
these workloads, shown in Figure 5.4a. Proteus executes the balanced workload 4.4× and
1.6× faster than TiDB and Janus, respectively, and completes the workload faster than
all competitors for all mixes. Proteus achieves these results because its adaptive storage
techniques result in superior OLTP throughput compared to RS and OLAP latency that
is competitive with CS (Figure 5.5). Only Proteus achieves this high level of performance
for both OLTP and OLAP workloads. Proteus’ superiority on hybrid workloads is also
evident for CH (Figure 5.4c). Proteus reduces the time to execute the balanced workload
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(a) YCSB Completion Time (b) Twitter Completion Time

(c) CH Completion Time (d) CH Latency vs. Throughput

Figure 5.4: Proteus executes hybrid workloads faster than all competitors for all YCSB,
CH-benCHmark (CH) and Twitter mixes.

by more than 33% compared to CS, 32% compared to Janus, more than 50% compared to
RS, and 70% compared to TiDB. In all mixes, Proteus executes the workload faster than
all of its competitors because its OLAP performance remains competitive with that of CS
while delivering equivalent OLTP performance to that of RS, as shown in Figure 5.4d.

In the Twitter workload, Proteus has the lowest workload completion time for all mixes,
and reduces the time to execute the balanced workload by more than 25% compared to
Janus, 30% compared to CS, 45% compared to RS, and 65% compared to TIDB. Similar to
the CH workload, Proteus is superior to its competitors in the Twitter workload because
its OLAP latency is similar to that of CS while delivering OLTP throughput competitive
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(a) Throughput (OLTP Heavy) (b) Throughput (Balanced) (c) Throughput (OLAP Heavy)

(d) Latency (OLTP Heavy) (e) Latency (Balanced) (f) Latency (OLAP Heavy)

Figure 5.5: YCSB benchmark results over three HTAP mixes (OLTP heavy, balanced and
OLAP heavy) showing OLTP throughput (5.5a–5.5c) and OLAP latency (5.5d–5.5f).

to that of RS (Figure 5.8).

YCSB

I now present Proteus’ performance for the dimensions of OLTP throughput and OLAP
latency. Figures 5.5a, 5.5b and 5.5c show throughput of the OLTP operations for each
system on the three HTAP mixes. Proteus achieves the highest throughput, outperforming
competitor systems by between 9.3× and 1.4× in the OLTP heavy workload. In this
experiment, Proteus’ closest competitors are RS and Janus, which execute the OLTP
operations on row-oriented storage.

Examination of Proteus’ storage layouts (Table 5.4 in the balanced workload) shows
that the adaptation advisor learns an appropriate storage layout. Different data regions
have different access patterns because the YCSB workload contains skewed OLTP accesses
and uniform OLAP accesses. Proteus stores frequently updated data in row format with
infrequently updated data stored in column format. Observe that the regions of data
with OLTP heavy or OLTP mostly access patterns comprise 9% of the data but account
for nearly half (49%) of all OLTP accesses. Proteus forms many small partitions kept in
memory and a row format for data in these access groups. Consequently, most updates
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Table 5.4: A description of the storage layouts chosen by Proteus for the balanced YCSB
workload. The OLTP accesses are skewed; hence a significant portion of OLTP accesses
access a small amount of data, while OLAP accesses are uniformly distributed among data.

Storage Layout
Attributes

Data Access Pattern Group
OLTP Heavy OLTP Mostly Balanced OLAP Mostly OLAP Heavy

Fraction of Data 2.7% 6.3% 42% 34% 15%
Portion of OLTP Accesses 34% 15% 42% 6.3% 2.7%
Avg. Number of Copies 2.25± 0.18 2.05± 0.13 1.95± 0.07 1.01 1.00

Master Format Row Row Row
Sorted&

Compressed
Columns

Sorted&
Compressed

Columns
Replica Formats Row Row Columns

Storage Tier Memory Memory Memory
Memory
or Disk

Disk

Partition Size (Rows) 78± 12 312± 23 2427± 6 4921± 70 10251± 97
Partition Size (Columns) 5 5 10 10 10
Number of Partitions 34615± 689 20192± 472 4183± 24 861± 5 95± 2

execute over data stored in a row format and in memory.

Proteus’ adaptive storage techniques, including vertical and horizontal partitioning of
data (Chapter 5.2.4) to mitigate contention effects within and across rows, result in Proteus
outperforming both RS and Janus that use static storage layouts. As the workload becomes
more OLAP heavy (Figure 5.5c), Proteus adapts its storage design, trading off OLTP
performance in favour of OLAP performance. I later discuss the effectiveness of vertical
and horizontal partitioning techniques via an ablation study.

Figures 5.5d, 5.5e and 5.5f show the average latency of the OLAP operations for each
system on the three HTAP mixes. Proteus achieves an average OLAP latency on par
(within 10ms) with CS and significantly reduces the OLAP latency compared to all other
competitors by between 3.1× and 1.3×.

Observe in Table 5.4 that the OLAP mostly and OLAP heavy access groups account
for nearly half (49%) of the data, but just 9% of all OLTP accesses. Proteus forms large
partitions for these access groups, comprising thousands of rows, in a sorted and com-
pressed column format on disk. Consequently, as the workload becomes OLAP heavy,
Proteus shrinks the latency gap from CS and achieves comparable latency to the CS be-
cause Proteus stores most of the data in a column-only format to support uniform data
scan accesses across the table. Consequently, Proteus need only execute OLAP operations
across data stored in a row-only format for the update-heavy parts of the database. Impor-
tantly, Proteus achieves these results while delivering more than 4× the OLTP throughput
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(a) TPC-C Throughput (b) TPC-H Query Latency

Figure 5.6: CH-benCHmark (CH) results showing OLTP throughput and OLAP latency
for three HTAP mixes.

of CS. Proteus further reduces space consumption by adaptively employing compression
on the most infrequently updated data in the system. Moreover, this read-heavy data
often resides on disk due to storage constraints, but Proteus’ use of block-based join algo-
rithms (Chapter 5.2.3) can operate over it efficiently without thrashing data that resides
in memory.

Janus and TiDB replicate all data twice, consuming on average 1.33× more space
than Proteus and imposing memory constraints on the system. By contrast, as shown
in Table 5.4, Proteus selectively and judiciously replicates partition data into both a row
and column format when there are roughly equal OLTP and OLAP accesses, reducing the
amount of stored data in the system. In all, Proteus stores data in about 60,000 partitions,
storing an average of 1.5 copies of each data item.

CH-benCHmark

Next, I evaluate Proteus using the CH-benCHmark (CH), an HTAP workload derived
from 22 TPC-H OLAP queries and 5 TPC-C OLTP transactions. For all mixes, Proteus
achieves throughput comparable with the top-performing OLTP system – within 5% of RS
OLTP throughput (Figure 5.6a) and within 8% of the CS OLAP latency (Figure 5.6b).
Neither RS nor CS can achieve anywhere near this combined high performance for both
OLTP throughput and OLAP latency. These results demonstrate that Proteus’ adaptive
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Figure 5.7: Average latency of each TPC-H query in the balanced CH-benCHmark (CH)
workload.

storage is well-suited for hybrid workloads.

Observe that for the OLAP workload Proteus has similar query latency to CS, as
shown in Figure 5.7 for most queries. Proteus has similar query latency to that of CS
because these queries primarily execute over data stored in a columnar format. However,
notable differences include Queries 2, 7, 17 and 22, where Proteus has query latency at
least 20% greater than CS. Using Query 7 as an example, these queries features joins
across multiple tables (six tables in addition to a self-join), multiple predicates (conditional
on country names and delivery times), aggregation and ordering. By contrast, Query 9,
which determines the profit made on items for each nation within a year, executes faster in
Proteus and RS than CS. This query requires examining several attributes within the item,
order and stock, so reconstructing these attributes from their columnar form increases the
latency for CS. Despite these latency differences, Proteus remains competitive with CS on
the overall OLAP workload while sustaining more than 2.2× its OLTP throughput, due
to its adaptive storage techniques. Consequently, Proteus has superior performance on the
hybrid CH workload.

Without a priori knowledge of the workload, Proteus makes effective adaptive storage
layout decisions because its workload models capture how data is accessed and their access
costs. To understand Proteus’ performance, I discuss its storage choices.

First, Proteus heavily replicates read-only fact tables, such as the nation, region, sup-
plier and item tables. This replication enables Proteus to execute many joins and aggre-
gations locally, thereby reducing distributed data transfer. Proteus primarily stores these
tables in a compressed column format in memory. Proteus places some of the partitions
storing the item table on disk. The TPC-C workload has skew in the items ordered, and
Proteus judiciously places infrequently ordered items on disk, relying on its zone-maps
when performing joins to reduce disk accesses.
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Second, as illustrated in the running example (Figure 5.2b), updates to the order-
line table have a temporal relationship: recent orderlines are more likely to be updated.
Tracking access frequencies over time allows Proteus to infer this relationship. The access
patterns for the orderline and order tables are similar to the access pattern in YCSB:
skewed OLTP operations access recently updated data with uniform OLAP queries over
entire tables. Thus, Proteus makes suitable storage layout decisions — it employs row
format for recent data, column format for read-mostly portions of the tables, and both
row and column formats for partitions with relatively balanced accesses. Proteus leverages
its decision reuse capability to repeatedly make decisions for partitions with similar access
statistics. Proteus achieves OLAP latency similar to that of using only CS for OLAP
queries featuring predicates that examine historical order information. Storing data in
columnar format provides significant advantages for queries where scan costs dominate
query latency (e.g., Query 6 that aggregates a column based on multi-column predicates).
Proteus’ storage layout adaptions allows it to execute OLAP queries over data primarily
stored in a columnar format using similar efficient execution plans as CS but without any
pre-configuration.

Third, Proteus leverages co-access likelihoods in terms of which data items are updated
or joined together, e.g., stock and orderlines belonging to the same warehouse, to co-
locate the storage of these partitions to the same site. This co-location of co-accessed
data minimizes the overheads of distributed processing by allowing local joins of data3 and
single-site update transactions that avoid distributed commit. Unlike competitor systems
that I advantaged with this information ahead of time to place data among sites, Proteus
learns access patterns as the workload executes, making it robust to changes in these
patterns (Chapter 5.4.3).

Fourth, Proteus maintains tables accessed mostly by OLTP transactions (e.g., ware-
house, district, history) in a row-oriented format, adaptively partitioning and replicating
data as necessary to mitigate contention and load effects. These storage layout decisions
allow Proteus to execute OLTP transactions over data stored in a similar format to RS.
By contrast, Janus’ full data replication results in more data placed on the disk tier, which
increases storage access costs, lowers OLTP throughput and raises OLAP query latency.

