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ABSTRACT
Enterprises use distributed database systems to meet the demands
of mixed or hybrid transaction/analytical processing (HTAP) work-
loads that contain both transactional (OLTP) and analytical (OLAP)
requests. Distributed HTAP systems typically maintain a complete
copy of data in row-oriented storage format that is well-suited for
OLTP workloads and a second complete copy in column-oriented
storage format optimized for OLAP workloads. Maintaining these
data copies consumes significant storage space and system re-
sources. Conversely, if a system stores data in a single format,
OLTP or OLAP workload performance suffers. This paper presents
Proteus, a distributed HTAP database system that adaptively and
autonomously selects and changes its storage layout to optimize
for mixed workloads. Proteus generates physical execution plans
that utilize storage-aware operators for efficient transaction execu-
tion. Using comprehensive HTAP workloads and state-of-the-art
comparison systems, we demonstrate that Proteus delivers superior
HTAP performance while providing OLTP and OLAP performance
on par with designs specialized for either type of workload.
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• Information systems → Parallel and distributed DBMSs; Au-
tonomous database administration; Hybrid storage layouts.
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1 INTRODUCTION
Enterprises utilize vast amounts of data to support their organiza-

tional needs [12, 49, 50, 54]. There has been a rise in the popularity
of large-scale real-time transactions and analytics applications over
these data to make effective data-driven decisions. For example, an
e-commerce organization must both process new online orders and
continuously analyze these orders for trends, such as the effects
of a promotional sale. Traditionally, enterprises employ separate,
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(a) Row Oriented OLTP Storage (N-ary Storage Model)

(b) Column Oriented OLAP Storage (Decomposition Storage Model)

Figure 1: Different storage formats for OLTP & OLAP work-
loads. Colours indicate contiguously stored data.

specialized, data management systems to handle this workload: on-
line transaction processing (OLTP) systems support high throughput
transaction processing while online analytical processing (OLAP)
systems support complex analytics with low latency [12, 46].
To process workloads, OLTP systems store data tuples contigu-

ously as rows, using the n-ary storage model [13, 32, 57]. Figure 1a
shows a simplified example of data taken from the TPC-C bench-
mark’s orderline table [1] stored in a row-oriented format: each
row is stored contiguously as indicated by its color shade, fol-
lowed by the next row. Row-oriented storage is optimized for OLTP
workloads that operate on a single record at a time and access
many attributes. For example, the insert operation from the TPC-C
NewOrder transaction shown in Figure 2a updates every attribute
but affects only a single row.

Row formats, however, result in poor support for analytical work-
loads as they access many tuples at a time but only a subset of
tuple attributes, leading to entire rows of data being processed in-
stead of only the relevant attributes. For example, in the TPC-H
benchmark’s [3] Query 6 (Figure 2b), just three of the columns are
accessed by the query. Thus, OLAP systems store tuples attribute-at-
a-time in columns using the decomposition storage model [6, 14, 18].
Figure 1b shows an example of data stored in a column-oriented
format: a single column is stored contiguously as indicated by the
shaded color, followed by the next column. Although a column
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(a) An OLTP Operation

(b) An OLAP Query

Figure 2: OLTP andOLAPoperations fromTPC-C (NewOrder
transaction) and TPC-H (Query 6) benchmarks.

(a) Update (b) Scan (select=10%) (c) Scan (select=100%)

Figure 3: The average latency of 100 updates (3a) and scans
of 10,000 data items (3b and 3c) on row and column formats.

format works well for analytics, it is inefficient for OLTP workloads
that update multiple columns within a transaction as each stored
column is affected. Thus, neither OLTP nor OLAP systems can
efficiently support mixed or hybridworkloads that span transaction
and analytical processing.
We conducted microbenchmark experiments to show that nei-

ther row-oriented nor column-oriented storage format is optimal
for processing both transactional and analytical workloads concur-
rently. The microbenchmarks update 100 rows, or perform a scan
of 10,000 rows over 1 column out of 10 with 10% selectivity or 100%
selectivity. As Figure 3 shows, a row-oriented format supports up-
dates at half the latency of the column-oriented storage. However,
column-oriented storage can support analytical (scan) operations
7× faster than row-oriented storage. This experiment demonstrates
the performance impact, and importance, of storage format on a
hybrid workload. Neither a row format nor a column format alone is
suited for a workload consisting of both transactional updates and
analytical queries, as the performance of one type of the workload
suffers due to the static format of the data.
To mitigate the effect of storage formats on latencies, the tra-

ditional architecture for hybrid transaction/analytical processing
(HTAP) workloads periodically migrates new data from an OLTP
system to an OLAP system using extract-transform-load (ETL) utili-
ties [46]. While this procedural transformation allows organizations
to continue executing OLTP and OLAP workloads concurrently,
periodic data migration results in recent (OLTP) updates that are
absent in the OLAP system. Thus, organizations cannot obtain real-
time insights from their data [12]. Modern HTAP systems address
these concerns by storing data in both OLTP and OLAP formats and

executing queries across both formats in a single integrated system
[11, 12, 24, 27, 43]. However, replicating all data within a system
consumes at least double the storage resources, particularly for
expensive in-memory processing, and requires costly maintenance
across replicas to guarantee data freshness and consistency.

1.1 Desiderata for HTAP Systems
Although modern HTAP systems improve performance com-

pared to ETL pipelines, there are four essential aspects of system
design that no system has considered integrally. First, a scale-out,
distributed HTAP system can meet the data storage and processing
demands of large scale workloads that exceed the capabilities of
a single node [11, 23, 27, 43, 64]. Additionally, the overheads of
distributed transaction coordination mean that applying standard
partitioning techniques to existing single-node systems limits scal-
ability. Moreover, scale-out systems allow for parallel execution
both within and among queries.
Second, HTAP systems should selectively store the same data

item in different formats (e.g., row and column) and in different stor-
age tiers (e.g., memory and disk), simultaneously if desirable, using
an efficient replication scheme [11, 43, 51]. HTAP systems that man-
date data storage in a single format or storage tier at a time suffer
when transaction processing and analytics occur concurrently. Such
concurrent workloads frequently occur as a consequence of real-
time data analysis (as in our e-commerce example), fraud detection,
IoT, and logistics domains [12, 41, 46, 49, 50].

Third, HTAP systems should leverage layout and storage-specific
optimizations, such as per-column sort orders and compression [5–
7, 29, 30, 33, 66], which reduce CPU and storage overheads, or row
splitting [28] to avoid conflicts. Using these optimizations enables
HTAP systems to match the performance of specialized systems.

Fourth, based on the workload, HTAP systems should adapt their
physical storage layout autonomously, that is, without manual in-
tervention [12, 48]. The rising complexity of workloads means that
system administrators cannot decide on a single efficient data lay-
out that both effectively utilizes resources and reduces transaction
latency [9, 12]. Furthermore, when workloads change, a layout that
works well for one workload is unlikely to work well for another
type of workload, as depicted in Figure 3.

1.2 Contributions
We present Proteus, a distributed database system that delivers

the aforementioned requirements of an integral HTAP system. Pro-
teus adaptively stores data in multiple formats and storage tiers to
support HTAP workloads efficiently. Based on the workload, Pro-
teus makes adaptive storage decisions autonomously and leverages
layout-specific optimizations that enable it to concurrently achieve
OLTP throughput comparable to row-oriented storage systems and
OLAP query latencies that are on par with column-oriented storage
systems. Consequently, Proteus significantly outperforms other
state-of-the-art distributed HTAP systems.

This paper’s contributions are four-fold:
(1) The case for adaptive storage for HTAP workloads through

our Proteus system (Sections 2 and 3).
(2) The architecture and design of adaptive storage in Proteus

and how transaction and query execution is supported in
this environment (Section 4).



(a) Initial State (b) Adapted State

Figure 4: An initial storage layout of data in Proteus, and adapted state after a series of storage layout changes.

(3) A model to learn workload patterns and make cost-based
layout decisions to support high throughput transactions
and low latency queries for HTAP workloads. (Section 5).

(4) An extensive experimental evaluation that demonstrates the
effectiveness and performance benefits of Proteus (Section 6).

2 THE CASE FOR ADAPTIVE STORAGE
As Figure 3 demonstrates, neither row nor column format is

optimal for an HTAP workload that contains both OLTP transac-
tions and OLAP queries. Furthermore, a system architecture that
statically replicates all data in both formats suffers from maintain-
ing replica state efficiently and consistently [12, 46]. In contrast to
these architectures, Proteus makes granular storage layout deci-
sions, replicating when it benefits system performance. We eluci-
date the case for adaptive storage by introducing the set of storage
decisions Proteus makes and illustrating its benefits by example.

2.1 Storage Decisions
Proteus distributes and stores relational data among nodes or

data sites in the system. Proteus supports multiple – row or column
– storage formats across multiple –memory or disk – storage tiers in
the distributed system. Thus, for a given data item, Proteus adopts
a storage layout given by its storage format and tier. Additionally,
Proteus supports storage layout optimizations, such as maintaining
the data in sorted order or in a compressed form [5–7, 29, 30, 66].
Because Proteus is a distributed database system, for each data
item it selects a master (or primary) site where update transactions
execute and a storage layout for that site. As Proteus selectively
replicates data, it decides at which sites to store replicas of a data
item along with an associated layout for each replica.

