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ABSTRACT
Distributed database systems are widely used to meet the
demands of storing and managing computation-heavy work-
loads. To boost performance and minimize resource and
data contention, these systems require selecting a distributed
physical design that determines where to place data, and
which data items to replicate and partition. Deciding on a
physical design is difficult as each choice poses a trade-off
in the design space, and a poor choice can significantly de-
grade performance. Current design decisions are typically
static and cannot adapt to workload changes or are unable
to combine multiple design choices such as data replication
and data partitioning integrally. This paper presents Mor-
phoSys, a distributed database system that dynamically
chooses, and alters, its physical design based on the work-
load. MorphoSys makes integrated design decisions for all
of the data partitioning, replication and placement decisions
on-the-fly using a learned cost model. MorphoSys provides ef-
ficient transaction execution in the face of design changes via
a novel concurrency control and update propagation scheme.
Our experimental evaluation, using several benchmark work-
loads and state-of-the-art comparison systems, shows that
MorphoSys delivers excellent system performance through
effective and efficient physical designs.
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1. INTRODUCTION
Modern database systems store and manage vast amounts

of data [39, 57] by replicating and partitioning these data
to distribute their transactional processing over multiple
sites (nodes). The data replication and partitioning schemes
chosen for a distributed database form its physical design.

Constructing a distributed physical design includes making
the following key decisions (i) what the data partitions should
be, (ii) which data partitions to replicate, and (iii) where (at
which site (machine)) to place the master (updateable) copy
of a partition, and where to place any replicas (secondary)
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copies of partitions. These decisions, in turn, determine the
sites where transactions execute.

One well-known distributed physical design [30, 58] dis-
tributes partitioned data such that transactions execute at
different sites, thereby spreading both the update and read
load over multiple sites in the distributed system. To achieve
even load distribution, careful partitioning of the data must
occur, resulting in a partitioning of the workload among the
sites in the distributed system. A performance concern with
transactions that access, and in particular update, data at
multiple sites is that they require costly synchronization and
coordination across the sites where they execute to guarantee
transactional atomicity and consistency [22,29,36].

Another popular technique to achieve physical distribution
is to replicate data to multiple sites [62, 66]. Replication
allows transactions to execute on data copies or replicas. A
challenge with data replication is that updates to one copy of
the data cause other copies to become stale [20]. Moreover,
replicas risk being inconsistent in the face of concurrent
updates across the distributed system.

Placing an excessive number of data partitions (master or
replica) on the same site places excessive load at that site
while consuming larger amounts of storage. As in-memory
databases become common to reduce latency, it is important
to use storage efficiently to reduce cost-to-performance ra-
tios [18]. Thus, dynamic data replication can use memory
storage judiciously by deciding what, and where, to replicate
selectively instead of (fully) replicating all data everywhere.

In addition to the transaction coordination and consistency
issues that occur with data replication and partitioning, there
is a need to avoid hot spots caused by workload imbalance.
This imbalance can be of two types: (i) when particular data
are frequently accessed causing excessive load on sites hosting
the data [10, 61], and (ii) when workload hotspots shift or
emerge [25, 60]. These types of load imbalances emanate
from workloads contending for physical compute resources,
e.g., CPU, or data resources such as locks.

Offline tools [10, 47,48,55,63,67] can help administrators
make design decisions. However, these tools generate offline,
static physical designs that cannot adapt to workload changes
or are not suitable if extensive information about the work-
load, e.g., access patterns, is not available a priori. Moreover,
such tools do not eliminate distributed coordination costs
incurred by transactions that access data across multiple
sites. Thus, static distributed physical designs fall short
in delivering good performance in the presence of hotspots,
changing workloads or when workload information is not
available a priori to inform physical design decisions.



We present MorphoSys, a distributed database system
that we have designed and built that makes decisions auto-
matically on how to partition data, what to replicate, and
where to place these partitioned and replicated data. Mor-
phoSys learns from workload locality characteristics what
the partitions should be, and where to place master and
replica partitions, dynamically. This dynamism frees the
system from having to know workload access patterns a pri-
ori, allowing MorphoSys to change or metamorphosize the
distributed physical design on-the-fly. Moreover, to avoid
expensive multi-site transaction coordination, MorphoSys
dynamically alters its physical design to co-locate co-accessed
data and to guarantee single-site transaction execution.

Remarkably, once MorphoSys starts executing, it requires
no administrator intervention. Unlike prior approaches [53,
64], MorphoSys adapts its physical design continuously and
iteratively, adjusting both its replication and partitioning
schemes to cater to the workload. MorphoSys uses a learned
cost model based on workload observations to decide how,
and when, to alter its physical design.