Proteus’ significant performance improvements over the commercial TiDB system arises
from these aforementioned factors. Specifically, Proteus’ key differences with TiDB are:
(i) TiDB has a static replication scheme and does not replicate read-only fact-tables to
each database site. (ii) TiDB replicates all data items in both row and columnar storage

3Co-access frequencies are beneficial in equi-joins with foreign-key relationships, guaranteeing that if
there is a local join match, then it is the sole match.
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(a) Twitter OLTP Throughput (b) Twitter OLAP Latency

Figure 5.8: Twitter results showing OLTP throughput and OLAP latency for three HTAP
mixes.

formats, needlessly applying updates to replicas of data that are not used in analytical
queries. (iii) TiDB does not aim to co-locate co-accessed data and must incur distributed
update transactions and distributed join processing, in contrast to Proteus’ use of local
equi-joins. Furthermore, TiDB does not support granular compression of columns, nor
does it have the ability to operate over this compressed data directly.

Twitter

I evaluated Proteus using the Twitter benchmark and show average OLTP throughput
and OLAP latency for all mixes in Figure 5.8. Proteus achieves throughput performance
comparable with RS for all mixes (within 5% of RS OLTP throughput). Proteus has similar
(within 7%) OLAP latency to CS in the balanced and OLAP heavy mixes. Remarkably,
only Proteus achieves this high performance for both aspects of the hybrid workload.

Inserting new tweets dominates the OLTP workload, which results in significant con-
tention on a small number of partitions. Consequently, I found that Proteus keeps recently
inserted tweets in small partitions, in row format and on memory. Over time, Proteus
merges these partitions into larger partitions and stores them as columns, as once inserted
tweets become read-only. Consequently, OLTP transactions primarily execute over row for-
mat data while OLAP transactions execute over columnar data except for recent tweets.
Moreover, Proteus rarely replicates data for this workload, so Proteus maintains all but
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(a) Workload Completion Time (b) OLTP Throughput (c) OLAP Latency

Figure 5.9: Experiments that vary the percentage of cross warehouse transactions in the
CH-benCHmark (CH).

the oldest tweets in memory, significantly improving performance over the fully replicated
Janus.

The Twitter workload features a many-to-many relationship in its schema, making
it difficult to partition the workload. The OLAP workload requires joining data in the
presence of this many-to-many schema; for example, given a user u, get tweets from users
that u is following. Data shuffling across nodes to perform joins reduces the relative effects
of storage layout on OLAP latency. However, Proteus’ ability to adapt data placement on
nodes based on access patterns reduces the amount of data shuffling, allowing Proteus to
remain competitive with CS in terms of OLAP latency while executing more than 2× as
many OLTP transactions.

CH Cross Partition Transactions

Next, I study Proteus’ sensitivity to the percentage of cross warehouse transactions in
CH. Recall that in CH, clients are associated with warehouses, and NewOrder transactions
vary the stock of ordered items, which are kept on a per-warehouse basis. By default,
10% of NewOrder transactions place orders to a different warehouse than the client’s ware-
house. Because of this locality, the best data placement scheme as determined by Schism
[53] is co-locating data by warehouse. Consequently, as the number of cross warehouse
transactions increases, OLTP transactions increasingly become distributed transactions.
Moreover, increasing the percentage of cross warehouse transactions also increases the
number of distributed joins, as several TPC-H queries (e.g. Query 7) join orders with
stocks, which using Schism’s data placement are not co-located at the same site.

Figure 5.9 shows the experimental results for CH as the percentage of cross-warehouse
transactions is varied. Figure 5.9a shows the workload completion time as the percentage
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Figure 5.10: Proteus’ Scalability

of cross-warehouse transactions increases. Observe that the workload completion time for
all systems increase as the percentage of cross-warehouse transactions increases because
the performance of both OLTP transactions (Figure 5.9b) and OLAP transactions (Fig-
ure 5.9c) decreases. However, Proteus’ relative reduction in workload completion time to
its next closest competitors increases from 1.45× to 1.63× as the percentage of cross ware-
house transactions increases from 0% to 40%. Proteus achieves this relative increase in
overall performance because Proteus adapts its storage layout, resulting in OLTP through-
put outperforming RS by nearly 1.3× and achieving OLAP latency within 13% of CS.
Specifically, Proteus increasingly replicates warehouse, district, customer and stock data
among sites, which allows it to (i) reduce distributed join processing for OLAP queries,
and (ii) dynamically change data mastership efficiently to reduce 2PC, allowing OLTP
transactions to execute more efficiently. Proteus can perform this data replication because
the decrease in OLTP throughput decreases the growth rate in the amount of stored data
and because Proteus does not mandate data replication in two formats like Janus or TiDB.

Scalability

Figure 5.10 shows OLTP throughput and OLAP latency while scaling the number of data
sites from 3 to 18 in step with the number of clients (30 per site) on the balanced YCSB
workload. Proteus improves OLTP throughput by 5.3× as the number of data sites grows
by 6×. Increasing the number of data sites reduces OLAP query latency by 2.2×, with the
steepest fall in latency occurring when the number of sites grows from 3 to 9; with 9 sites,
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Figure 5.11: RMSE over time

Proteus maintains most data in memory but at 3 sites, a majority of data resides on disk.

Cost Model Performance

I next evaluate the performance of the three different cost function estimators in Proteus:
the linear regressor, neural network, and non-linear regressor. Figure 5.11 shows the root
mean squared error (RMSE),

√
(y − o)2, of each predictor normalized to each observation

and averaged over each of the different cost functions throughout an experiment. Observe
that by the end of the experiment, the linear regressor has the largest RMSE, and hence is
the least accurate of the three models, while the non-linear regressor has the lowest RMSE
and thus the most accurate of the models.

In Figure 5.11, all predictors converge to their average RMSE within 10 minutes. The
non-linear regressor takes the longest to converge, while the linear regressor converges
within one minute. These differences in model convergence rates are an important reason
why Proteus uses multiple models when predicting costs. Proteus makes prudent deci-
sions by considering predictions from multiple models, even if not all of the models have
converged.

Although all three models have different degrees of accuracy, all three models have
RMSEs that allow Proteus to distinguish between good and poor layout change decisions.
If the cost predictions for two different decisions are similar, the actual cost is likely similar,
but if one cost prediction is significantly higher than the other, it is likely to be a relatively
poor decision.
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(a) Inference Latency (b) Training Latency

Figure 5.12: Latency of Proteus’ Cost Functions

Increased model accuracy for the neural network and non-linear regressor, compared
to the linear regressor, comes with a trade-off: increased latency to perform inference and
training (Figures 5.12a and 5.12b). The linear regressor performs inference more than 10×
faster than the non-linear regressor as it combines coefficients in a sum instead of invoking
the kernel function. Moreover, the linear regressor performs a round of training more than
1500× and 2500× faster than the neural network and non-linear regressor, respectively.
While incurring a slight decrease in model accuracy, these significant differences in latency
justify using only the linear regressor when making predictions in a latency-sensitive situa-
tion such as selecting an execution plan. However, the more accurate neural networks and
non-linear regressors are employed when generating storage layout change plans, which
occur less frequently, and thus outside most requests’ critical path.

The cost functions are also space efficient due to the small number of input parameters.
The neural network has a larger model size (4 KB) from keeping a matrix of weights as
opposed to the linear (64 bytes) and non-linear regressor (112 bytes) that keep a vector of
weights.

To assess the effects of the cost function estimators in Proteus on system performance,
I measured the OLTP throughput and OLAP latency for the YCSB workload. In these
experiments, each decision requires invoking just one type of cost function estimators
when compared to baseline Proteus that uses all three of Proteus’ cost function estimators
(Figures 5.13a and 5.13b). The linear regression predictor has the best performance of the
three models in terms of OLTP throughput and OLAP latency. This result demonstrates
the importance of inference time on overall system performance as the inference latency
directly contributes to end-to-end request latency. Moreover, both the neural network and
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(a) OLTP Throughput (b) OLAP Latency

Figure 5.13: Performance metrics for Proteus’ different cost predictors.

non-linear regression predictors require significantly more training data than the linear
regressor to produce accurate cost estimates. Although the linear regressor produces less
accurate estimates by the end of the experiment than the neural network and non-linear
regressor, the linear regressor is initially more accurate. This initial accuracy allows Proteus
to quickly begin adapting storage to the workload to deliver high performance. However,
combining all three cost function estimators together yields the best performance.

Access Arrival Estimator Performance

To assess the performance of Proteus’ access arrival estimators, I used a real-world workload
trace of Wikipedia accesses [195] and Azure [166]. For both SPAR and the hybrid-ensemble
(HE) technique, I train on the same amount of data (two weeks for Wikipedia, one week for
Azure) before predicting the number of requests that will occur each minute for the next
hour. I then provide the models with the actual observed number of requests that occurred
over the hour before predicting the next hour. Figures 5.14a and 5.14c show SPAR and
HE’s predicted number of requests compared to the observed number of requests (shown
as dots).

For both workloads, SPAR (Figures 5.14a and 5.15a) and HE predictions (Figures 5.14c
and 5.15b) match the observed number of requests. The Wikipedia workload features more
regularity in the workload trend, and hence the RMSE (Figure 5.16a) is lower than for the
more variable Azure workload (Figure 5.16b).

In both workloads, SPAR is more accurate than HE but requires prior knowledge of
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(a) SPAR Inferences (b) SPAR Inferences with Wrong Period

(c) Hybrid-Ensemble (HE) Inferences (d) RNN Fitted Pattern

Figure 5.14: Access Arrival Predictions for Wikipedia, using Proteus’ access arrival esti-
mators: SPAR and the Hybrid-Ensemble.

(a) SPAR Inferences (b) Hybrid-Ensemble (HE) Inferences

Figure 5.15: Access Arrival Predictions for Azure, using Proteus’ access arrival estimators:
SPAR and the Hybrid-Ensemble.

the workload, in this case, the periodic pattern follows a daily cycle. By contrast, the HE
method learns the period from the data using the RNN. To highlight this difference in
Figure 5.14b, I show SPAR’s Wikipedia predictions over three days if configured to use a
different period: the martian day (sol) that is 37 minutes longer than a day on earth. As
shown, without proper prior workload knowledge, SPAR makes poor predictions, which
results in an RMSE more than three times higher than for HE. These poor predictions
occur because SPAR tries to align a periodic trend with the wrong period. By contrast,
in HE, the RNN captures Wikipedia’s periodic trend, as shown in Figure 5.14d over both
the day and week without any user hints.

A key difference between SPAR and HE in the Azure workload is that SPAR is more
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(a) Wikipedia Accuracy (b) Azure Accuracy

Figure 5.16: RMSE for Proteus’ arrival estimators.

(a) Inference Lat. (b) Training Lat.

Figure 5.17: Latency for Proteus’ arrival estimators.

variable in its predictions (Figure 5.15a) compared to HE (Figure 5.15b). This arises due
to SPAR averaging specific prior observations based on the period, resulting in inherently
noisy and variable predictions compared to HE’s smoother predictions.