Deciding on a storage layout for every data item results in a large
set of possible decisions to make and manage. Thus, Proteus groups
data items together into data partitions and decides on a storage
layout for each partition copy (replica). A partition is a contiguous
range of one or more rows and columns based on the primary key of
each row (row_id) and column identifiers. For example, in Figure 4a,
partition P1 spans three contiguous rows. A partition may range

(a) TPC-H Query 14

(b) TPC-C Delivery Operation

Figure 5: More OLAP and OLTP benchmark operations.

from a single cell to an entire table.
Proteus autonomously manages data by changing its storage

layout on-the-fly as the workload executes. These changes include
any or all of altering the storage format, storage tier, master and
replica locations, and data partition membership. Such changes
enable Proteus to adapt to the workload, as we illustrate next using
a running example.

2.2 Motivating Example
Figure 4a shows a storage configuration with two data sites that

store data from the orderline table (Figure 1) along with the item
table. In this initial configuration, both the orderline and item tables
are partitioned across the two data sites: data partitions P1 and P3
at the first data site and partitions P2 and P4 at the second data site.
The data partitions for the orderline table (P1, and P2) are in row
format, while the partitions storing the item table (P3 and P4) are
in column format.
Recall from Section 1 that executing Query 6 (from Figure 2b)

over row-oriented storage requires accessing every attribute from
the relevant rows. Furthermore, the results from each site in the
distributed system have to be combined to generate the final result.
Figure 5 shows two additional transactions: (i) Query 14 (Figure 5a)
from TPC-H [3] that joins the orderline and item tables to find pro-
motional item order amounts, and (ii) an update to the delivery time
of a recent order (Figure 5b) from the TPC-C workload [1]. Observe



that executing Query 14 over this storage layout requires perform-
ing a distributed join of data, i.e., data in partition P1 (order_id 100)
must be joined with data in partition P4 (item_id 50). Executing a
distributed join requires transferring over the network all of the
data necessary to perform the join, which is more expensive than
transferring reduced partial (join) results to be merged [22, 38].

In contrast to Figure 4a, Figure 4b shows the adapted data storage
layout after a sequence of layout changes made by Proteus. Relevant
to Query 14, this adapted storage layout replicates the item table
as P34 at both sites. Consequently, Query 14 can perform its join
locally, reducing the distributed execution to only the merge of
partial results. Selective replication of the item table is an efficient
choice as the table is read-only and hence does not require update
maintenance [9, 63]. A further change at data site 1 is that the layout
of the orderline table (P1A and P1B) is columnar, which accelerates
the execution of both queries 6 and 14 by reducing the amount of
data accessed when executing the queries. Finally, as the chosen
storage layout of both partitions P1B and P34 are sorted by the join
key (item_id), the system efficiently joins the data using merge-join.
In Figure 4b, Proteus also changes the storage layout of the or-

derline table at data site 2, fragmenting the data (originally P2) into
three partitions (P2A, P2B, and P2C) via horizontal and vertical
partitioning. Hence, there is not one partitioning scheme for the
entire orderline table as tables are adaptively partitioned. Data in
the delivery column is stored in a row format, as is the data associ-
ated with order_id 200 that was inserted as a result of the NewOrder
operation (Figure 2a). Note that historical orderline data is stored
in a column format (P2A). This storage layout is effective for ana-
lytical queries such as 6 and 14, as these data are less likely to be
updated. In contrast, recently (and likely to be) updated data are
stored in the OLTP-oriented row format. Vertically partitioning the
delivery column, a storage optimization also known as row splitting
[28], reduces data contention from updates to only delivery time
for recent orders, such as in the Delivery transaction (Figure 5b).

In summary, Proteus’ adaptive storage layout reduces both OLAP
and OLTP execution latency. Using cost-benefit analysis (Section
5), this latency reduction is achieved by (i) distributing and pushing
processing to local data sites, (ii) using a storage format aligned with
data access patterns, (iii) promoting and prioritizing data locality for
in-memory processing over disk-based residency, and (iv) employ-
ing optimizations such as sorting and compression, which allows
for the selection of query operators to attain efficient execution.

3 PROTEUS OVERVIEW
The last section showed how changes to a storage layout im-

prove transaction execution performance. To support both efficient
transaction execution and adaptive storage layout changes, Proteus
uses a two-tier architecture consisting of an adaptive storage advisor
(ASA) and data sites (Figure 6), implemented in C++.

Clients submit transactions, one thread per transaction, to the
ASA that decides where (at which sites) and how (execution plan) to
execute a transaction. The ASA services a transaction by identifying
the locations and layouts of the relevant partitions that the transac-
tion needs to access from stored partition metadata (Section 5.1).
The ASA then estimates data access latencies using learned work-
load models (Section 5.2) to generate an efficient physical execution
plan for the transaction andmakes cost-based storage layout change

Figure 6: Proteus System Architecture. The adaptive storage
advisor (ASA) generates physical execution plans, routing
them to data sites for execution and storage layout changes.

decisions based on ongoing and predicted workload characteristics
(Section 5.3). To reduce latency, the ASA strives to re-use execution
plan decisions from past execution plans (Section 5.3.3). Finally,
given the generated plan, the ASA executes the transaction at the
selected data sites. Periodically, polling threads asynchronously
collect observations from data sites to update the workload models
and partition metadata managed by the ASA (Section 5.2.1).

Proteus’ data sites store data in the storage layout prescribed by
the ASA and execute transactions based on the generated execu-
tion plans. Proteus uses OLTP and OLAP-specific thread-pools to
execute requests belonging to the respective workloads, isolating
compute resources between workloads. Proteus’ transaction execu-
tion layer performs logical database operations over the stored data,
such as joins, using storage aware operators (Section 4.3). As a dis-
tributed system, Proteus’ transaction execution layer coordinates
distributed execution with other data sites using remote procedure
calls via Apache Thrift [55]. Proteus ensures transactions observe a
consistent state using a partition-based concurrency control scheme
and maintains replicas efficiently using a selective per partition
replication scheme (Section 4.2). Finally, Proteus stores data parti-
tions in the appropriate storage layout (Section 4.1) to support data
updates, point reads, and scans of data ranges including pushing
down data projections and filters.

4 PROTEUS SYSTEM ARCHITECTURE
In this section, we describe the design of Proteus with a focus

on storage layouts and how Proteus adaptively manages them to
execute operations over data efficiently.

4.1 Data Storage
Proteus stores partition data in a row or column-oriented format,

and on disk or in-memory. All layouts support reads, writes and



updates, as well as conversion between formats or tiers.

4.1.1 Row-Oriented Storage In memory, Proteus stores each row
of a partition using a fixed-size byte array, which is optimized for
OLTP transactional access to many cells within a row. To deter-
mine the size of the byte array, Proteus uses the table schema and
the columns contained in the relevant partition. For example in
Figure 4a, Proteus stores each row in P1 in a 32 byte array: 4 bytes
for each of the integer columns (order_id and item_id), and 8 bytes
for each of the decimal and timestamp columns (quantity, amount,
delivery). Proteus stores variable-sized data, such as strings, using
12 bytes with 4 bytes to encode the data size and 8 bytes to store
a pointer to the data or the data itself if it fits within the 8 bytes
to avoid additional memory accesses. Multi-versioning is used to
support efficient updates to data stored in rows. Proteus uses the
last 8 bytes in the byte array to store a pointer to a byte array
storing the previous version of the row. Thus, once a row is written
as a byte array, the data is read-only; updates rewrite the entire
row. Proteus stores the partition’s data by maintaining an array of
pointers to each row’s most recently stored version, updating each
entry when updates occur.

To store row-oriented data on disk, Proteus divides data into two
parts: an index and stored data. Each row’s index entry contains an
offset into where the row’s data is stored. Data for each row is stored
similarly to in-memory data; however, any variable-sized data is
inlined directly after its length. Proteus’ disk-based representation
of row data allows for both point-based reads – by reading the
index and corresponding offset locations – and data scans.

Proteus supports in-place updates if the update does not change
the relative data size; otherwise, Proteus rewrites the entire parti-
tion’s data on disk. Consequently, Proteus buffers updates in mem-
ory and applies them as a batch to disk.

4.1.2 Column-Oriented Storage To store a partition in a column-
oriented format in memory, Proteus stores each column in a fixed-
sized data array [37] along with two index arrays. For columns with
fixed-size data, such as integers, each entry in the array corresponds
to the data stored, as shown for the order_id column in Figure 1b.
For variable-sized data, such as strings, each array entry is stored
as a length (using a fixed length of 4 bytes), followed by the bytes
containing the actual data stored in its entirety. The first index
array is an offset array that stores the corresponding row_id for
each entry in the data array. The second index array is a position
array that stores the offset into the data array that corresponds to
the data stored for each row_id. These index arrays allow Proteus
to efficiently locate where cell data is stored in the column for point
reads. Proteus stores column data on disk using a format similar
to Parquet [2], first storing the metadata including the two index
arrays followed by the values.
Proteus supports flexible ordering of data: each column in the

partition may store data in the same order — by row_id or based on
a total order over the columns such as in partition P1B (Figure 4b),
or each column may be sorted independently. Additionally, Proteus
supports compressing data stored in columnar format using run-
length encoding [5] by prefixing each entry with 4 bytes to indicate
the length of the run, as shown in partition P1A (Figure 4b).
Proteus buffers updates to column data in a delta store, which

stores data in memory as rows in a hash-table indexed by row_id

[36]. Thus, if scans or point-reads require accessing more recent
data than stored in the columns, Proteus combines the stored col-
umn data with data from the delta store. Updates in the delta store
are periodically merged with the column data to create a new ver-
sion of the data for storage on disk or in memory.