The main contributions of this paper include:
• An architecture for a distributed database system that

dynamically constructs physical designs using a set of
physical design change operators (Section 3).
• A novel concurrency control algorithm and update

propagation protocol to support efficient execution of
transactions and physical design changes (Section 4).
• A cost model that drives physical design decisions to

improve transaction processing performance by learning
and exploiting workload patterns (Section 5).
• An extensive evaluation that establishes MorphoSys’

efficacy to deliver superior performance over prior ap-
proaches. (Section 7).

2. RELATED WORK
MorphoSys is the first and only transactional (ACID)

distributed database system that dynamically generates dis-
tributed physical designs that encompass all three schemes
of (i) data replication, (ii) data partitioning, and (iii) mas-
ter data location in an integrated approach. None of the
related work to-date can achieve more than one of the three
aforementioned schemes simultaneously in a dynamic fashion.

Dynamic replication adjusts what, and where, to repli-
cate for a workload. The adaptive replication algorithm [64]
used by non-transactional storage systems [24,40], and key-
value stores [42] optimizes replica placement given workload
descriptions and operation cost estimates. These systems
replicate on only a per site basis rather than on a per data
item or partition basis; by contrast, MorphoSys is transac-
tional with ACID semantics, considers the whole workload
while making replication decisions for individual data parti-
tions and guarantees single-site execution.

Dynamic partitioning systems [16,53,54,60,61] dynam-
ically change the grouping of data into partitions to account
for access skew. These systems rely on the expensive two-
phase commit protocol (2PC) to coordinate multi-site trans-
action execution [22,29]. By contrast, MorphoSys guarantees
single-site transactions by using dynamic physical design
operators that change the location of both master data and
their replicas. Clay [53] makes data partition decisions peri-
odically after observing the workload over a large interval
before generating a revised data partitioning scheme. Mor-
phoSys iteratively changes partitions at the transaction-level

Figure 1: MorphoSys System Architecture. Transaction
router selects data sites at which client transactions are
executed. Replicas are lazily maintained through updates
propagated from data sites.

granularity, considering every transaction as an opportunity
to adapt its design to the workload.

Dynamic mastering guarantees single-site transaction
execution by co-locating master data at one site [3,36,38,50].
MorphoSys employs dynamic mastering for this purpose and
leverages replicas to change mastership efficiently, unlike,
STAR [38] and DynaMast [3] that require full data repli-
cation. All prior dynamic mastering systems require static
a priori grouping of data into partitions while MorphoSys
dynamically partitions data to mitigate the effects of con-
tention. STAR and SLOG [50] employ batched transaction
execution while MorphoSys executes transactions as they
arrive to reduce latency.

Offline tools exist that recommend how to group data
items together into partitions [10], what to replicate where
[48], or how to assign partition mastership [10, 55, 67]. A
system must then implement and apply these decisions. By
contrast, MorphoSys makes all of these physical design de-
cisions together intrinsically within the system in an online
fashion, allowing it to adjust to workload changes on-the-fly.

Orthogonal database physical design decisions in-
clude index recommendation [11], automatic index gener-
ation [28, 37, 43], selecting views to materialize [21], deter-
mining the storage layout of data [4], and elastically adding
database sites [59, 65]. Such decisions are complementary
and can co-exist with MorphoSys’ physical design space.

3. MORPHOSYS OVERVIEW
MorphoSys’ distributed architecture consists of data sites

that store data and execute transactions on the data. Mor-
phoSys stores data in an OLTP optimized row-oriented for-
mat. Each row represents a data item identified by a row
id that is either application-defined or generated from the
primary key of the table and encodes any primary-key foreign-
key constraints. MorphoSys groups data items together into
partitions and each data item belongs to one partition at a
time. For every partition, MorphoSys decides the site that
stores the master copy of the partition and the sites, if any,
that lazily replicate the partition. A change in any of these
decisions results in a physical design change. MorphoSys
acts on these decisions, using physical design change opera-
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Figure 2: An illustration of physical design change operations in MorphoSys.

tions (Section 3.1) to dynamically change the system’s data
replication, partitioning and mastering schemes.

Clients submitting transactions to the database system do
not need to know the data sites that store the relevant data
items for their transactions, and where the transaction will
execute. Instead, the transaction router considers the current
design in routing transactions to data sites. MorphoSys uses
read and write set information in transactions submitted
by clients to plan and execute design changes needed for
single-site execution and to improve system performance.

Figure 1 shows MorphoSys’ architecture, with partitions
identified as contiguous ranges of row id ’s (e.g., (0, 9)), master
copies indicated in bold (e.g., data site 1 masters partition
(0, 9)), and replicas not in bold (e.g., data site 2 replicates
partition (0, 9)). Note that MorphoSys partially replicates
data, thereby replicating selected data partitions to selected
sites. Figure 1 also provides an overview of transaction
execution: client C1 submits a transaction to update data
items 5 and 25 to the transaction router (Step 1), which
routes the transaction to data site 1 (Step 2) where the
transaction executes (Step 3). MorphoSys lazily propagates
the transaction updates to data sites 2 and 3, which contain
replicas of partition (0, 9) and (20, 29), respectively (Step
4). MorphoSys concurrently executes client C2’s transaction
at data site 3, which updates the master copy of partition
(10, 19) and reads from the replica of partition (20, 29).