In Figures 5.17a and 5.17b I show the average latency of inference (60 predictions)
and one round of training, respectively. SPAR is faster at both tasks; however, HE is
competitive in inference latency, which is critical for making predictions. By contrast,
training happens periodically and asynchronously, and the latency of a round of training
(less than a second) is orders of magnitude smaller than the time it takes to gather the
observations (minutes).
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(a) Performance Over Time (b) Performance with Shifting Hotspots

(c) Performance With No Access Arrival Esti-
mators (d) Performance with Wrong SPAR Period

Figure 5.18: Adaptivity experiments using shifting hotspot in a balanced YCSB workload.

Finally, the model sizes for the arrival estimators are space efficient with respect to the
stored data. The SPAR predictor (3 KB) has a smaller memory footprint than the HE
predictor (90 KB), as SPAR keeps a linear number of weights for predictions compared to
HE’s RNN which has multiple layers and stores a matrix of weights for each layer.

Adaptivity

I studied Proteus’ adaptive capabilities by examining its OLTP throughput and OLAP
latency over time to understand its behaviour as it learns both the workload access pattern
and cost model. Figure 5.18a shows Proteus’ OLTP throughput and OLAP latency in the
balanced YCSB workload. Proteus increases its OLTP throughput by 5.4× over the course
of the workload while decreasing its OLAP latency by 7.9×. In this experiment, it takes
Proteus roughly 3 minutes to reach within 15% of its peak OLTP throughput, and roughly
10 minutes to reach within 15% of its minimum OLAP latency. This difference is due to the
skew in OLTP accesses compared to the uniform OLAP accesses; Proteus executes more
layout changes for data primarily accessed by OLAP transactions. During this period,
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Proteus rapidly builds both its workload model to understand data access patterns and its
cost model to estimate operation latencies. Even on a cold start, Proteus’ cost model is
accurate and averages a root mean squared error (RMSE) of 11% of the observed average
latency, allowing Proteus to distinguish between good and poor layout change decisions.

Figure 5.18b repeats the experiment from Figure 5.18a with three changes: (i) the
centre of the OLTP skew shifts every 5 minutes following an hourly cycle (ii) Proteus’
data access latency models are initialized using the end model state resulting from the
experiment in Figure 5.18a (iii) Proteus’ access arrival estimate model is pre-trained using
the historical access pattern of the workload. Compared to Figure 5.18a, Proteus reaches
within 15% of its peak OLTP throughput in just 1 minute, and within 15% of its minimal
OLAP latency in 6 minutes (Figure 5.18b). Slight shifts in performance are visible both
before and after the 5, 10, 15 and 20-minute marks due to the workload shifts occurring
at these same time points. Proteus begins executing storage layout changes predictively in
anticipation of the workload shift due to high confidence in changes to the workload access
pattern. The small performance shifts arise primarily due to (i) storage layout changes
consuming resources and (ii) predictive storage layout changes that amortize costs over
time to provide beneficial layouts for the future.

By contrast, in Figure 5.18c, I disabled Proteus’ ability to predict access arrival esti-
mates and can merely react to the workload changing. Finally, in Figure 5.18d, I configured
Proteus using SPAR but with a ten-minute period, rather than the 5 minute period that
aligns with the workload shift.

In contrast to Figure 5.18b, which has an accurate access arrival estimator, both Fig-
ures 5.18c and 5.18d, suffer from degradations in performance when the workload shifts.
Specifically, there is a 35% decrease in OLTP throughput and a 1.47× increase in OLAP
latency when the workload shifts. By contrast, in Figure 5.18b OLTP throughput degrades
by just 15% and OLAP latency increases by just 1.21×. This experiment demonstrates
the benefit of predicting access arrival times and predictive storage layout changes on over-
all system performance, allowing greater amortization of the costs of performing storage
layout changes.

Observe that Proteus without predictions (Figure 5.18c) responds to the workload shifts
at the 5 and 15-minute mark faster than Proteus with a misconfigured workload period
(Figure 5.18d). With the misconfigured period, Proteus delays responding to the workload
shift with storage layout changes because of the disagreement in predicted access patterns
(intentionally incorrect) and the actual access patterns results. However, in time, Proteus
adjusts its storage layout, and performance improves. The adverse effects of misconfigura-
tion of the workload period using SPAR highlight the benefit of Proteus’ hybrid-ensemble
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(a) Workload Completion Time

(b) OLTP Throughput Over Time (c) OLAP Latency Over Time

Figure 5.19: Shifting workload mix experiments using YCSB — mix shifts every 5 mins
over the course of the experiment.

predictor that learns the workload period.

In Figure 5.19, I examined Proteus’ ability to predict and respond to shifts in the
workload mix over time. In this experiment, I followed the same methodology used for the
experiments in Figure 5.18b but shift the workload mix every 2,000 OLAP transactions4

in Figure 5.19a and every five minutes in Figures 5.19b and 5.19c. I measured workload
completion time, OLTP throughput and OLAP latency over time.

Observe that Proteus completes this workload faster than all of its competitors, in-
cluding 1.6× faster than Janus, which does not adapt to the workload but keeps copies of

42,000 OLAP transactions are used since the same number of OLAP transactions execute over the five
shifts as in the other experiments.
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(a) OLTP Ablation (b) OLAP Ablation

Figure 5.20: Proteus system latency under an ablation study using YCSB.

all data in column and row form. Examining performance over time, observe that as in
Figure 5.18b, Proteus rapidly improves both OLTP and OLAP performance as it adapts
to the workload. A key difference between Proteus and its competitors is how Proteus
behaves before the workload shift occurs: Proteus predictively and autonomously begins
to change storage formats in anticipation of the workload change. For example, when
shifting from the balanced to OLTP heavy mix, both Proteus’ OLAP latency and OLTP
throughput increase. These performance changes occur as Proteus predictively executes
layout changes from columnar to row format data.

Ablation Study

Figures 5.20a and 5.20b show an ablation study on Proteus’ ability to make adaptive
storage decisions by independently and categorically removing different techniques while
using the YCSB workload. Shedding Proteus’ ability to vertically and horizontally partition
increases OLTP latency by 1.2× and 1.4×, respectively, as these techniques help mitigate
contention effects within, and across, rows. Removing Proteus’ ability to add or remove
replicas also affects its OLTP latency. Proteus leverages replicas for two purposes: (i)
replicating frequently updated data among sites to distribute load, and (ii) replicating
data partitions with roughly equal OLTP and OLAP access frequency in both row and
column format to provide storage formats for both workloads.

Figure 5.20b shows the effects of the ablation study on OLAP latency. Removing
compression in Proteus increases OLAP latency by 1.7×: less data is kept in memory and
cannot be operated on in compressed form. Proteus often stores columnar data using per
column sort-orders as the OLAP workload features inequality predicates; removing this
increases OLAP latency by 1.5×. Proteus’ decision reuse benefit is also shown: applying
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Figure 5.21: Proteus’ freshness gap when performing OLAP scans.

execution plans and layout changes to partitions with similar access statistics reduces
latency.

OLAP Freshness Gaps

Proteus targets real-time analytical processing, where transactional updates are immedi-
ately available to analytical queries. To measure the effectiveness of Proteus at providing
real-time analytical processing, I measured the average freshness gap of OLAP queries.
Specifically, I modified the YCSB benchmark so that: (i) OLTP transactions set every
updated value to a timestamp, (ii) OLAP queries return the smallest value read in the
scan (i.e., oldest timestamp observed). I recorded the values set by OLTP transactions
and values returned by OLAP transactions, along with the (real) time that the OLTP
transaction committed and the OLAP transaction began. After the experiment, I com-
bined this observed state and recorded the difference between (i) the smallest value read
in each OLAP query (oldest timestamp observed) and (ii) the most recent commit time
before the beginning of the OLAP transaction that updated values in the range of the
OLAP scan. Hence, if the OLAP scan reads the freshest data available, I recorded 0 and
otherwise record a value that indicates how stale the OLAP scan was. The average of these
values represents Proteus’ freshness gap.

Figure 5.21 presents the freshness gap for Proteus over the three YCSB workloads.
Observe that in the balanced YCSB workload, Proteus’ freshness gap is less than 200 ms.
In the OLTP heavy and OLAP heavy workloads, the freshness gap is approximately 450ms
and 50ms, respectively. Hence, OLAP queries in Proteus observe a fresh state, satisfying

129



Operation
Proportion of
Time Spent

Avg. Latency
(ms)

Frequency
(per 1000)

OLTP Transaction 47.1% 6.37± 0.1 991± 24
OLAP Transaction 48.1% 685± 40 9.4± 0.6

Storage Format Change 2.14% 14.0± 1.1 20.4± 0.8
Storage Tier Change 0.51% 12.9± 0.8 5.3± 0.2

Sort or Comp. Change 0.04% 20.7± 1.6 0.26± 0.01
Partition Change 0.07% 4.56± 0.4 2.2± 0.12

Replication Change 1.96% 36.9± 2.9 7.1± 0.6

Table 5.5: The proportion of time spent, average latency and frequency per operation for
the CH-Benchmark workload.

the real-time analytical processing requirement. Proteus’ low freshness gap is primarily
due to (i) efficient update propagation and (ii) performing OLTP transactions directly on
column data if OLAP queries primarily access the data. Proteus has a higher freshness gap
for the OLTP heavy workload because it propagates and applies more updates to replicas.

Storage Layout Change Operation Overhead

Table 5.5 summarizes the proportion of time spent on transactions and storage layout
change operations in the balanced CH-benCHmark workload. Proteus balances the pro-
portion of time spent on executing OLTP and OLAP transactions, demonstrating the
benefit of using OLTP and OLAP-specific thread-pools to execute requests. These storage
layout changes are efficient as they execute about as quickly as an OLTP transaction. The
most frequent changes involve changing formats, tiers, and partition replicas.

In Table 5.6, I summarize the proportion of time spent planning transaction execution,
layout change plans, and executing layout change plans. Proteus’ decision reuse allows effi-
cient selection of physical execution plans for transactions, which take about 1% of overall
system time. For fewer than 10% of transactions, Proteus generates a layout change plan.
Layout change plans in response to OLAP transactions take longer to develop than OLTP
transactions due to the number of data items accessed in OLAP transactions. Finally,
about 1% of transactions execute layout change plans, which execute in 30 ms and 235 ms
on average for OLTP and OLAP transactions, respectively. These plans execute quickly
due to the low latency of individual layout change operators. Together, Proteus spends
less than 5% of the time planning and performing storage layout change plans as Proteus
amortizes the costs of layout changes across transactions.
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Operation
Proportion of
Time Spent

Avg. Latency
(ms)

Frequency
(per 1000)

OLTP Physical Execution Plan Generation 1.32% 0.18± 0.01 991± 24
OLAP Physical Execution Plan Generation 0.88% 12.7± 1.1 9.4± 0.6

OLTP Layout Change Plan Generation 1.02% 1.62± 0.8 84.9± 5.7
OLAP Layout Change Plan Generation 1.14% 56.8± 4.2 2.7± 0.34

OLTP Layout Change Execution 3.01% 30.8± 3.7 13.1± 0.96
OLAP Layout Change Execution 1.19% 235± 27 0.68± 0.03

Table 5.6: The proportion of time spent, average latency and frequency of planning and
executing layout changes for the CH-Benchmark workload.