4.1.3 Zone Maps Independent of the storage layout, Proteus main-
tains zone maps [22] that maintain the minimum and maximum
value for each column stored within a partition. Zone maps allow
skipping data in a partition if the minimum and maximum values
indicate that a predicate in a query cannot be satisfied by any data
item in the partition. For example, in Figure 4a, the zone map of
partition P2C would indicate that there are no orderline entries that
satisfy the delivery predicates in Query 6 or 14. Proteus maintains
zone maps in memory and in row format, as they are of fixed size
and accessed by point queries.

4.2 Concurrency Control and Replication
Proteus, like several other HTAP systems [27, 52, 58, 64], sup-

ports snapshot isolation (SI), which guarantees all transactions see
a consistent snapshot of the database. Proteus strengthens this
guarantee by providing strong session snapshot isolation (SSSI) [20]
that prevents transaction inversion and ensures every client sees
the effects of all updates from its previous transactions, thereby
providing a data freshness guarantee. To provide SSSI, Proteus uses
a partition-based dependency-tracking concurrency control algo-
rithm [9] that tracks: (i) per partition version numbers, and (ii) the
dependencies among partitions and their versions to ensure that
transactions read from a consistent snapshot of data.
Both Proteus’ concurrency control and ASA logic make use of

transactional read/write information. For analytical queries, clients
determine read cell ranges from the columns accessed in each table
necessary to execute each query, e.g., Query 14 (Figure 5a) accesses
the i_data, and i_id columns in the item table and the item_id,
amount, and delivery columns in the orderline table. For OLTP
transactions, clients have this information based on primary keys,
or if needed execute reconnaissance queries [40, 62].
Proteus selectively and adaptively replicates data lazily using a

per partition replication scheme [9]. Data sites replicating a parti-
tion subscribe to a per partition redo-log (stored in Apache Kafka
[35]) into which the master writes updates on commit. Replication
threads manage polling updates from the redo-logs and emplace the
updates into per partition queues. Replication threads co-operate
with a transaction execution thread to apply propagated and queued
updates as necessary to ensure the transaction satisfies SSSI.

4.3 Transaction Execution
Despite the variety of storage layouts supported in Proteus, the

system capably presents a uniform transaction execution interface.
The ASA uses a query tree (Figure 7a) to develop a physical execu-
tion plan for each submitted transaction that specifies where, and
how, each operation should execute (Figure 7b). At a data site, the
transaction execution layer executes the physical execution plan
including accessing stored data, coordinating distributed execution
with other data sites, and computing the transaction’s result. To do
so, Proteus applies operators such as scan, join, update, insert and
delete that iterate over partition(s) (Table 1). Proteus chains these



(a) Query Tree (b) Physical Execution Plan

Figure 7: Proteus’ query tree and physical execution plan for TPC-H Query 14 (Figure 5a) under storage layout from Figure 4b.

operators together to execute each transactional request.
Proteus’ operators come in two forms: storage-aware or storage-

agnostic. Storage-aware operators leverage knowledge of the stor-
age layout to optimize execution. For example, in Figure 4b, parti-
tions P1B and P34 are sorted on the join attributes (item_id and i_id,
respectively), hence a sorted column-storage aware join operator
that implements the merge join algorithm leverages this knowl-
edge to efficiently execute the join. Generally, our storage-aware
operators are designed to (i) use column-specific operators, such as
the invisible join algorithm for hash-joins [6], (ii) operate directly
over compressed or sorted data, and (iii) use block-based accesses
for data residing on disk. Storage-agnostic implementations use
the same generic storage interface regardless of how the system
stores the relevant partition data. For example, acquiring a lock on
a partition is agnostic to the layout. Storage agnostic data accesses
and updates use cell-based operations.

As a distributed system, Proteus coordinates transactions that ac-
cess data spanning multiple sites. To execute distributed analytical
queries, Proteus executes joins across sites, coordinating both data
transfers and aggregation of results. For example, in Figure 7b, each
data site executes a local join, but data site 2 coordinates the transac-
tion by aggregating the results globally. To do so, Proteus leverages
the replicated item table partition in the join at both data sites (Fig-
ure 7b). To ensure the correctness of the join result, at least one side
of a join executes over precisely one copy of each partition, which
in our example corresponds to partitions {P1B, P2A, P2B, P2C} all
storing the orderline data. Pipelined join execution over different
partitions across all sites eliminates the need for duplicate gen-
eration of results. Proteus coordinates distributed updates using
two-phase commit, if necessary. Since master partition placement
is a storage layout decision, the ASA can adaptively change the
master placement if its cost-based model determines the change to
be beneficial (Section 5.3.2).

Proteus provides fault tolerance using the redo-logs that data sites
write to on (i) transaction commit, (ii) partitioning changes, and (iii)
mastership changes. Data sites recover by installing snapshotted
data partitions from stored checkpoints or replicas and replaying
updates from the redo-log, ensuring that distributed transactions
recover atomically. The ASA recovers its state by consulting each
data site’s stored partitions and their layouts.

4.4 Changing Storage Layouts
Proteus supports storage layout adaptivity by changing any or

all of: (i) the storage format or tier of a data partition (ii) adding or

removing storage optimizations (iii) changing the data partitioning
(iv) adding or removing replicas of a partition (v) changing the
location of the master copy of a partition. Here, we focus on the
mechanism for executing these changes. The next section details
how the ASA makes decisions for adapting the system storage
layout.

To change the storage format or tier, Proteus reads a consistent
snapshot of the data into memory and bulk loads the data into the
respective storage layout. For example, to bulk load row format
data into memory, Proteus allocates a fixed-size buffer for every
row and updates each cell as it reads the data. By contrast, bulk
loading row format data that will reside on disk requires dynamic
allocation of each row based on variable-sized columns, which Pro-
teus writes to disk sequentially. Enabling sorting entails changing
data storage using bulk load operations; removing a sort order does
not change the data layout but ceases to maintain the sort order
on subsequent updates. Compressing and decompressing stored
data result in changing how it is stored, as the run-length encoding
scheme prepends the length of each run before each data item.

Changes to data partitioning schemes occur dynamically bymerg-
ing or splitting partitions, either horizontally (row-wise) or ver-
tically (column-wise). For example in Figure 4b, Proteus forms
partition P2C by vertically partitioning P2 in Figure 4a, while a
subsequent horizontal partitioning forms partitions P2A and P2B.
By contrast, Proteus forms partition P34 (Figure 4b) by merging
partitions P3 and P4 (Figure 4a). Changes to the horizontal partition-
ing of row formatted data simply require changing row mapping
from one partition to another. A similar operation occurs for ver-
tical partitioning of column-format data. By contrast, horizontal
partitioning of column data is bulk reloaded into the new partitions.
To add a partition replica, Proteus snapshots the master copy

of the partition and installs it as the new replica that begins sub-
scribing to the partition’s redo-log to apply updates. By contrast,
removing a replica stops its subscription to the redo-log and marks
the stored data for deletion, which occurs after ongoing operations
have finished accessing the data. Proteus supports changes to parti-
tion mastership [8] by routing new update transactions to the new
master and blocking their execution until the master has applied
all updates from the partition’s previous master site.

5 ADAPTIVE STORAGE ADVISOR
Proteus’ adaptive storage advisor generates a physical execution

plan for each client request based on the system’s storage layout,
and adapts its layout based on the workload to further improve



Cost Function Arguments
Storage Layout-Aware

Bulk Load
Insert/Update/Delete
Point Read

(i) # Cells accessed
(ii) Column sizes

Scan w/ predicate & projection
(Sequential, Sorted, Index)

(i) Cardinality
(ii) Column sizes (input & output)
(iii) Selectivity

Sort
Hash

(i) Cardinality
(ii) Column sizes

Join
(Hash, Nested Loop, Merge)

(i) Cardinality (left, right, output)
(ii) Column sizes (left, right, output)
(iii) Join selectivity

Aggregate
(Hash, Sort)

(i) Cardinality (input, output)
(ii) Column sizes

Storage Layout-Agnostic

Network Request (i) CPU utilization at source & dest.
(ii) # Bytes (sent & received)

Lock Acquisition (i) Contention of partition
Waiting for Updates (i) # Updates needed

Commit (i) # Partitions read and written
(ii) # Sites involved in transaction

Table 1: Cost functions and their arguments.

system performance. The ASA accomplishes these tasks through (i)
tracking the current storage layout using metadata, (ii) modelling
the workload to estimate access latencies under current and adapted
storage layouts, and (iii) reusing previous decisions to reduce the
latency of planning. We expand on each of these techniques next.

5.1 Partition Metadata
The ASA tracks the metadata state of each data partition in

a concurrent hash-table structure for efficient lookups. For each
partition, the ASA maintains: (i) the partition bounds (minimum
and maximum row_id and columns) (ii) the storage layout of each
replica of the partition (iii) access frequencies over different time
scales (minutes and hours) for updates, point reads, and scans (iv)
a zone map (v) the set of partitions frequently co-accessed with
the partition as a result of updates or joins. Proteus uses access
frequencies to predict upcoming accesses to the partition and to
estimate access costs under different storage layouts (Section 5.2).
The ASA uses the zonemaps to estimate the selectivity of predicates
and joins. Tracking co-access likelihood enables the ASA to reduce
distributed coordination by co-locating co-accessed partitions.
The ASA also maintains per table column statistics, including

each column’s average size and per column access rates. Proteus
uses these statistics to estimate the storage space required to store
a given partition and per column access trends.