5.5 Summary

In this Chapter, I presented Proteus, a distributed HTAP database system that adapts
data storage layouts to deliver excellent performance for hybrid workloads. Proteus adap-
tively decides on row- or column-storage formats, storage tier, and whether to employ
optimizations such as sorting or compression in addition to data replication and partition-
ing schemes. Proteus makes these decisions on-the-fly using learned workload models that
predict access costs and when data will be accessed. Using this information, Proteus makes
cost-driven decisions about adapting its storage. Proteus reduces HTAP workload com-
pletion time by up to 70% over prior approaches while precluding the use of static storage
layouts. Proteus’ ability to generate and adapt storage layouts dynamically without prior
workload knowledge demonstrates its self-managing ability.
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Chapter 6

Related Work

Building adaptive distributed DBMSs blends together techniques from the database sys-
tems, distributed systems, and machine learning communities. I now examine related work
across these areas.

6.1 Distributed Database Management Systems

The original data management systems, such as IBM IMS were designed to be used on
a central disk-based system [145]. However, the distributed SDD-1 system [202, 95, 145]
demonstrated the benefit of distributing data across nodes in a cluster. SDD-1 split data
into partitions using both horizontal and vertical partitioning on disk and used a transac-
tion coordinator to provide transactional serializability using conflict detection. Systems
such as R* [199] and distributed INGRES [185] further advanced the work of SDD-1 and in-
troduced distributed coordination protocols such as distributed two-phase locking, reading
from snapshot state, and distributed query optimization [145].

The advent of faster networks and in-memory storage prompted the redesign of dis-
tributed database systems and resulted in systems such as H-Store [96], and Amazon
Aurora [196], the partitioned and replicated DBMSs described in Chapter 1.

6.2 Distributed Coordination

I first examine techniques and systems that aim to minimize the overheads of distributed
transaction processing.
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To mitigate the blocking effect of 2PC, some systems [94, 73, 161] speculatively execute
transactions. Specifically, these systems make the updates made by transaction T visible to
subsequent transactions T ′ before receiving the global commit of T . However, speculative
transactions are also blocked from committing until the global commit of T arrives.

Coordination avoidance [28] exploits application invariants [51] and commutative data
types [179, 111] to avoid distributed transactions. These invariants and data types allow
sites to merge diverging updates asynchronously, without coordination independently. For
example, a record tracking the total number of sales can safely merge updates without
coordination, provided that there are no queries that require the precise number of sales
at a specific point in time. Unfortunately, not all applications have these invariants, so
distributed transactions still arise.

Many distributed DBMSs replicate data for fault tolerance, and these replication schemes
require a separate protocol to ensure correctness, such as Raft or Paxos. TAPIR [211], and
Janus [133] address the overheads of distributed transaction processing by coupling the
transaction consistency protocol with the data replication protocol that is necessary for
fault tolerance. However, these systems do not guarantee single site transaction execution,
statically assign master copies of data to nodes and do not support mastership changes.

Deterministic databases [194, 162] eliminate distributed communication by grouping
all transactions submitted to the system within an epoch and then executing them as a
batch, which increases transaction latency. Deterministic databases also support limited
transactional operations [163]. To avoid synchronization costs among machines in a deter-
ministic database, T-Part [204] partitions and re-orders transactions in batches, so that
writes arrive at remote sites earlier. STAR [119] replicates data into both a single-master
and partitioned multi-master format, then groups transactions into batches and divides
them into either the single-master or partitioned multi-master execution batch. Such
batch-based systems do not execute transactions immediately when they arrive, thereby
increasing transactional latency.

Repartitioning systems [53, 62, 174, 191, 171, 24, 40, 134] periodically change the lo-
cation of data items or disk blocks to minimize the number of transactions that cross site
boundaries as the workload changes. However, distributed transactions are still required
unless the workload is perfectly partitionable. Dynamic repartitioning is fully discussed in
Chapter 6.4.

In a bid to decouple transaction processing from data storage, shared-data architectures
such as Tell have been proposed [116] in which transactions forward reads and writes to a
shared-storage subsystem supported by a fast network. This approach requires the shared-
storage system to support atomicity and consistency guarantees for transactional data
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accesses. Despite presenting a unified storage interface, data access to remote storage
nodes can incur network communication overhead. G-Store [54] provides atomicity and
consistency for multi-key operations on databases that use shared storage via a 2PL-like
protocol. LEAP [114] extends the application of these transactional properties beyond the
lifespan of a single transaction, which reduces the overhead of future transaction execution
at a node.

Some systems utilize caches to execute transactions locally without distributed coordi-
nation. NuoDB [2] executes transaction updates on locally cached copies of data partitions
and propagates any updates to any remote caches. To ensure transactions do not conflict,
NuoDB requires transactions to communicate with the (possibly remote) leaders of each
updated partition in the transaction. In NuoDB, the location of a partition leader changes
only if the site removes the partition or shuts down; hence distributed coordination may be
performed for many transactions. Sundial [208] introduces data caches into a partitioned
system to minimize the latency of distributed transactions. Sundial uses logical leases
as the basis of both the cache coherence protocol and its optimistic concurrency control
scheme. Similarly, MaaT [124] uses logical timestamps to change the commit order among
transactions through explicit coordination. However, these systems still incur distributed
commit latencies unless the workload is perfectly partitionable.

Several systems exploit advances in hardware such as low-latency remote memory ac-
cesses [210, 60, 44, 198], programmable network switches [112], hardware transactional
memory [44], or non-volatile memory [60, 198] to improve throughput in distributed databases.
Such hardware allows efficient remote data access but still requires expensive distributed
protocols to coordinate and acquire locks, such as distributed 2PL through RDMA opera-
tions. This thesis focuses on techniques that do not rely on specialized hardware technolo-
gies.

6.3 Data Replication

I now examine systems that adjust which data is replicated, and where.

The adaptive data replication (ADR) algorithm [201] is early work in the area of dy-
namic replication. ADR changes the replication scheme of data items dynamically, based
on the read-write pattern of the data item in an online fashion. The ADR algorithm is
decentralized, so each node in the system makes replication decisions locally based on local
statistics. As ADR is a decentralized system, each node responds to client requests by
either returning the data if it is local or asking its neighbours if they have a copy of the
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data. Each node decides to add a replica if it finds that over time, the number of read
requests that it cannot satisfy locally outnumbers the number of write requests to the data.
The ADR algorithm is used in non-transactional storage systems [82, 131], and key-value
stores [139]. Moreover, ADR does not make replication decisions that are integrated with
master placement and data partitioning decisions.

NashDB [128] adaptively replicates read-only data for OLAP workloads periodically
using an economic model that aims to balance replica supply to workload demand based
on user-submitted query priority. Notably, NashDB does not support updates. In NashDB,
each query has a price value (priority), and each record necessary to respond to a query
is allocated a fraction of the query’s value. Hence, given every query, a given record has a
corresponding value to the workload. NashDB then replicates each record proportionally
to its value; hence, records accessed frequently or by higher priority queries are more
frequently replicated and thus more easily accessible.

Rabl and Jacobsen [156] propose an offline algorithm to select replicas in a distributed
DBMS based on the potential theoretical speed-up a replica provides for parallel query
processing. A query must be processed at a single node in their model and requires all
data at that node. Hence, if two nodes store the data required for the query, twice as
many queries can execute compared to if only one node stores the required data. Rabl
and Jacobsen propose an analytical cost model that quantifies data replication’s potential
speed-ups and uses this model to develop an automatic replica selection algorithm.

At a global scale, distributed systems must place replicas of data worldwide so that
both access and update latencies are minimized. Data placement is a challenging problem
as clients can be spread globally, and as more copies of data are created, the cost of keeping
data consistent in the face of updates increases. Sharov and colleagues [176] propose an
offline optimization formulation for leader replica placement. The GPlacer offline tool
[209] also addresses replica placement but generalizes beyond leader placement to other
non-leader replica protocols such as Paxos. These tools use the K-means heuristic to place
replicas such that the average latency to access a replica is minimized. However, as these
tools make offline decisions, they cannot respond to changes in data access over time.

Data caching is a particular form of adaptive replication, in the sense that what is
replicated, or cached, can adapt based on access history [208, 124, 2]. To ensure consis-
tency, systems that cache data must either update or invalidate the caches. Although some
systems such as Sundial [208] integrate the consistency mechanism into their concurrency
control protocol, most caching solutions decouple cache invalidation from transaction exe-
cution. Moreover, these systems fail to make integrated replication decisions and continue
to suffer from distributed coordination overheads. Predictive caching [148, 37, 66] aims to
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further improve the performance of cache-based systems by placing data items that will
be accessed in the cache ahead of time.

Finally, data replication is often used to ensure high-availability and fault tolerance.
Slogger [22] is a system that supports linearizable, and hence prefix consistent, continu-
ous backups in a static geo-replicated environment. Critically, Slogger aims to maintain
a small lag on the replica site to minimize data loss in a disaster. Slogger achieves these
goals by using synchronized timestamps in the write-ahead log and watermarks to ensure
the replica applies updates from the primary in the correct order. In distributed storage
systems, erasure-coding is often used as a replacement for replication because it can pro-
vide lower storage overhead [83, 188]. EC-Store [11] is an adaptive erasure-coded storage
system that dynamically places and moves data fragments to co-locate co-accessed data to
minimize straggler effects and reduce access latencies. EC-Store does not support database
workloads, as it focuses on non-transactional block storage operations.

6.4 Data Partitioning

I now examine systems that group data items together into partitions as a logical data
storage unit.

There are several offline tools for forming data partitions, including Schism [53] and
Sword [155]. These tools receive an offline trace of transaction accesses to data to form an
access graph. Nodes in the graph represent data items, while weighted edges represent the
number of co-accesses between data items. Given this access graph, the tools use graph
partitioning algorithms, such as Metis [98] that aim to minimize edge cuts or cross partition
data access. The resulting partitioned graph represents the set of tuples that should be
grouped together. Schism [53] further simplifies the resulting data partitioning by creating
a decision tree based on the mappings of tuples into a set of range partitions. As these
tools produce a static data partitioning scheme, the tools cannot respond to changes in
workloads such as shifting hotspots.

Several data partitioning systems [171, 190, 62] are designed for the shared-nothing
H-Store system. In H-Store, each CPU core executes a transaction serially, and the trans-
action accesses data partitions assigned to the CPU core. Hence, data partitioning sig-
nificantly affects system performance [94, 76]. Clay continuously forms partitions using
a partitioning algorithm that groups data together into clumps and migrates the clumps
across sites to balance the load. Clay forms clumps in three phases: (i) identifying fre-
quently accessed tuples, and then (ii) identifying tuples frequently co-accessed with tuples
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in a clump, and (iii) repeating the second stage until the clump cannot be expanded further
or reaches a maximum size. By grouping together tuples frequently co-accessed, Clay aims
to keep transactions single-sited. However, as these systems are designed for H-Store, they
require two-phase commit for multi-partition transactions and do not support replication
for updated tables.

Object-oriented databases use semantic locking [135, 164] to improve the concurrency
of transactions. However, such systems require significant information provided by a user,
including the hierarchical relationship among data items (classes) and the semantics of
operations on these data items. Hence, semantically and hierarchically related data items
are grouped together and share resources such as logical locks. Using this knowledge, the
semantic locking protocol acquires these locks hierarchically based on data item semantics.
Concurrency among operations can also be increased by leveraging semantic knowledge of
operations through user-defined compatibility matrices or prior knowledge of the commu-
tativity of operations. Efficiently executing transactions requires semantic locking systems
to provide additional concurrency control on specially defined conflict and commutativity
tables.

Bigtable [41] is a distributed storage system for structured tabular data. Bigtable
supports dynamic partitioning of this tabular data to ensure partitions have similar sizes.
Moreover, Bigtable supports elastically adding or removing database sites, which triggers
re-distribution of data partitions to distribute load. However, Bigtable does not support
multi-row transactional updates nor dynamic replication.

While the prior discussion focuses on horizontal data partitioning, that is, on the indi-
vidual data item level, data can also be partitioned vertically by data item attributes.

In STOv2 [87] the authors note that many rows have attributes that are infrequently
updated. However, row-based concurrency control protocols produce conflicts between
transactions that read these rarely changing attributes and transactions that update other
attributes in the row. Row-splitting vertically partitions rows to eliminate these conflicts.
STOv2 implements offline rows splitting in timestamp-based concurrency control schemes
by assigning separate timestamps to infrequently updated attributes and other attributes
in a row.

Database cracking [89, 169, 170, 74, 91] automatically vertically partitions databases
based on the presence of predicate queries in an online environment. Database cracking
highlights a consequence of data partitioning: changes need to be made to data access
operators, for example, pushing down cracked database operators that operate on vertically
partitioned data.

In distributed join processing, if the data to be joined are not located on the same
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node, then the DBMS must shuffle data among nodes so that the join can be processed.
By contrast, if the data partitioning scheme matches the join predicate, the data to be
joined resides on the same node, then the join can be processed locally. Several systems
[80, 59, 118], including Amoeba [173] and the QD-Tree [207], adapt data partitioning in
response to the read-only workload to minimize the amount of data shuffling necessary
to execute joins. Amoeba and the QD-Tree work by hyper-partitioning data along many
attributes, such that each record within a partition satisfies the same predicate. When
possible, the systems then store partitions that satisfy the same predicates used in joins at
the same site. Otherwise, the system tracks the predicates associated with the partition
to quickly identify the data that must be shuffled to perform the join.

Jigsaw [97] uses prior workload knowledge to statically partition data both horizontally
and vertically using recursive partitioning to form irregular data partitions. Jigsaw uses
these partitions to execute read-only OLAP queries on a single node. Jigsaw uses the
irregular partitions to execute queries partition at a time, a hybrid approach to query pro-
cessing between tuple-at-a-time and vectorized processing [100]. Jigsaw does not support
updates, does not replicate data and does not consider multi-table accesses.

6.5 Adaptive Storage for HTAP

I now discuss systems that change how data is stored in a DBMS, focusing on hybrid
workloads.

HYRISE [71], and the flexible storage manager (FSM) [26] are single node DBMSs
that support hybrid workloads by storing data in either row or column-oriented format on
a single node. HYRISE stores data in variable-width columns based on access frequency,
while FSM stores recently written data items as rows and read-only data as columns. FSM
stores data in physical tiles and uses logical tile algebra to support query processing over
its data layout. However, neither HYRISE nor FSM replicate data and thus, each data
item is stored in precisely one format. Consequently, these systems suffer if a data item is
accessed by both OLTP and OLAP transactions. Moreover, as single-node DBMSs, these
systems do not support workloads where the data size is larger than the capacity of a single
node.

L-Store [168] is a single node DBMS that stores data primarily in columns but uses
lineage information to support efficient updates to the stored data. L-Store strictly keeps
data in one copy and format of data and thus executes queries without requiring layout-
aware information. The tracked lineage information allows L-Store to efficiently identify
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the latest version of each record, allowing the contention-free merging of historical data
with recent data.

Similarly, Casper [27] stores data in columnar format for hybrid workloads on a single
node DBMS. Based on collected workload history, Casper changes storage columnar for-
mats by changing partition sizes, ranges, sort order, and update policies. However, Casper
does not support storing data in both row and column format, either selectively or simul-
taneously. Hence, Casper’s performance suffers if a data item is accessed by both OLTP
and OLAP transactions or only OLTP transactions.

H2O [21], and OctopusDB [92] propose storing data in both row and column formats
on a single node based on the workload. However, H2O considers only read-only workloads
and uses view materialization to store data in different formats to optimize the execution of
scans and joins. Consequently, H2O does not support hybrid workloads that contain OLTP
transactions. OctopusDB is a simulation tool and relies on user hints of the workload to
select the storage format of stored data.

Fractured mirrors [158] identified that DBMSs could maintain a complete replica of
data in a different storage format, such as one copy in row-storage and one copy in column-
storage. Thus, one copy would benefit OLTP workloads while the other would be beneficial
for OLAP workloads. Fractured mirrors proposed this data replication in the context of
systems that used RAID mirrored storage. Janus [25] similarly fully replicates data but
proposes a graph-based dependency management algorithm to ensure consistent merging
of updates. Other fully replicated distributed DBMSs include F1 [206], BatchDB [125], and
TiDB [84]. While most replicated systems execute the OLTP workload on the row-storage
copy of data and the OLAP workload on the columnar copy of data, TiDB uses a cost
model to decide where to execute a given request. Crucially, all these systems make static
data placement and storage decisions.

Umbra [138] is a single-node DBMS that gracefully handles storage of data beyond
the capacity of memory by using a low-overhead buffer manager for SSD and disk-based
storage. Umbra’s buffer manager stores data using variable-sized pages, which simplifies
the rest of the DBMS engine as it can operate as though data is stored consecutively in
memory. Umbra relies on operating system primitives to provide contiguous virtual mem-
ory addresses, although data may be fragmented in physical memory space. Importantly,
Umbra does not support adapting storage format based on the workload, as its focus is
changing the storage tier where data is stored. Mosaic [197] is a storage engine for Umbra
optimized for OLAP-dominated workloads. Mosaic makes user-prompted static storage
decisions of where to place columnar data in attached storage devices. Mosaic requires
a trace of the workload to make Pareto-optimal placement decisions with respect to I/O
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throughput and the monetary cost of storage. Hence, Mosaic is an offline tool that does
not respond to workload changes. Moreover, Mosaic supports only columnar data storage
and does not support adapting between storage formats.

6.6 Other Forms of Adaption in DBMSs

Finally, I discuss other forms of adaptation that are present in DBMSs. While these adap-
tations have not been the focus of this thesis, they provide further examples of the benefits
of adaptive DBMSs and adaptation techniques. DBMSs utilize predictive components and
models to understand the workload. The key commonality in these systems is that they
perform a cost-driven “what-if” analysis to quantify the effect of the proposed action on
system performance [42].

Several systems [190, 203, 191, 171] propose mechanisms for automatic distributed
DBMS elasticity in the cloud. That is, deciding when to add or remove database nodes
based on the workload so that the system uses only the resources necessary to satisfy the
workload demands. Unlike most elastic systems that react to changes in load, P-Store
[190] predicts the upcoming load and predictively adds or removes nodes based on these
predictions.

Indices are used to accelerate query processing in DBMSs. Several tools [55, 140, 91, 42,
18] exist to identify which indices should be used and to automatically generate, deploy, or
tune these indices. Similar tools exist to select the set of views to materialize based on the
workload [72]. A key challenge faced by these tools is detecting and correcting performance
regressions caused by poor choices.

DBMSs use cost models to generate query execution plans, and recent work has exam-
ined learning these cost models. Initial work to use learning aimed to replace individual cost
functions inside the DBMS with learned replacements [180]. Black-box approaches aim to
replace the entire query optimizer or cost models with learned components [127, 129, 126].
Deep reinforcement learning-based approaches in this domain [130, 142, 104] consume a
plan tree structure as input, including join predicate information, while relying on the
hidden layers to capture and learn the relevant information. However, the complexity of
the model vastly increases training time, precluding its use in an online environment [130].

Administrators configure DBMSs using configuration knobs, for example, selecting how
much memory to use as a buffer. Recent work examines the automatic tuning and adjust-
ment of these knobs using machine learning algorithms [20, 123, 61]. These tools face
the challenges of facing dependencies among decisions and delayed effects of changing the
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knobs. Consequently, it is difficult to attribute the effects of performance to any individual
knob. These challenges are similar to the ones faced when attempting to adapt how and
where data is stored.

The Sentinel [65] and Dendrite [67] systems provide a mechanism for administrators to
bolt-on adaptivity to non-adaptive database systems. These systems operate by record-
ing database and system events (e.g., page writes or CPU utilization) and triggering
administrator-defined rules when the behaviour of the recorded event matches the spec-
ified rules. For example, an administrator may define a rule that changes where queries
execute when CPU utilization exceeds a specific threshold. Although this approach allows
for adaptivity without changes to core database internals, it leaves it to the administra-
tors to pre-define how the system should react to changes in system behaviour and has
no mechanism for long-term planning of system changes beyond an administrator defined
epoch.

6.7 Summary

This review of existing related work reveals that they make only static decisions, are not
distributed DBMSs, or do not make integrated decisions about how and where to store
data adaptively, resulting in sub-par performance. Therefore, the ideas and techniques
presented in this thesis are novel and useful.
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Chapter 7

Conclusion

Distributed database systems store vast amounts of data that enterprises utilize to sup-
port their organizational needs. Efficiently storing and accessing this data is essential
as business-critical applications use database systems as key components. For example,
an e-commerce company must process and record sales, analyze these sales for fraud, and
persist these records for legal compliance. These critical business requirements are latency-
sensitive; for example, increasing the latency of processing a sale increases the likelihood
that a customer will not complete their purchase [19, 115]. Therefore, executing transac-
tions with low latency and high throughput in a distributed database system is important.

Distributed database systems use replication and partitioning to store and distribute
data among nodes. Data storage and placement decisions significantly affect system perfor-
mance, affecting data access and retrieval methods. However, the performance advantage
for one workload can be detrimental for another workload. Consequently, static data stor-
age and placement decisions suffer in the presence of changing workloads or if the workload
cannot be known ahead of time. Therefore, there are significant advantages to making
these decisions adaptively. However, managing how and where data is stored adaptively
presents significant challenges; the system must execute transactions efficiently while it
adapts, the system must model and understand the workload and make prudent storage
and placement adaptation decisions. The techniques described in this thesis that enable
adaptivity in distributed database systems meet these challenges while improving system
performance.
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7.1 Contributions

This thesis has explored using adaptation to improve the performance of distributed
database systems. I have developed and evaluated three systems in this work: Dyna-
Mast, MorphoSys and Proteus, which adapt how and where data is stored. These systems
target different workloads, use novel adaptation techniques, and demonstrate the effective-
ness of adaptation in distributed databases. These systems share a two-tier architecture
that enables adaptation via an adaptation advisor that observes the workload and changes
data placement and storage at data sites.