5.2 Workload Models
Proteus uses learned workload models to estimate the benefit

of storage layout changes. The models learn (i) cost functions that
predict the latency of operations and (ii) estimates of access arrivals.

5.2.1 Cost Functions To select a physical execution plan or decide
on a storage layout change, Proteus quantitatively evaluates the
effects of its decisions. As physical operators enable layout changes,
an interpretable way to capture the cost of each operator is the time
it takes to execute, i.e. its latency. Using latency to compare the

effects of different storage layouts on performance also serves to
directly minimize transaction latency [9, 26, 53, 60]. Hence, Proteus
predicts the latency of operations in the system using learned cost
functions based on the statistics described in Section 5.1.
Table 1 summarizes the different cost functions that are used

to estimate the latency of executing a query or a storage layout
change. We classify cost functions as storage layout-aware, such as
updating data, or layout-agnostic, such as the latency of performing
a network request. Proteus learns a single cost function for storage
layout-agnostic functions, while for storage layout-aware functions,
Proteus learns a cost function per storage layout based on the
storage tier, format, and enabled optimizations.

Proteus combines the cost functions to predict the overall latency
of a physical execution plan. For example, to predict the latency of
the plan shown in Figure 7b, Proteus would predict the latency of
executing the sequential scans over column partitions P1B and P34,
merge-joining the sorted partitions and performing an aggregation
at data site 1. A similar computation would be performed for op-
erations at data site 2, including estimating the network request
latency to data site 1 before the final aggregation.

Proteus’ cost functions continuously learn based on the observed
latency of executing operations. The cost functions use (i) linear
regression, (ii) non-linear regression, and (iii) neural network mod-
els to predict operation latency, which are implemented using the
Dlib library [34]. Data sites track operation latency and periodically
report these observations to the ASA to update its cost functions.

5.2.2 Estimate Access Arrival Proteus considers the effect of adapt-
ing storage layouts on future requests. Both analytical and trans-
actional workloads exhibit temporal and cyclic trends in requests
that arise due to follow-the-sun behaviour, or scheduled report-
ing [42, 53, 59]. Hence, Proteus uses learned models to predict the
likelihood of future data accesses and their arrival time.
Predicting when data will be accessed requires: (i) predicting

trends at different temporal granularities, such as daily, weekly
or yearly trends (ii) accounting for growth and spikes in requests,
which may arise due to specific dates such as the fiscal year-end
(iii) adapting to changes in workloads over time, which may occur
if the queries or transactions submitted to the system change due
to user needs or preferences [42, 61]. Proteus tracks accesses per
partition by access type (update, point read, or scan). By default,
these statistics are tracked over 5-minute intervals for the past day
and hourly for a month and supplied as input to Proteus’ predic-
tive models. Two different predictive models are used: (i) sparse
periodic auto regression (SPAR) [15] and (ii) a hybrid-ensemble
predictor that combines a recurrent neural network (RNN) imple-
mented via libtorch [47], and a linear trend predictor with a custom
user-configurable holiday list [42, 61]. The holiday list accounts
for recurring events without periodicity, e.g., Black Friday is not
on the same date every year. In contrast to the SPAR model, the
hybrid-ensemble method automatically learns the periodicity of
the workload without requiring a user-defined period.

5.3 Query and Storage Layout Planning
The ASA generates physical execution plans based on its work-

load models and the current storage layout. Next, we describe how
Proteus generates physical execution plans, makes storage layout



decisions, and reuses past decisions to accelerate these processes.

5.3.1 Physical Execution Plans Proteus begins the physical exe-
cution plan generation process by starting out with a query tree
for the request, which is generated using PostgreSQL’s parser and
analyzer. Using the query tree, Proteus generates a physical exe-
cution plan by (i) replacing accessed tables in leaf nodes with the
relevant corresponding partitions at a specific site, (ii) instantiating
internal nodes with operators, and (iii) adding additional operators
to handle distributed operations as necessary.
Note that in Figure 7a, the leaves of the query tree are accesses

to the orderline and item tables. When generating the associated
physical execution plan shown in Figure 7b, Proteus replaces these
leaves with accesses to the relevant partition data identified by par-
tition metadata. Figure 4b shows that with respect to the orderline
table, there are four relevant partitions: P1B, P2A, P2B, P2C . Thus,
Proteus replaces the leaf with an instantiation of access to partition
P1B. Due to vertical partitioning of the data, accesses to P2A, P2B,
and P2C result in rewriting of the leaf nodes with separate accesses
to the partitions. Proteus inserts an internal join node to make the
required columns available together to the parent operator. Proteus
also selects the sites where data access to the partition will occur,
enforcing that at least one side of any join operation executes at
exactly one site for each relevant partition.

Given an assignment of the site and data access to each leaf node
in the query tree, Proteus assigns a physical operator to each node
in the query tree. For example, Proteus selects to join partitions P1B
and P34 using a merge-join algorithm over other alternatives such
as a hash or nested-loop join algorithm because its cost functions
estimate the merge-join to have the lowest cost. Proteus makes this
decision greedily to effectively reduce the physical execution plan
search space. Operator(s) to the plan are added if a selected physical
operator needs them, such as inserting sort operators before merge-
join. Proteus adds nodes to combine and coordinate distributed
operations, e.g., Figure 7b’s distributed aggregation at data site 2.

5.3.2 Layout Changes Proteus plans layout changes in response to
three stimuli: (i) generating a physical execution plan for a request
(ii) requests predicted to arrive in an upcoming 10-minute (config-
urable) interval (iii) when a data site nears storage constraints, e.g.,
memory or disk capacity limits. In each case, Proteus integrates the
workload models (Section 5.2) into one equation, the net benefit of
a change defined by N (S ) that quantifies how beneficial a change is
to the system overall. Proteus computes N (S ) by estimating (i) the
upfront cost U (S ) to execute the storage layout change based on
the operations needed to perform the change (via the cost functions
in Table 1), and (ii) the expected cost effect E (S ) on requests pre-
dicted to arrive and on requests currently executing (C (S )). Proteus
computes E (S ) and C (S ) by computing the difference between pre-
dicted transaction latency under the current and proposed layouts,
weighted by the likelihood of the transaction executing. The ASA
computes the net benefit1 N (S ) = λ(E (S ) +C (S )) −U (S ) > 0.
In our running example (Figure 4b), Proteus chose to vertically

partition P2 to produce partition P2C to mitigate the contention

1λ > 0 controls the importance of the expected benefit of the storage layout change.

effects of OLTP operations, such as the delivery transaction (Fig-
ure 5b). The ASA estimated the proposed layout will reduce trans-
action latency, resulting in a positive E (S ). To perform this vertical
partitioning necessitates an upfront cost (U (S )), primarily induced
by the cost of scanning the original partition and bulk loading the
new partitions. This change affects other queries, such as the join in
Query 14, slightly increasing its latency under the proposed change
as it induces another join (Figure 4b). However, Proteus estimates
the impact is small due to the selectivity of predicates over P2C ,
resulting in a low join cost and a small negative C (S ). Thus, N (S )
is positive so Proteus proceeds with the change.
After generating a physical execution plan, the ASA performs

a top-down search to find the leaf that contributes (through data
access) the highest cost to the overall plan. In our running example,
the latency induced by contention when accessing partition P2 is
the highest leaf cost, and thus the ASA considers it a candidate for
a storage layout change, in this case vertical partitioning. The ASA
considers if any storage layout changes that affect the high-cost
leaf induce a positive net benefit (N (S )). If so, Proteus initiates
the storage layout change and updates its physical execution plan.
Proteus repeats this process, stopping when further changes do not
result in a positive increase to the value of N (S ). In our running
example, vertically partitioning P2 to produce P2C is beneficial, so
it is added to the plan. Proteus horizontally partitions P2 to produce
P2A and P2B but stops after this change as further changes do not
improve N (S ).

To make effective changes without sacrificing efficiency, Proteus
tracks the average estimated leaf access cost per type of opera-
tion, normalized by the number of cells accessed, and performs
this planning step (i) if this normalized cost is above average or
(ii) probabilistically with probability inversely proportional to the
normalized cost. Thus, Proteus reduces cost by changing the stor-
age layouts of partitions with high access costs to generate higher
potential latency savings.
Proteus periodically predicts upcoming accesses and considers

storage layout changes if the predicted access pattern differs from
the recent pattern of accesses. For example, if Proteus predicts fre-
quent updates to a partition because of a cyclical access pattern but
the partition has been infrequently updated recently, then Proteus
adapts the partition storage layout. To do so, a physical execution
plan is generated for a placeholder transaction that accesses the
partition. Proteus then predictively plans storage layout changes
using the aforementioned procedure. The placeholder transaction
is instantiated with accesses based on recorded partition co-access
statistics (Section 5.1). Proteus constrains the search space of po-
tential predictive layout changes by considering the workload in
only the upcoming 10-minute (configurable) interval. As we show
experimentally in Section 6.3.3, Proteus executes layout change
plans efficiently, in sub-second latencies on average, and hence can
execute many changes predictively within such a time window.
Data sites track their storage usage per tier and report to the

ASA as they approach the capacity limit within a tier. In response,
Proteus considers executing storage layout changes that reduce
the consumed storage capacity by: (i) removing replica partitions
(ii) changing partition mastership to another site (iii) compressing
partition data (iv) moving partition data to a lower storage tier. Pro-
teus estimates the expected benefit of each of these options for data



partitions stored in the tier and selects the option that maximizes
the expected benefit N (S ). To avoid considering all partitions, data
partitions are grouped into tiers by their access statistics, including
estimated access arrival times and estimated N (S ) for each decision
for a partition group as a whole. Once Proteus selects a partition
group and makes a decision, each partition within the group is
repetitively considered under the decision, executing storage lay-
out changes until the site is under its capacity limit(s).