The DynaMast system addressed the performance problems that arise in distributed
DBMSs from expensive distributed coordination protocols without routing all transactions
to a single master site. DynaMast intelligently decides where to place master copies of data
items in a fully replicated architecture, considering factors such as load distribution and
access locality. DynaMast adapts these master placement decisions efficiently using the
remastering protocol, which leverages replicas to change mastership without stopping and
copying the data items. The evaluation of DynaMast shows that it improves throughput
by up to 15× compared to using two-phase commit in a partitioned DBMS. Additionally,
the experimental results demonstrate that DynaMast makes effective remastering decisions
and that the costs associated with remastering are amortized across transactions.

This thesis also introduces adaptive database physical design for distributed DBMSs in
the MorphoSys system. MorphoSys automatically selects and modifies three core aspects
of distributed database physical design: how data partitions are formed, where they are
replicated, and where the master copy of a partition is located. MorphoSys integrates these
three core decisions and makes cost-based design decisions using a learned cost model that
predicts the latency of transactions under different physical design decisions. To execute
transactions and design changes efficiently in the presence of these adaptations, MorphoSys
introduces a partition-based concurrency control and update propagation scheme. The
experimental evaluation of MorphoSys shows that automatic adaptation of distributed
database physical design precludes the need for static designs requiring prior workload
information without sacrificing system performance.

The final research contribution of this thesis targets distributed DBMSs that process
hybrid or mixed workloads consisting of both OLTP and OLAP transactions. Traditionally,
these database systems store data either entirely in row or columnar format, optimized for
either OLTP or OLAP workloads, or keep a complete copy of data in row and columnar
format. Consequently, these static decisions either sacrifice performance on one aspect
of the hybrid workload or have a high storage overhead. This thesis presented Proteus,
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which automatically adapts the distributed DBMS storage layout based on the workload,
to address these concerns. To do so, Proteus learns the workload by predicting data
access costs and when data will be accessed, and selectively and adaptively replicates and
partitions data in different storage layouts. Experimental results demonstrate that Proteus
reduces workload completion time by up to 70% when compared to static layouts.

The evaluation of these systems demonstrates the effectiveness of automatic adaptation
of how and where data is stored in distributed database systems in reducing transactional
latency and increasing system throughput. Thus, distributed database systems that must
make data storage and placement decisions, can significantly benefit from adapting these
decisions based on the workload to improve their performance.

7.2 Future Work

I now discuss some possible directions for future research based on the work presented in
this thesis.

7.2.1 Adapting to the Environment

This thesis focused on adapting distributed DBMSs based on the workload submitted
by the clients in terms of queries and transactions. However, the environment that the
DBMS executes in, including the availability, capability and price of compute, storage,
and network, e.g., in the cloud, can change over time [17, 203, 190, 93]. By using similar
forecasting techniques as in Proteus, a DBMS could learn the patterns in the availability
and pricing of these resources. Combining these predictions with predictions of the future
workload, the DBMS could decide when to add or remove resources to execute transactions
while efficiently meeting latency objectives.

7.2.2 Geo Distributed DBMSs

In this thesis, I examined adaptivity in the context of distributed DBMS within a local
area network, such as a data centre. However, geo-distributed DBMSs are increasingly
popular due to the global user-base of organizations [192, 50, 179, 23, 136, 209]. However,
geo-distributed DBMSs suffer from the network latency incurred by each round trip of
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communication across regions. For example, the differences in latency between a trans-
action that crosses regions compared to within a region is significant. Consequently, geo-
distributed DBMSs often require client applications to carefully place master and replica
copies of data and design applications with these costs in mind. Automatically altering
these choices based on the workload can improve the application’s performance. However,
the different constraints mean that the techniques described in this thesis, e.g., the design
of the adaptation advisor, would require alteration.

7.2.3 Disaggregated Database Architectures

This thesis examines distributed DBMSs with a shared-nothing architecture, wherein each
site in the system has a compute, memory, and storage unit, and all communication with
other nodes is done over a network.

Disaggregated DBMS architectures allow independent scaling of compute and storage
resources based on workload demands and have seen increasing interest [116, 30, 212]. As
described in this thesis, accessing local and remote data is explicit in the shared-nothing
environment. By contrast, disaggregated architectures can present a uniform storage ac-
cess interface that retrieves and accesses data across the network. However, disaggregated
data is still stored on physical storage nodes that based on their physical location, can
induce locality on the compute nodes [210]. Hence, automatically adapting how and where
data is stored in a disaggregated DBMS presents an opportunity to improve the system’s
performance. Specifically, altering data placement and storage layouts when the system
adds or removes compute or storage resources improves storage locality and reduces trans-
action latency. Similarly, if a system could adapt its physical data storage so that data
items co-accessed in transactions could be accessed in a single remote direct memory access
(RDMA), then the number of remote accesses could be minimized.

7.3 Concluding Remarks

Organizations rely on large amounts of data to make data-driven decisions. The contin-
ued growth of e-commerce transactions, machine learning pipelines, and data warehousing
solutions will only continue to increase these demands. Organizations rely on distributed
database management systems to efficiently store and manage this data. Managing this
distributed data requires making data storage and placement decisions, affecting system
performance. Static data storage and placement decisions cease to be effective in the pres-
ence of workload changes. In this thesis, I have focused on improving the performance
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of distributed database systems by automatically adapting how and where data is stored.
The evaluation of the systems presented in this thesis shows that the techniques effectively
improve database system performance. I believe that the research contributions in this
thesis will pave the way for developing and adopting adaptive and self-driving distributed
database systems.
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systems. In K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and
Ariel Fuxman, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
pages 1–12. ACM, 2012.

[195] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. Wikipedia workload
analysis for decentralized hosting. Comput. Networks, 53(11):1830–1845, 2009.

170



[196] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal
Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili,
and Xiaofeng Bao. Amazon aurora: Design considerations for high throughput cloud-
native relational databases. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, pages 1041–1052. ACM, 2017.

[197] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Viktor Leis, Thomas Neu-
mann, and Alfons Kemper. Mosaic: A budget-conscious storage engine for relational
database systems. Proc. VLDB Endow., 13(11):2662–2675, 2020.

[198] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. Query fresh: Log shipping
on steroids. Proc. VLDB Endow., 11(4):406–419, 2017.

[199] R. Williams, Dean Daniels, Laura M. Haas, George Lapis, Bruce G. Lindsay, Pui Ng,
Ron Obermarck, Patricia G. Selinger, Adrian Walker, Paul F. Wilms, and Robert A.
Yost. R*: An overview of the architecture. In Peter Scheuermann, editor, Proceedings
of the Second International Conference on Databases: Improving Database Usabil-
ity and Responsiveness, June 22-24, 1982, Jerusalem, Israel, pages 1–27. Academic
Press, 1982.

[200] Ronald J. Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Comput., 1(2):270–280, 1989.

[201] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication algo-
rithm. ACM Trans. Database Syst., 22(2):255–314, 1997.

[202] Eugene Wong. Retrieving dispersed data from SDD-1: A system for distributed
databases. In Proceedings of the Second Berkeley Workshop on Distributed Data
Management and Computer Networks, May 25-27, 1977, pages 217–235. Technical
Information Department, Lawrence Berkeley Laboratory, University of California,
Berkeley CA, 1977.

[203] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. Autoscaling tiered
cloud storage in anna. Proc. VLDB Endow., 12(6):624–638, 2019.

[204] Shan-Hung Wu, Tsai-Yu Feng, Meng-Kai Liao, Shao-Kan Pi, and Yu-Shan Lin.
T-part: Partitioning of transactions for forward-pushing in deterministic database
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Appendix A

Proofs

The appendix of this thesis formalizes the proofs of the previously described techniques.

A.1 DynaMast Provides Strong Session Snapshot Iso-

lation

I now provide a proof that DynaMast (Chapter 3) supports strong session snapshot isola-
tion (SSSI). To do so, I demonstrate that DynaMast suports snapshot isolation (SI) (Ap-
pendix A.1.1) before proving that DynaMast supports strong session SI (Appendix A.1.2).

A.1.1 Dynamic Mastering Snapshot Isolation Level Proof Sketch

I provide a proof that DynaMast provides snapshot isolation (SI).

The proof relies on Properties 1 and 2 (Chapter 2.2) of the redo-log, and the following
property that holds within the DynaMast system.

Property 3. Update transactions can write to only the data items mastered at the site of
transaction execution.

The data sites and adaptation advisor enforce this property (Chapter 3.2.2). The data
site guarantees that updates occur only to data items granted ownership to the site by the
adaptation advisor. Furthermore, the data site will not release ownership of data items
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while transactions update the items. The adaptation advisor uses mutual exclusion in its
remastering protocol to guarantee that it sends only a single grant message per data item
(Chapter 3.2.2).

I first prove that each data site guarantees that transactions execute locally under SI.

Lemma 1. Each data site Si guarantees that transactions execute locally under SI.

Proof. This proof follows from Chapter 3.4.1. To provide SI, a data site must ensure that
when a transaction T begins with a begin timestamp, it will not see any updates by any
transaction T2 that commits after T ’s begin timestamp. Recall from Algorithm 2, that T
is assigned a begin timestamp tvvB(T )[ ]. The MVCC protocol (Chapter 3.4.1) guarantees
that T reads the most recently committed version of data with version number at most
tvvB(T )[ ]. Hence any transaction T2 that committed after T that updated such a data item
will have tvvB(T )[ ] < tvvT2 [ ]; thus T will not see T2’s update.

However, T will read the state of a transaction T2 that committed before T ’s begin
timestamp, as tvvT2 [ ] ≤ tvvB(T )[ ]. T will also read its own uncommitted updates.

When T commits, it will have a commit timestamp more recent than any start or
commit timestamp at the site. Recall from Algorithm 2 that if T executes at site Si and
updates data, it will increment svvi[i] and set its commit timestamp as tvvT [ ], giving T the
largest commit timestamp, and its place in Si’s commit order. T uses write locks to enforce
the mutual exclusion of updates to data items. These locks are acquired when the begin
timestamp is assigned and released when the commit timestamp is assigned (Algorithm 2).
Thus, no other transaction T2 with an overlapping write set at Si can acquire these locks
until after T commits. Thus there cannot be a transaction T2 that updates a data item
updated by T with overlapping begin and commit timestamps.

Hence the requirements for SI at a data site are satisfied.

I next prove a lemma that follows from Properties 1 and 2, that defines the order in
which refresh transactions are applied at sites.

Lemma 2. If transaction T1 commits before T2 at site Si, indicated by commit timestamp,
then its refresh transaction R(T1) commits before T2’s refresh transaction R(T2) at all
replica sites Sj. That is, refresh transactions originating from a site are applied in commit
order at replica sites.

Proof. The commit order at site Si is indicated by updating the i-th index of the site
version vector. This value is written into the redo-log entry for the transaction commit as
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a log sequence number (Chapter 2.2). Log entries from the site arrive at least once at other
sites (Property 1), and if the replica site was unavailable, it retrieves the log entries from
the persistent redo-log (Property 2). So, all log entries are guaranteed to arrive at least
once at replica sites. A priority queue of per-site buffered log entries is maintained at each
site, which de-duplicates and orders the entries by log sequence number (Chapter 2.2). A
log entry per log sequence number is placed in the priority queue. Every transaction that
updates data creates a single log entry containing the transaction’s redo information for
its refresh transaction, and all refresh transactions originating from a site are placed in
the priority queue via the corresponding log entry. These log entries are applied serially
in order as refresh transactions and the replica site is blocked from applying the next log
entry in commit order until it arrives. Hence if T1 commits before T2, then T1’s commit
timestamp is smaller than T2’s. Thus T1’s log entry is applied as R(T1) before T2’s log
entry as R(T2). Hence R(T1) and R(T2) are applied in commit order at replica sites.

To show that DynaMast provides SI, I prove the following lemmas and theorem:

Lemma 3. A transaction T1 must see the updates made by a transaction T2 that has a
commit timestamp smaller than T1’s begin timestamp.

Proof. As described in Chapter 3.2.1, when a transaction T2 commits, it updates the site
version vector. Hence if T1 has a larger begin timestamp than T2’s commit timestamp,
it must read T2’s update to the site version vector. Given such a begin timestamp, the
MVCC protocol described in Chapter 3.4.1 guarantees that T1 will read T2’s updates to
records, as T2’s committed versioned records will have a version number smaller than or
equal to T1’s begin timestamp.

Theorem 1. If two transactions T1 and T2 have overlapping begin and commit timestamps
then T1 and T2 can commit only if T1 and T2 write different data items.

Proof. The transaction version vectors capture the begin and commit timestamps of the
transaction. Therefore, T1 has begin and commit timestamps tvvB(T1)[ ] and tvvT1 [ ] respec-
tively. Similarly T2 has begin and commit timestamps tvvB(T2)[ ] and tvvT2 [ ] respectively.

Assume, per the theorem, that both transactions T1 and T2 write data items, that is
neither transaction is a read. Therefore, from the algorithm description in Chapter 3.2.1
it is known that tvvT1 [ ] and tvvT2 [ ] are unique.

Recall from Chapter 3.2.1 that a transactions begin and commit timestamps differ only
in the i-th position if site Si is the site that executed the transaction. Therefore, I consider
two cases: when T1 and T2 both execute at site Si, and when T1 and T2 execute at sites S1

and S2 respectively, without loss of generality.
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Case 1 In the first case, if both transactions execute at site Si, then the underlying data
site provides SI (Lemma 1). Thus T1 and T2 cannot update the same data item and have
overlapping timestamps; so the theorem holds.

Case 2 I now show, by way of contradiction, that it is not possible for T1 and T2 to execute
at different sites, update the same data item d, and have overlapping begin and commit
timestamps. Suppose, without loss of generality that T1’s begin timestamp is before T2’s,
that is tvvB(T1)[ ] < tvvB(T2)[ ].1 Then for T1 and T2 to overlap, tvvT1 [ ] ≥ tvvB(T2)[ ] must
hold.

If T1 and T2 both update the same data item d on sites S1 and S2 respectively, then
the adaptation advisor remastered d from S1 to S2 as tvvB(T1) < tvvB(T2). As described
in Chapter 3.2.2, the release request at S1 will not complete until transactions that
update d complete (Property 3), and grant does not return until all refresh transactions
to d complete at S2. The adaptation advisor does not allow transactions that update
d to begin while the remastering protocol executes. The update propagation algorithm
guarantees that the replication manager will apply all aforementioned updates (Lemma 2).
Therefore, before T2 begins its transaction, S2’s site version vector reflects the update from
T1’s commit, as well as a remastering operation that increments the site version vector.
Thus svv 2[ ] > tvvT1 [ ].

However, the system sets T2’s begin timestamp tvvB(T2)[ ] to at least svv 2[ ], which is
a contradiction because tvvT1 [ ] < svv 2[ ] ≤ tvvB(T2)[ ] and tvvT1 [ ] ≥ tvvB(T2)[ ] cannot
both hold. Therefore these transactions must have disjoint write sets, which satisfies the
theorem.

Lemma 4. There exists a total commit order between transactions T1 and T2.

Proof. I show the total commit order for transactions T1 and T2, by considering four cases.

Case 1: For all i, tvvT1 [i] < tvvT2 [i], thus T1 commits before T2.

Case 2: For all i, tvvT1 [i] = tvvT2 [i], thus T1 and T2 have the same commit time, and
hence are placed in the same position in the total order. Note that in this case, at most one
of T1 and T2 are update transactions, as update transactions must update a site version
vector, and hence the commit timestamp (Algorithm 2).

1I use the definition that a vector v1[ ] is less than another vector v2[ ], (v1[ ] < v2[ ]), if v1[i] < v2[i]
for all positions i.
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Case 3: There exists sites S1 and S2, such that tvvT1 [1] < tvvT2 [1] and tvvT1 [2] = tvvT2 [2].
Then T1 commits before T2.

Case 4: There exists sites S1 and S2, such that tvvT1 [1] < tvvT2 [1] and tvvT2 [2] > tvvT2 [1].
Such a scenario arises from write skew, and as outlined in Chapter 3.4.1 the adaptation
advisor determines the commit order. Observe that this situation occurs from updating
data items d1 and d2 mastered at sites S1 and S2 concurrently. Transactions reading these
data items can observe one of four states, neither of T1 or T2’s updates, both of T1 and
T2’s updates, T1’s updates, but not T2’s, or T2’s updates both not T1’s. Recall that the
adpatation advisor uses locking (Algorithm 2) to ensure that all transactions can observe
the same three states, by eliminating one of: T1’s updates but not T2’s, or T2’s update but
not T1’s. This elimination determines the commit order: if T1’s update can be observed
but not T2, then T1 commits before T2. Otherwise, T2, commits before T1.

By way of example consider tvvT1 = [1, 0] and tvvT2 = [0, 1]. These transactions race to
acquire the lock to update the adaptation advisor’s view of the site version vector. Initially
this value is [0, 0]. If T1 wins the race to acquire the lock (Algorithm 2, Line 34), then the
adaptation advisor will set the site version vector to be [1, 0], and subsequently, T2 will
update it to be [1, 1]. Hence a total commit order of T1 then T2, as it is not possible to
observe a site version vector state [0, 1], which would indicate the anomalous state: T2’s
update but not T1’s.

I have outlined all four possible cases given transaction commit timestamps and defined
a commit order; hence there exists a total commit order.

Lemmas 3 and 4 and Theorem 1 together provide the requirements of SI, therefore
DynaMast guarantees SI.

A.1.2 Dynamic Mastering with Session Based Snapshot Isolation

Recall from Chapter 3.2.1 that in addition to providing snapshot isolation (SI), the system
also provides strong-session snapshot isolation (SSSI) [56]. To provide SSSI, the system
enforces a freshness rule that ensures that a client’s transaction executes on data that is at
least as fresh as the state last seen by the client. Importantly, this freshness rule protects
clients from reading data that is older than what they last read. Generally, clients see data
that is more up-to-date than what they last observed because the replication scheme does
not unnecessarily delay update propagation.
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Dynamic Mastering Strong Session Snapshot Isolation Level Proof

I now prove that the update propagation protocol together with the session-based freshness
scheme enforce the ordering guarantees required to provide SSSI.

I first prove the session requirements of SSSI:

Theorem 2. If two transactions T1 and T2 belong to the same session, and the commit of
T1 precedes the start of T2 then T2’s begin timestamp is greater than T1’s commit timestamp,
that is T2 observes any state observed or created by T1.

Proof. In DynaMast, the begin timestamp of a transaction is at least as large as the last
commit timestamp of the previous transaction in the session. Therefore, if tvvB(T2)[ ] is
the begin timestamp of T2, tvvT1 [ ] is the commit timestamp of T1, and cvv [ ] is the client
session vector, then tvvT1 [ ] = cvv [ ] ≤ tvvB(T1)[ ].

The blocking rules described in Appendix A.1.2 guarantee that for any site of exe-
cution, T2 will not begin the transaction until the sites version vector is at least cvv [ ].
Consequently, T2 will execute and observe any state reflected in cvv [ ], as required by
SSSI.

Given that DynaMast provides SI, a pre-requisite to providing SSSI, the session re-
quirements of SSSI, and a total commit order, DynaMast guarantees SSSI.

A.2 MorphoSys Provides Strong Session Snapshot Iso-

lation

I now prove that MorphoSys preserves strong-session snapshot-isolation (SSSI). I first prove
that MorphoSys preserves snapshot-isolation (SI) without physical design change operators
(Appendix A.2.1). Then I consider the effect that physical design change operators have
on SI (Appendix A.2.2). Finally, I put these two aspects of the proof together to prove
MorphoSys provides SSSI (Appendix A.2.3).

A.2.1 Snapshot Isolation

I now prove that MorphoSys provides SI in the absence of physical design changes.
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Lemma 5. A transaction T1 observes the updates made by a transaction T2 that has a
commit timestamp smaller than T1’s begin timestamp.

Proof. Let TB
1 be transaction T1’s begin timestamp and TC

2 be transaction T2’s commit
timestamp. If TC

2 ≤ TB
1 then there exists a partition p such that TC

2 (p) ≤ TB
1 (p). Suppose

that T2 updated a data item d in partition p, then as stated in Chapter 4.3.2, T2 creates
a new version of d assigned value TC

2 (p). Since there are no physical design changes, then
when T1 performs a read operation on data item d, it occurs in partition p. As described in
Chapter 4.3.2, when T1 performs a read operation on d, in partition p, T1 reads the largest
version of d, denoted as v(d), such that v(d) ≤ TB

1 (p) holds. Given that TC
2 (p) ≤ TB

1 (p),
and T2 performed an update, then there must exist a v(d) such that v(d) = TC

2 (p). Thus,
when T1 performs its read TC

2 (p) ≤ v(d) must hold. Hence, T1 must observe T2’s update,
or some later update to the data item.

Lemma 6. If two transactions T1 and T2 have overlapping begin and commit timestamps,
then T1 and T2 can commit only if T1 and T2 write different data items.

Proof. I say that two transactions T1 and T2 have overlapping begin and commit times-
tamps, if there exists a partition p that was in both of T1 and T2’s read or write sets, and
the begin and commit version numbers for p (that is TB

1 (p), TC
1 (p), TB

2 (p), TC
2 (p)) overlap.