5.3.3 Plan Reuse To reduce planning overhead, Proteus caches
previously used physical execution plans for reuse. A plan is reused
in its entirety if the current storage layout satisfies the layout used
in the cached plan. For example, consider Query 14 executed on the
storage layout shown in Figure 4b using the physical execution plan
shown in Figure 7b. If Proteus receives this same request again with
the same storage layout, then it would reuse that same physical
execution plan. As Proteus adaptively changes its storage layout, a
single change invalidates a plan. Hence, Proteus carries out plan
decision reuse. To do so, the input arguments for each operator are
bucketed and the decisions made given these arguments are cached.
If a subsequent decision has similar inputs, then Proteus reuses
the decision with the lowest estimated cost. Proteus also uses this
technique to reuse decisions for storage layout changes.

6 EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation that

demonstrates the effectiveness of Proteus’ storage layout adap-
tion and how it significantly boosts HTAP system performance for
varying HTAP mixes, access patterns and load.

6.1 Methodology and Benchmarks
Our experiments are conducted on up to 18 data sites (default

6 sites), with each site having 12-cores, 32 GB of RAM and a 1 TB
hard disk. Proteus uses 1 machine for the ASA and 2 machines
to run Apache Kafka. A 10 Gbps network connects all machines.
Results are averages of at least five 20 minute OLTPBench [21] runs
with 95% confidence intervals shown using error bars.

We conduct experiments using three HTAP workloads: the CH-
benCHmark (CH) [16], transactional YCSB [17] and Twitter [21]
benchmarks. CH consists of the TPC-C OLTP [1] and TPC-H OLAP
workloads [3]. The transactional YCSB workload consists of two
types of transactions: a 10-key (multi-key) read-modify write OLTP
transaction and an OLAP query that scans 500,000 rows, evaluates a
predicate, and aggregates the results. The Twitter workload models
a social networking application featuring heavily skewed many-
to-many relationships among users, their tweets and followers.
The workload contains six OLAP transactions and three OLTP
transactions with four transactions added from the Twitter API [4]
that update followers, get tweets from followers, get tweets within
a timespan, and get tweets starting with specific text, introducing
more OLAP and OLTP transactions.
For all workloads, we follow CH’s model of a client submitting

either OLTP or OLAP transactions at any one time. As in prior work
[16], we evaluate using three mixes: OLTP heavy (90% of clients
submit OLTP transactions), balanced (50% OLTP), and OLAP heavy
(10% OLTP). To conduct workload execution time experiments, we
fix the number of transactions executed by each client. For YCSB,

each client issues 1 OLAP transaction followed by a proportional
number of OLTP transactions by mix (10 for OLTP heavy, 6 for
balanced, and 3 for OLAP heavy) 10,000 times. For CH, each client
issues 220 TPC-H queries and the OLTP to OLAP proportions are
999:1 (OLTP heavy), 99:1 (balanced), and 19:1 (OLAP heavy). For
Twitter, each client issues 300 OLAP queries and the OLTP to OLAP
proportions are 1000:1 (OLTP heavy), 100:1 (balanced) and 10:1
(OLAP heavy).2 The YCSB database (50 GB) consists of 50 million
rows and 10 columns each storing 100 bytes. The YCSB workload
uses skewed OLTP accesses to generate contention and load imbal-
ance. CH uses a scale factor of 100 (100 GB) while Twitter stores 10
million user accounts (80 GB).

6.2 Evaluated Systems
We evaluate Proteus against the alternative distributed HTAP

database system architectures of Janus [11] and TiDB [27], as well
as a row-oriented distributed database (row store or RS) targeted
to optimize OLTP workload execution and a column-oriented dis-
tributed database (column store or CS) designed to optimize OLAP
workload processing. To ensure an apples-to-apples comparison
of techniques, we implement the RS and CS architectures in Pro-
teus, which provides for an in situ comparison of the two special-
ized storage formats. We implement Janus in Proteus with Proteus’
adaptive features disabled. We use the commercial open source
version of TiDB. TiDB and Janus fully replicate data between their
OLTP-optimized and OLAP-optimized stores. Janus executes OLTP
transactions on the RS and OLAP transactions on the CS [11], and
updates are propagated lazily from the OLTP to the OLAP store.
By contrast, TiDB uses Raft as its replication algorithm and a cost
model to determine where to run a given transaction [27].
We advantage each comparison system implemented in Pro-

teus with an optimized replication and partitioning scheme using
Schism [19] that uses a priori knowledge of the workload, including
whether a table is read-only. These systems use the Least-Recently-
Used (LRU) scheme to determine storage tier placement as LRU is
appropriate for both skewed and uniform access patterns and is a
popularly-used storage tier policy [25, 45].

6.3 Results
6.3.1 Workload Execution/Completion Time To establish Proteus’
ability to process HTAP workloads efficiently, we evaluate all sys-
tems with the 3 YCSB HTAP workload mixes. We measured the
(execution) time to complete these workloads, shown in Figure 8a.
Proteus executes the balanced workload 4.4× and 1.6× faster than
TiDB and Janus, respectively, and completes the workload faster
than all competitors for all mixes. Proteus achieves these results
because its adaptive storage techniques result in superior OLTP
throughput compared to RS and OLAP latency that is competitive
with CS (Figure 9). Only Proteus achieves this high level of perfor-
mance for both OLTP and OLAP workloads. Proteus’ superiority
on hybrid workloads is also evident for CH (Figure 8b). Proteus re-
duces the time to execute the balanced workload by more than 33%
compared to CS, 32% compared to Janus, more than 50% compared
to RS, and 70% compared to TiDB. In all mixes, Proteus executes
the workload faster than all of its competitors because its OLAP

2Ratios represent the proportion of executed OLTP to OLAP transactions.



(a) YCSB Completion Time (b) CH Completion Time (c) CH Latency vs. Throughput (d) Twitter Completion Time

Figure 8: Proteus executes hybrid workloads faster than all competitors for all YCSB, CH-benCHmark (CH) and Twittermixes.

performance remains competitive with that of CS while delivering
equivalent OLTP performance to that of RS, as shown in Figure 8c.

In the Twitter workload, Proteus has the lowest workload comple-
tion time for all mixes, and reduces the time to execute the balanced
workload by more than 25% compared to Janus, 30% compared to
CS, 45% compared to RS, and 65% compared to TIDB. Similar to the
CH workload, Proteus is superior to its competitors in the Twitter
workload because its OLAP latency is similar to that of CS while
delivering OLTP throughput competitive to that of RS (Figure 11).
Takeaway: Proteus achieves superior performance for hybridwork-
loads, completing them faster than all competitors for all mixes.

6.3.2 YCSB We now present Proteus’ performance for the dimen-
sions of OLTP throughput and OLAP latency. Figures 9a, 9b and 9c
show throughput of the OLTP operations for each system on the
three HTAP mixes. Proteus achieves the highest throughput, out-
performing competitor systems by between 9.3× and 1.4× in the
OLTP heavy workload. In this experiment, Proteus’ closest com-
petitors are RS and Janus, which execute the OLTP operations
on row-oriented storage. Examination of Proteus’ storage layouts
shows that the ASA learns a suitable layout: frequently updated
data is stored in row format with infrequently updated data stored
in column format. Due to the skew in the OLTP workload, most
updates execute over data stored in a row format.

Proteus’ adaptive storage techniques, including vertical and hor-
izontal partitioning of data (Section 4.4) to mitigate contention
effects within and across rows, result in Proteus outperforming
both RS and Janus that use static storage layouts. As the work-
load becomes more OLAP heavy (Figure 9c), Proteus adapts its
storage design, trading off OLTP performance in favour of OLAP
performance.We present the effectiveness of vertical and horizontal
partitioning techniques via an ablation study in Section 6.3.7.

Figures 9e, 9f and 9g show the average latency of the OLAP oper-
ations for each system on the three HTAP mixes. Proteus achieves
an average OLAP latency on par (within 10ms) with CS and signifi-
cantly reduces the OLAP latency compared to all other competitors
by between 3.1× and 1.3×. As the workload becomes OLAP heavy,
Proteus shrinks the latency gap from CS. Proteus achieves compa-
rable latency to CS because Proteus stores most of the data in a
column-only format to support uniform data scan accesses across
the table. Consequently, Proteus needs to execute OLAP operations
only across data stored in a row-only format for the update-heavy
parts of the database. Importantly, Proteus achieves these results
while delivering more than 4× the OLTP throughput of CS.

Janus and TiDB replicate all data twice, consuming on average
1.33× more space than Proteus and imposing memory constraints

on the system. By contrast, Proteus selectively and judiciously
replicates partition data into both a row and column format when
there are roughly equal OLTP and OLAP accesses, reducing the
amount of stored data in the system. Proteus further reduces space
consumption by adaptively employing compression on the most
infrequently updated data in the system (detailed in Section 6.3.7).
Takeaway: Proteus is the ideal choice for the hybrid YCSB work-
load, providing on par OLAP latency and outperforming OLTP
competitors.

6.3.3 CH-benCHmark We evaluate Proteus using CH, an HTAP
workload derived from 22 TPC-H OLAP queries and 5 TPC-C OLTP
transactions. For all mixes, Proteus achieves throughput comparable
with the top-performing OLTP system – within 5% of RS OLTP
throughput (Figure 10a) and within 8% of the CS OLAP latency
(Figure 10b). Neither RS nor CS can achieve anywhere near this
combined high performance for both OLTP throughput and OLAP
latency. These results demonstrate that Proteus’ adaptive storage
is well-suited for hybrid workloads.
We observe that for the OLAP workload Proteus has similar

query latency to CS. For some queries (e.g. Query 7), Proteus takes
slightly longer than CS to execute as these queries involve joins
across many tables, complex predicates and aggregations. However,
adaptive storage allows Proteus to remain competitive with CS on
the overall OLAP workload while sustaining more than 2.2× its
OLTP throughput, resulting in superior performance on the hybrid
CH workload.
Without a priori knowledge of the workload, Proteus makes

effective adaptive storage layout decisions because its workload
models capture how data is accessed and their access costs. To
understand Proteus’ performance, we discuss its storage choices.
First, Proteus heavily replicates read-only fact tables, such as

the nation, region, supplier and item tables. This replication enables
Proteus to execute many joins and aggregations locally, thereby
reducing distributed data transfer. Proteus primarily stores these
tables in a compressed column format in memory. Proteus places
some of the partitions storing the item table on disk. The TPC-C
workload has skew in the items ordered, and Proteus judiciously
places infrequently ordered items on disk, relying on its zone-maps
when performing joins to reduce disk accesses.

Second, as illustrated in our running example (Figure 4b), updates
to the orderline table have a temporal relationship: recent orderlines
are more likely to be updated. Tracking access frequencies over
time allows Proteus to infer this relationship. The access patterns
for the orderline and order tables are similar to the access pattern
in YCSB: skewed OLTP operations access recently updated data



(a) Throughput (OLTP Heavy) (b) Throughput (Balanced) (c) Throughput (OLAP Heavy) (d) OLTP Ablation

(e) Latency (OLTP Heavy) (f) Latency (Balanced) (g) Latency (OLAP Heavy) (h) OLAP Ablation

Figure 9: YCSB benchmark results over threeHTAPmixes (OLTP heavy, balanced andOLAP heavy) showing OLTP throughput
(9a–9c) and OLAP latency (9e–9g). 9d and 9h show ablation effects on Proteus system latency.

(a) TPC-C Throughput (b) TPC-H Query Latency

Figure 10: CH-benCHmark (CH) results showing OLTP
throughput and OLAP latency for three HTAP mixes.

with uniform OLAP queries over entire tables. Thus, Proteus makes
suitable storage layout decisions — it employs row format for re-
cent data, column format for read-mostly portions of the tables,
and both row and column formats for partitions with relatively
balanced accesses. Proteus leverages its decision reuse capability
to repeatedly make decisions for partitions with similar access sta-
tistics. Proteus achieves OLAP latency similar to that of using only
CS for OLAP queries featuring predicates that examine historical
order information. Storing data in columnar format provides sig-
nificant advantages for queries where scan costs dominate query
latency (e.g., Query 6 that aggregates a column based on multi-
column predicates). Proteus’ storage layout adaptions allows it to
execute OLAP queries over data primarily stored in a columnar
format using similar efficient execution plans as CS but without any
pre-configuration.

Third, Proteus leverages co-access likelihoods in terms of which
data items are updated or joined together, e.g., stock and orderlines
belonging to the same warehouse, to co-locate the storage of these
partitions to the same site. This co-location of co-accessed data
minimizes the overheads of distributed processing by allowing
local joins of data3 and single-site update transactions that avoid
distributed commit. Unlike competitor systems that we advantage
with this information ahead of time to place data among sites,
Proteus learns access patterns as the workload executes, making it
robust to changes in these patterns (Section 6.3.6).

3Co-access frequencies are beneficial in equi-joins with foreign-key relationships,
guaranteeing that if there is a local join match, then it is the sole match.

(a) Twitter OLTP Throughput (b) Twitter OLAP Latency

Figure 11: Twitter results showing OLTP throughput and
OLAP latency for three HTAP mixes.

Fourth, Proteus maintains tables accessed mostly by OLTP trans-
actions (e.g., warehouse, district, history) in a row-oriented format,
adaptively partitioning and replicating data as necessary to mit-
igate contention and load effects. These storage layout decisions
allow Proteus to execute OLTP transactions over data stored in a
similar format to RS. By contrast, Janus’ full data replication results
in more data placed on the disk tier, which increases storage access
costs, lowers OLTP throughput and raises OLAP query latency.

Proteus performs storage layout changes efficiently, e.g., format
changes take 14 ms on average, or about as quickly as it takes for an
OLTP transaction to complete. Decision reusemakes for low latency
layout change plan generation (1.6 and 56 ms for OLTP & OLAP
transactions on average) even though generating and executing
layout change plans is infrequent Per-partition operations execute
layout changes efficiently (30 and 235 ms for OLTP and OLAP
transactions on average). Hence, Proteus amortizes layout change
costs and spends less than 5% of its time adapting storage.
Takeaway: Proteus’ learned adaptive storage techniques deliver
the best overall HTAP performance while remaining competitive
on both OLTP and OLAP aspects of the workload.

6.3.4 Twitter We evaluate Proteus using the Twitter benchmark
and show average OLTP throughput and OLAP latency for all mixes
in Figure 11. Proteus achieves throughput performance comparable
with RS for all mixes (within 5% of RS OLTP throughput). Proteus
has similar (within 7%) OLAP latency to CS in the balanced and
OLAP heavy mixes. Remarkably, only Proteus achieves this high
performance for both aspects of the hybrid workload.



Inserting new tweets dominates the OLTP workload, which re-
sults in significant contention on a small number of partitions. Con-
sequently, we find that Proteus keeps recently inserted tweets in
small partitions, in row format and on memory. Over time, Proteus
merges these partitions into larger partitions and stores them as
columns, as once inserted tweets become read-only. Consequently,
OLTP transactions primarily execute over row format data while
OLAP transactions execute over columnar data except for recent
tweets. Moreover, Proteus rarely replicates data for this workload,
so Proteus maintains all but the oldest tweets in memory, signifi-
cantly improving performance over the fully replicated Janus.
The Twitter workload features a many-to-many relationship in

its schema, making it difficult to partition the workload. The OLAP
workload requires joining data in the presence of this many-to-
many schema; for example, given a user u, get tweets from users
that u is following. Data shuffling across nodes to perform joins
reduces the relative effects of storage layout on OLAP latency.
However, Proteus’ ability to adapt data placement on nodes based
on access patterns reduces the amount of data shuffling, allowing
Proteus to remain competitive with CS in terms of OLAP latency
while executing more than 2× as many OLTP transactions.
Takeaway: Proteus provides the best overall HTAP performance
on a skewed workload and schema with a many-to-many relation-
ship.

6.3.5 Scalability In Figure 12a, we measure OLTP throughput and
OLAP latency while scaling the number of data sites from 3 to 18
in step with the number of clients (30 per site) on the balanced
YCSB workload. Proteus improves OLTP throughput by 5.3× as the
number of data sites grows by 6×. Increasing the number of data
sites reduces OLAP query latency by 2.2×, with the steepest fall
in latency occurring when the number of sites grows from 3 to 9;
with 9 sites, Proteus maintains most data in memory but at 3 sites,
a majority of data resides on disk.
Takeaway: Proteus is a scalable distributed HTAP system: through-
put increases by more than 5× as the number of sites increases 6×.

6.3.6 Adaptivity We study Proteus’ adaptive capabilities by exam-
ining its OLTP throughput and OLAP latency over time to under-
stand its behaviour as it learns both the workload access pattern
and cost model. Figure 12b shows Proteus’ OLTP throughput and
OLAP latency in the balanced YCSB workload. Proteus increases its
OLTP throughput by 5.4× over the course of the workload while
decreasing its OLAP latency by 7.9×. In this experiment, it takes
Proteus roughly 3 minutes to reach within 15% of its peak OLTP
throughput, and roughly 10 minutes to reach within 15% of its min-
imum OLAP latency. This difference is due to the skew in OLTP
accesses compared to the uniform OLAP accesses; Proteus executes
more layout changes for data primarily accessed by OLAP transac-
tions. During this period, Proteus rapidly builds both its workload
model to understand data access patterns and its cost model to esti-
mate operation latencies. Even on a cold start, Proteus’ cost model
is accurate and averages a root mean squared error (RMSE) of 11%
of the observed average latency, allowing Proteus to distinguish
between good and poor layout change decisions.
Figure 12c repeats the experiment from Figure 12b with three

changes: (i) the centre of the OLTP skew shifts every 5 minutes
following an hourly cycle (ii) Proteus’ data access latency models

are initialized using the end model state resulting from the exper-
iment in Figure 12b (iii) Proteus’ access arrival estimate model
is pre-trained using the historical access pattern of the workload.
Compared to Figure 12b, Proteus reaches within 15% of its peak
OLTP throughput in just 1 minute, and within 15% of its minimal
OLAP latency in 6 minutes (Figure 12c). Slight shifts in performance
are visible both before and after the 5, 10, 15 and 20-minute marks
due to the workload shifts occurring at these same time points.
Proteus begins executing storage layout changes predictively in
anticipation of the workload shift due to high confidence in changes
to the workload access pattern. The small performance shifts arise
primarily due to (i) storage layout changes consuming resources
and (ii) predictive storage layout changes that amortize costs over
time to provide beneficial layouts for the future.