Recall, from Chapter 4.3.2 that for read-only transactions T , TB = TC . Additionally, if
a transaction T updates a partition p, then TB(p) + 1 = TC(p), as an update transaction
acquires a mutually exclusive partition lock. Using this information I now prove, by way
of contradiction, that the lemma holds.

Assume both transactions are updates and update the same data item, otherwise the
lemma is trivially false. Additionally, as no physical design changes occur, then d is in
the same partition p. Then, TB(p) + 1 = TC(p) for both T1 and T2. In the first case,
TB

1 (p) ≤ TB
2 (p) < TC

2 (p) ≤ TC
1 (p). In the second case, TB

1 (p) ≤ TB
2 (p) < TC

1 (p) ≤ TC
2 (p).

Observe that in both cases, for both of these inequalities to be true, and for TB(p)+1 =
TC(p) to hold for both T1 and T2, then it must be that TB

1 (p) = TB
2 (p) and TC

1 (p) = TC
2 (p).

However, as stated in Chapter 4.3.2 transactions acquire partition locks before reading the
partition version number and constructing TB and release the locks after setting TC and
updating the partition version number. As I assume no physical design changes, then T1

and T2 must execute at the same site. Thus one of T1 or T2 will acquire the partition
lock first, so TB

1 (p) 6= TB
2 (p) must hold. However this inequality is a contradiction with

TB
1 (p) = TB

2 (p)
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Lemmas 5 and 6 satisfy the requirements of SI, under the assumption of the correctness
of the begin and commit timestamps. I now prove that the begin and commit timestamps
produce a consistent snapshot of data items across partitions.

Lemma 7. MorphoSys’ transactions begin and commit timestamps produce snapshot con-
sistent state. That is, if T2 updates data items in partitions p1 and p2, and T1 reads data
items in partitions p1 and p2, then either TC

2 ≤ TB
1 , and hence T1 will observe T2’s updates,

or TC
2 > TB

1 and T1 will not observe T2’s updates.

Proof. Observe that for this proof to hold, either TC
2 (p) ≤ TB

1 (p) must hold for both p1 and
p2, in which case it follows from Lemma 5 that T1 observes T2’s updates, or, TC

2 (p) > TB
1 (p)

must hold for both p1 and p2, in which case T1 will not observe T2’s updates.

Recall, from Chapter 4.3.2, that if T2 updates partitions p1 and p2, then the update
results in a depends relationship between p1 and p2. That is, if TC

2 (p1) and TC
2 (p2) are

the versions of p1 and p2 updated by T2, then MorphoSys records TC
2 (p2) = depends(p1,

TC
2 (p1), p2) and TC

2 (p1) = depends(p2, T
C
2 (p2), p1). It follows that there are three cases in

the construction of T1’s begin timestamp.

Case 1: Suppose that T1 initially selects TB
1 (p) such that TC

2 (p) ≤ TB
1 (p) for both p1

and p2. This case trivially results in TC
2 ≤ TB

1 , hence T1 observes both of T2’s updates.

Case 2: Suppose that T1 initially selects TB
1 (p) such that TC

2 (p) > TB
1 (p) for both p1

and p2. This case trivially results in TC
2 > TB

1 , hence T1 does not observe either of T2’s
updates.

Case 3: Suppose, without loss of generality, that T1 initially selects TB
1 (p1) and TB

1 (p2),
such that TC

2 (p1) > TB
1 (p1) and TC

2 (p2) ≤ TB
1 (p2) holds. Following the consistent read

rules, T1 updates TB
1 (pi) such that TB

1 (pi) ≥ depends(pj, T
B
1 (pj), pj) for all pi and pj in its

read set. Setting pi as p1 and pj as p2, then TB
1 (p1) ≥ depends(p2, T

B
1 (p2), p1). As TB

1 (p2) ≥
TC

2 (p2), and the depends relationship always uses the max operator (Equation 4.1), then
depends(p2, T

B
1 (p2), p1) ≥ depends(p2, T

C
2 (p2), p1). Recall that depends(p2, T

C
2 (p2), p1) =

TC
2 (p1), so combining all equations TB

1 (p1) ≥ TC
2 (p1). Thus, TB

1 (p) ≥ TC
2 (p) for both p1

and p2, a contradiction as I selected TC
2 (p1) > TB

1 (p1). Hence, TC
2 ≤ TB

1 , and T1 observes
both of T2’s updates.
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Lemma 8. There exists a total commit order between transactions T1 and T2.

Proof. The proof follows from Lemma 4 but replaces site version vector’s with per-partition
version information.

Case 1: For all p, TC
1 (p) < TC

2 (p), thus T1 commits before T2.

Case 2: For all p, TC
1 (p) = TC

2 (p), thus T1 and T2 have the same commit time, and hence
are placed in the same position in the total order. Note that in this case, at most one of
T1 and T2 are update transactions.

Case 3: There exists p1 and p2, such that TC
1 (p1) < TC

2 (p1) and TC
1 (p2) = TC

2 (p2). Then
T1 commits before T2.

Case 4: There exists p1 and p2, such that TC
1 (p1) < TC

2 (p1) and TC
1 (p2) > TC

2 (p2). Such
a scenario arises from write skew, and as outlined in Chapter 4.3.2 the adaptation advisor
determines the commit order. Transactions reading partitions p1 and p2 can observe one
of four states, neither of T1 or T2’s updates, both of T1 and T2’s updates, T1’s updates,
but not T2’, or T2’s updates both not T1’s. Recall that the adpatation advisor uses locking
(Algorithm 3) to ensure that all transactions can observe the same three states, by elim-
inating one of: T1’s updates but not T2’s, or T2’s update but not T1’s. This elimination
determines the commit order: if T1’s update can be observed but not T2, then T1 commits
before T2. Otherwise, T2, commits before T1.

I have outlined all four possible cases given transaction commit timestamps and defined
a commit order; hence there exists a total commit order.

Together, Lemmas 5, 6, 7 and 8 prove that MorphoSys satisfies the requirements of SI,
when there are no physical design changes.

A.2.2 Physical Design Changes and Snapshot Isolation

Appendix A.2.1 proved that MorphoSys provides SI when there are no physical design
change operators. I now prove that MorphoSys provides SI in the presence of these phys-
ical design change operators. I make four critical observations about the proofs in Ap-
pendix A.2.1, and the changes that arise in the presence of physical design changes.
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First, removing a replica does not change the correctness of the proofs, as a replica
partition is no longer present at a data site.

Second, adding a replica does not change the correctness of the proofs. Recall from
Chapter 4.3.4, that MorphoSys installs a snapshot of the replicated partition that includes
the partition version number, the depends relationship, and versioned data items. Hence,
as replicas execute only read-only transactions, all of the state necessary to ensure the
correctness of Lemmas 5 and 7 exist at the newly created replica, or in the case of Lemma 8,
at the adaptation advisor.

Third, to prove Lemma 6, I assumed that updates to partitions occurred on the same
master data site. This assumption does not hold if the system remasters a partition. Hence,
I need only prove that a partition cannot be updated at two data sites concurrently,
as a consequence of remastering. Recall, from Chapter 4.3.4, that remastering occurs
transactionally, and hence the remaster operator acquires the partition lock. Additionally,
after the old master site releases the mastership of a partition, it can no longer service
update transactions to the partition. Furthermore, the new master site does not become
the new master until it applies the propagated update releasing the mastership from the old
master and all previous updates to the partition. Consequently, no update transactions
to the partition occur while it is being remastered. Thus, given two transactions that
update the same data item (and thus partition), either the updates both occur at the same
site, proven correct in Lemma 6, or one transaction (T1) updates the data item at the old
master, and the other (T2) at the new master. However, because the new master blocks
updates until all previous updates to the partition are applied, then TB

1 (p) < TC
1 (p) ≤

TB
2 (p) < TC

2 (p), hence the updates do not overlap.

Fourth, in Lemmas 5 and 6 I assumed that data items always belong to the same
partition. This assumption does not hold if the system splits partitions apart, or merges
them together. Recall from Chapter 4.3.4, that MorphoSys performs these operations while
holding the partitions’ locks, consequently, after the split or merge operator completes sub-
sequent transactions execute on the newly created partitions. Additionally, these physical
design change operators assign the newly created partition’s version numbers as the max-
imum of the original partitions’ version number and induce a depends relationship among
the partitions. Thus, as shown in the proof in Lemma 7, subsequent transactions generate
transaction begin timestamps that observe snapshot consistent state. Consequently, the
dependency relationship determines the transactions total commit order, as the transaction
occurs either before or after the split or merge operation.

Given the fourth observation, I must prove that updates to the same data item do not
occur concurrently, in the presence of split or merge operations. Similar to the remastering
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case, updates to the same data item either occur in the same partition, or, before and after
a split or merge operation, and thus in a different partition. In the former case, Lemma 6
holds. Considering the latter case, without loss of generality, suppose T1 updates data
item d in partition p, p is split into pL and pH , and T2 updates d that is now contained
in pL. By definition, TB

1 (p) < TC
1 (p) and TB

2 (pL) < TC
2 (pL). By construction of pL, the

intial partition version of pL, v(pL) ≥ TC
1 (p), and T , hence TC

1 (p) ≤ TB
2 (pL) < TC

2 (pL).
Additionally, as p does not exist for T2, but is stored as part of the depends relationship,
thus TC

1 (p) ≤ depends(pL, T
B
1 (pL), p) = TB

2 (p). Hence, TB
1 (p) < TC

1 (p) ≤ TB
2 (p) = TC

2 (p)
and thus the updates do not occur concurrently. A similar argument follows for the merge
operator.

Following from the four observations and associated proofs, MorphoSys provides SI in
the presence of physical design changes.

A.2.3 Enforcing Strong Session Snapshot Isolation

I now prove that MorphoSys provides SSSI by proving the session requirement of SSSI.

Theorem 3. If two transactions T1 and T2 belong to the same session, and the commit of T1

precedes the start of T2, then T2’s begin timestamp is greater than T1’s commit timestamp.

Proof. Recall from Chapter 4.3.2 and Chapter 4.3.2, that MorphoSys tracks a session
timestamp CS, composed of the maximum observed TC(p) for all transactions T in the
same session, and accessed partitions p. Thus TC

1 ≤ CS. Furthermore, MorphoSys uses
this session timestamp as the initial transaction begin timestamp, before updating it based
on observed partition version numbers, blocking if necessary. Thus CS(p) ≤ TB

2 (p). Com-
bining the two inequalities, TC

1 ≤ TB
2 , as required.

Theorem 3, together with Lemma 5, prove that if T1 and T2 belong to the same session,
and the commit of T1 precedes the start of T2, then T2 observes any state observed or
created by T1. Given that MorphoSys guarantees the session requirements of SSSI in
addition to SI, MorphoSys thus guarantees SSSI.
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