In Figure 13, we examine Proteus’ ability to predict and respond
to shifts in the workload mix over time. In this experiment, we fol-
low the same methodology used for the experiments in Figure 12c
but shift the workload mix every 2,000 OLAP transactions4 in Fig-
ure 13a and every five minutes in Figures 13b and 13c. We measure
workload completion time, OLTP throughput and OLAP latency
over time. Observe that Proteus completes this workload faster than
all of its competitors, including 1.6× faster than Janus, which does
not adapt to the workload but keeps copies of all data in column
and row form. Examining performance over time, we see that as
in Figure 12c, Proteus rapidly improves both OLTP and OLAP per-
formance as it adapts to the workload. A key difference between
Proteus and its competitors is how Proteus behaves before the work-
load shift occurs: Proteus predictively and autonomously begins to
change storage formats in anticipation of the workload change. For
example, when shifting from the balanced to OLTP heavy mix, we
see that both Proteus’ OLAP latency and OLTP throughput increase.
These performance changes occur as Proteus predictively executes
layout changes from columnar to row format data.
Takeaway: Proteus adapts to the workload via its learned work-
load and cost models. Proteus leverages predicted access arrival
estimates to adapt its storage layouts to changes in the workload
predictively.

6.3.7 Ablation Study Figures 9d and 9h show an ablation study
on Proteus’ ability to make adaptive storage decisions by inde-
pendently and categorically removing different techniques while
using the YCSB workload. Shedding Proteus’ ability to vertically
and horizontally partition increases OLTP latency by 1.2× and
1.4×, respectively, as these techniques help mitigate contention
effects within, and across, rows. Removing Proteus’ ability to add
or remove replicas also affects its OLTP latency. Proteus leverages
replicas for two purposes: (i) replicating frequently updated data
among sites to distribute load, and (ii) replicating data partitions
with roughly equal OLTP and OLAP access frequency in both row
and column format to provide storage formats for both workloads.

Figure 9h shows the effects of the ablation study on OLAP latency.
Removing compression in Proteus increases OLAP latency by 1.7×:
less data is kept in memory and cannot be operated on in com-
pressed form. Proteus often stores columnar data using per column
sort-orders as the OLAP workload features inequality predicates;

42,000 OLAP transactions are used since the same number of OLAP transactions
execute over the five shifts as in the other experiments.
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Figure 12: Sensitivity experiments using a balanced YCSB workload showing OLTP throughput and OLAP latency.

(a) Workload Completion Time (b) Performance Over Time: OLTP Throughput (c) Performance Over Time: OLAP Latency

Figure 13: Shifting workload mix experiments using YCSB — mix shifts every 5 mins over the course of the experiment.

removing this increases OLAP latency by 1.5×. Proteus’ decision
reuse benefit is also shown: applying execution plans and layout
changes to partitions with similar access statistics reduces latency.
Takeaway: Proteus adaptively employs different storage optimiza-
tions that reduce OLTP and OLAP latency.

7 RELATEDWORK

Proteus is the first distributed HTAP database system that uses
adaptive storage techniques to execute hybrid workloads efficiently.

Single node HTAP systems such as HYRISE [24] and flexible
storage manager (FSM) [12] support hybrid workloads by storing
a data item in either row or column-oriented format on a single
node. HYRISE stores data in variable-width columns based on ac-
cess frequency, while FSM stores recently written data as rows
and (other) read-only data as columns. FSM uses logical tile alge-
bra to support query processing over its data layout. By contrast,
Proteus distributes data among sites and replicates data in differ-
ent layouts to allow efficient OLTP and OLAP execution over the
same data. H2O [10] and OctopusDB [31] store data in both rows
and columns based on the workload; however, H2O considers only
read-only workloads and materializes views in different formats
to optimize scans and joins, and OctopusDB relies on user hints to
decide on storage formats in simulation. Proteus is a distributed
system that autonomously adapts tiered storage in both row and
column formats on-the-fly by sorting, compressing, and changing
data partitions and their replicas.

Distributed HTAP systems such as TiDB [27], Janus [11], F1
[64], BatchDB [43] and fractured mirrors [51] statically replicate all
data in two formats: a row format master-copy for OLTP transac-
tions and a read-only column format replica. By contrast, Proteus
selectively and dynamically replicates data, leveraging replicas to
store data in different storage formats, sort orders, and storage tiers.
TiDB uses a cost model to decide where to execute a request but
only Proteus truly adapts storage by modelling the workload.

OLAP-focused systems popularized storing data as columns
[14, 56]. Column stores present optimization opportunities such as
column-specific sort orders based on query predicates (cracking)
[29, 30] and column-specific compression [5, 7, 66] to reduce space
usage while supporting querying over compressed data. Proteus
uses these techniques to execute operations over column formats
efficiently while also supporting HTAP workloads. Jigsaw [33] uses
prior knowledge of the workload to recursively partition data into
irregular partitions to execute OLAP queries. Unlike Proteus, Jigsaw
does not support updates, supports only full scans and not joins
for OLAP queries, and is a single-node system without replication.
Recent systems [22, 26, 39, 44, 65] adaptively partition for OLAP
workloads to minimize distributed join processing or data accesses,
but do not support HTAP workloads, changing storage tiers or
formats, or use optimizations like compression.

OLTP-focused systems such as MorphoSys [9], E-Store [60],
and STOv2 [28] partition data adaptively to mitigate contention ef-
fects. These systems focus on OLTP workloads and store data using
only row formats. Proteus utilizes adaptive partitioning techniques
to reduce contention while also supporting OLAP queries using
column formats to execute hybrid workloads efficiently.

8 CONCLUSION
We presented Proteus, a distributed HTAP database system that

adapts data storage layouts to deliver excellent performance for
mixed workloads. Proteus autonomously decides on suitable row-
and column-storage formats, storage tier, and whether to employ
optimizations such as sorting or compression in addition to data
replication and partitioning schemes. Proteus makes these decisions
on-the-fly using learned workload models. Proteus reduces HTAP
workload completion time by up to 70% over prior approaches while
foregoing the use of static storage layouts.
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Figure 14: The freshness gap when performing OLAP scans.

A COMPUTING NET BENEFIT OF
ADAPTION

Section 5.3.2 introduced how Proteus computes the net benefit
of a storage layout change S , as N (S ) = λ(E (S ) +C (S )) −U (S ) > 0,
where E (S ) is the expected benefit of the storage layout change on
upcoming queries, C (S ) is the expected benefit on ongoing queries,
andU (S ) is the upfront storage cost. We now formalize the compu-
tation of N (S ).
Table 2 summarizes each storage layout change in Proteus and

the cost functions that the ASA combines to estimate the upfront
cost of the change. For example, in Figure 4b to change the stor-
age format of partition P1B from a row to column format to row
requires: (i) the ASA making a network request to data site 2, (ii)
locking the partition, (iii) reading all the data from the row for-
matted partition via a scan, and (iv) bulk loading the data into a
column format. The ASA uses the layout-specific cost functions,
including row-specific scan and column-specific bulk loader estima-
tors. Recall from Section 4.4 that horizontal partitioning of rows, or
vertical partitioning of columns, does not need to perform full data
scans or bulk data loading, simply the reassignment of pointers.
Consequently, we differentiate the upfront cost for these changes
to data partitions from the generic change of partitions.
To compute the expected effect of a storage layout change S on

a request T , Proteus estimates the latency of the request under the
current layout Lcurrent (S,T ) and the latency of the request under
the adapted layout Ladapt (S,T ). Proteus estimates Ladapt by using
different storage layout-aware cost functions — in our example for
partition P1B (Figure 4b), the ASA replaces the row format scan cost
function with the sorted column scan cost function. Alternatively,
storage layout changes may alter the input arguments to the same
function; for example, the vertical partitioning of partition P2C
lowers the estimated contention of the partition, an argument for
the lock acquisition cost function. Table 3 summarizes the effect
that each storage layout change in Proteus and the effect that these
changes have on transaction execution based on the ASA’s cost
functions.

Proteus weighs the estimated effect of the storage layout change
onT by the likelihood ofT ’s request arriving (Pr (T )), and the time
to T ’s arrival (∆(T )). Formally we compute the estimated effect of
the storage layout change S onT as E (S,T ), as defined in Equation 1.

E (S,T ) =
(
Lcurrent (S,T ) − Ladapt (S,T )

)
·

Pr (T )

(∆(T ) + 1)
(1)

Observe that E (S,T ) is positive if Lcurrent (S,T ) > Ladapt (S,T ),
which indicates that the ASA expects the storage layout change to
reduce the latency of executing the request. However, the magni-
tude of E (S,T ) is determined by: the relative change in execution
latency, how likely the request is to arrive, and the estimated time

to request arrival.
Proteus computes E (S ) and C (S ), by summing E (S,T ) for each

request that are ongoing (in which case ∆(T ) = 0 and Pr (T ) = 1),
or predicted to arrive. Observe that E (S,T ) ≈ 0 if Lcurrent (S,T ) =
Ladapt (S,T ), Pr (T ) ≈ 0, or ∆(T ) is sufficiently large. Consequently,
Proteus restricts the set of requests that it considers to those that
access data affected by the storage layout change, or are likely to
arrive in an upcoming window.

B ADDITIONAL EXPERIMENTAL RESULTS
We now present additional supplementary experimental results

that explain different aspects of Proteus’ behaviour.

B.1 OLAP Freshness Gaps
Proteus targets real-time analytical processing, where transac-

tional updates are immediately available to analytical queries. To
measure the effectiveness of Proteus at providing real-time analyt-
ical processing, we measure the average freshness gap of OLAP
queries. Specifically, we modify our YCSB benchmark so that: (i)
OLTP transactions set every updated value to a timestamp, (ii)
OLAP queries return the smallest value read in the scan (i.e., oldest
timestamp observed). We record the values set by OLTP transac-
tions and values returned by OLAP transactions, along with the
(real) time that the OLTP transaction committed and the OLAP
transaction began. After the experiment, we combine this observed
state and record the difference between (i) the smallest value read
in each OLAP query (oldest timestamp observed) and (ii) the most
recent commit time before the beginning of the OLAP transaction
that updated values in the range of the OLAP scan. Hence, if the
OLAP scan reads the freshest data available, we record 0 and oth-
erwise record a value that indicates how stale the OLAP scan was.
The average of these values represents Proteus’ freshness gap.

Figure 14 presents the freshness gap for Proteus over the three
YCSB workloads. Observe that in the balanced YCSB workload,
Proteus’ freshness gap is less than 200 ms. In the OLTP heavy
and OLAP heavy workloads, the freshness gap is approximately
450ms and 50ms, respectively. Hence, OLAP queries in Proteus
observe a fresh state, satisfying the real-time analytical processing
requirement. Proteus’ low freshness gap is primarily due to (i)
efficient update propagation and (ii) performing OLTP transactions
directly on column data if OLAP queries primarily access the data.
Proteus has a higher freshness gap for the OLTP heavy workload
because it propagates and applies more updates to replicas.
Takeaway: Proteus has a low freshness gap for OLAP queries and
hence provides real-time analytical processing.

B.2 Storage Layout Change Operation
Overhead

Table 4 summarizes the proportion of time spent on transac-
tions and storage layout change operations in the balanced CH-
benCHmark (CH) workload. Proteus balances the proportion of
time spent executing OLTP and OLAP transactions, demonstrat-
ing the benefit of using OLTP and OLAP-specific thread-pools to
execute requests. These storage layout changes are efficient as
they execute about as quickly as an OLTP transaction. The most
frequent changes involve changing formats, tiers, and partition



Storage Layout
Changes

Cost Function
Bulk
Load

Scan Sort
Network
Request

Lock
Acquisition

Waiting
for Updates

Commit

Change Format ✓ ✓ ✓ ✓
Change Tier ✓ ✓ ✓ ✓

Sort ✓ ✓ ✓ ✓ ✓
Compress ✓ ✓ ✓ ✓

Change Partitioning
(Horizontal in Row)
(Vertical in Column)

✓ ✓ ✓

Change Partitioning
(Generic)

✓ ✓
✓

(If necessary)
✓ ✓ ✓

Add Replica ✓ ✓
✓

(Source & Dest.)
✓

(Dest.)
✓

Remove Replica ✓

Change Master
✓

(Source & Dest.)
✓

(Source & Dest.)
✓

✓
(Source & Dest.)

Table 2: The upfront costs of different storage layout changes, which are computed by combining different cost functions.
Storage Layout

Changes
Cost Function

Bulk
Load

Insert/
Update/
Delete

Point
Read

Scan
Sort/
Hash

Join Aggregate
Network
Request

Lock
Acquisition

Waiting
for Updates

Commit

Change Format ✓ ✓ ✓ ✓ ✓ ✓ ✓
Change Tier ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sort ✓ ✓ ✓ ✓ ✓ ✓ ✓
Compress ✓ ✓ ✓ ✓ ✓ ✓ ✓

Change Partitioning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Change Replication ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Change Master ✓ ✓

Table 3: The expected change in transaction execution latency per cost function for each storage layout change.

Operation
Proportion of
Time Spent

Avg. Latency
(ms)

Frequency
(per 1000)

OLTP Transaction 47.1% 6.37 ± 0.1 991 ± 24
OLAP Transaction 48.1% 685 ± 40 9.4 ± 0.6

Storage Format Change 2.14% 14.0 ± 1.1 20.4 ± 0.8
Storage Tier Change 0.51% 12.9 ± 0.8 5.3 ± 0.2
Sort or Comp. Change 0.04% 20.7 ± 1.6 0.26 ± 0.01

Partition Change 0.07% 4.56 ± 0.4 2.2 ± 0.12
Replication Change 1.96% 36.9 ± 2.9 7.1 ± 0.6

Table 4: The proportion of time spent, average latency and
frequency per operation for the CH-Benchmark workload.

replicas. In Table 5, we summarize the proportion of time spent
planning transaction execution, layout change plans, and executing
layout change plans. We find that Proteus’ decision reuse allows ef-
ficient selection of physical execution plans for transactions, which
take about 1% of overall system time. For fewer than 10% of trans-
actions, Proteus generates a layout change plan. Layout change
plans in response to OLAP transactions take longer to develop than
OLTP transactions due to the number of data items accessed in
OLAP transactions. Finally, about 1% of transactions execute layout
change plans, which execute in 30 ms and 235 ms on average for
OLTP and OLAP transactions, respectively. These plans execute
quickly due to the low latency of individual layout change opera-
tors. Together, Proteus spends less than 5% of the time planning
and performing storage layout change plans as Proteus amortizes
the costs of layout changes across transactions.
Takeaway: Planning and executing storage layout changes is effi-
cient and has low overhead on system performance.

B.3 CH Cross Partition Transactions
We next study Proteus’ sensitivity to the percentage of cross

warehouse transactions in CH. Recall that in CH, clients are as-
sociated with warehouses, and NewOrder transactions vary the
stock of ordered items, which are kept on a per-warehouse basis.
By default, 10% of NewOrder transactions place orders to a different
warehouse than the client’s warehouse. Because of this locality,
the best data placement scheme as determined by Schism [19] is
co-locating data by the warehouse. Consequently, as the number
of cross warehouse transactions increases, OLTP transactions in-
creasingly become distributed transactions. Moreover, increasing
the percentage of cross warehouse transactions also increases the
number of distributed joins, as several TPC-H queries (e.g. Query
7) join orders with stocks, which using Schism’s data placement
are not co-located at the same site.
Figure 15 shows the experimental results for CH we vary the

percentage of cross-warehouse transactions. Figure 15a shows the
workload completion time as the percentage of cross-warehouse
transactions increases. Observe that the workload completion time
for all systems increase as the percentage of cross-warehouse trans-
actions increases because the performance of both OLTP transac-
tions (Figure 15b) and OLAP transactions (Figure 15c) decreases.
However, Proteus’ relative reduction in workload completion time
to its next closest competitors increases from 1.45× to 1.63× as
the percentage of cross warehouse transactions increases from 0%
to 40%. Proteus achieves this relative increase in overall perfor-
mance because Proteus adapts its storage layout, resulting in OLTP



Operation
Proportion of
Time Spent

Avg. Latency
(ms)

Frequency
(per 1000)

OLTP Physical Execution Plan Generation 1.32% 0.18 ± 0.01 991 ± 24
OLAP Physical Execution Plan Generation 0.88% 12.7 ± 1.1 9.4 ± 0.6
OLTP Layout Change Plan Generation 1.02% 1.62 ± 0.8 84.9 ± 5.7
OLAP Layout Change Plan Generation 1.14% 56.8 ± 4.2 2.7 ± 0.34

OLTP Layout Change Execution 3.01% 30.8 ± 3.7 13.1 ± 0.96
OLAP Layout Change Execution 1.19% 235 ± 27 0.68 ± 0.03

Table 5: The proportion of time spent, average latency and frequency of planning and executing layout changes for the CH-
Benchmark (CH) workload.

(a) CHWorkload Completion Time (b) CH OLTP Throughput (c) CH OLAP Latency

Figure 15: Experiments that vary the percentage of cross warehouse transactions in the CH-benCHmark (CH).

throughput outperforming the RS by nearly 1.3× and achieving
OLAP latency within 13% of the CS. Specifically, we find that Pro-
teus increasingly replicates warehouse, district, customer and stock
data among sites, which allows Proteus to (i) reduce distributed
join processing for OLAP queries, and (ii) dynamically change data
mastership efficiently to reduce 2PC, allowing OLTP transactions to

execute more efficiently. Proteus can perform this data replication
because the decrease in OLTP throughput decreases the growth
rate in the amount of stored data and because Proteus does not
mandate data replication in two formats like Janus or TiDB.
Takeaway: Proteus maintains its performance advantage as the
percentage of cross partition transactions increases.
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