The transaction router ensures single-site transaction exe-
cution by routing transactions to a site that stores the master
copies of partitions containing data items in the write set,
and (master or replica) copies of partitions containing data
items in the read set. If no site satisfies this requirement,
then the transaction router alters the system’s physical de-
sign on-the-fly by dynamically adding or removing replicas
of partitions, changing a partition’s granularity, or changing
the mastership of partitions. Thus, the transaction router
plays a key role in system performance: it must effectively
decide on physical designs to distribute transactions among
sites without requiring design changes before executing ev-
ery transaction. MorphoSys meets these goals by capturing
workload patterns and quantifying the expected benefit of
design changes with a learned cost model (Section 5).

Data sites play a key role in system performance as they
execute transactions and physical design changes. A data
site must efficiently maintain replicas, support changing the

partition a data item belongs to, and the mastership of parti-
tions. Data sites must also ensure that transactions observe
a consistent state of the database in the presence of physical
design changes. To achieve these goals, we develop an update
propagation scheme and concurrency control algorithm that
support efficient transaction execution and physical design
changes (Section 4).

3.1. Physical Design Change Operations
MorphoSys supports a variety of dynamic physical design

change operations. These operations are flexible building-
blocks that MorphoSys effectively combines to produce effi-
cient distributed database physical designs.

We define a data partition as a range of data items based
on their row id ’s. Partition p contains all data items with
row id ’s in the inclusive range (start(p), end(p)). The master
copy of p is located at site Si = master(p), with replicas on
the (possibly empty) set of sites {Sj |j 6= i} = replicas(p).

Figure 2 exemplifies our physical design change operations
by example, using two data sites. Figure 2a shows the initial
design, while Figures 2b–2e illustrates the series of physical
design changes that culminate in a new physical design.

In the initial physical design (Figure 2a), transaction T1

writes data item 3, and transaction T2 writes data item 7,
hence both update the partition (0, 9) located on data site 1.
Thus, there is physical lock contention on the partition even
though the updates logically do not conflict. Splitting the
partition, a dynamic partitioning operation, changes the data
partition that data items belong to and dissipates the con-
tention (Figure 2b) as transactions T1 and T2 subsequently
update disjoint partitions. Formally, split(p, k) creates parti-
tions pL and pH that contain the data items in p with row id ’s
less than k and greater than or equal to k, respectively. That
is, pL = (start(p), k − 1) and pH = (k , end(p)). split(p, k)
also removes the original partition p from the system so that
data items continue to belong to exactly one partition.

In Figure 2c, three transactions execute on data site 1,
including the read-only transaction T3, adding load to the
site. As replicas service read-only transactions, dynamically
replicating to add a replica of partition (5, 9) to data site 2
allows T3 to execute there, thereby distributing load among
sites. Formally, if Sj 6= master(p) and Sj 6∈ replicas(p) = R
then add replica(p, Sj) sets replicas(p) = R ∪ {Sj}.

In Figure 2d transaction T2 updates data items 7 and 12.
To guarantee single-site transaction execution, MorphoSys



ensures that one data site contains the master copies of the
partitions containing data items 7 and 12 — partitions (5, 9)
and (10, 19) — by dynamically changing the location of the
master of partition (5, 9) from data site 1 to data site 2 via
remastering. Single-site transaction execution ensures that
transactions are not blocked waiting for distributed state
during 2PC’s uncertain phase that increases lock holding
time while blocking local and distributed transactions [3, 22,
29,38]. Observe that data site 2 was previously replicating
partition (5, 9), which ensures remastering is efficient [3, 38].
Formally, if Si = master(p), and Sj ∈ replicas(p) = R then
remaster(p, Sj) sets Sj = master(p) and sets replicas(p) =
R \ {Sj} ∪ {Si}.

Replicas require space for storage and their maintenance
consumes resources. MorphoSys dynamically removes repli-
cas of partitions if there is little benefit in maintaining a
replica, such as when no transactions read from the replica,
as in Figure 2e for partition (5, 9) at data site 1. For-
mally if Sj ∈ replicas(p) = R, then remove replica(p, Sj)
sets replicas(p) = R \ {Sj}.

Finally, to reduce the metadata overhead of tracking par-
titions, MorphoSys merges co-accessed partitions together,
as shown in Figure 2e for partitions (5, 9) and (10, 19) creat-
ing partition (5, 19). Formally, if end(pL) = start(pH)− 1,
master(pL) = master(pH), and replicas(pL) = replicas(pH)
all hold, then merge(pL, pH) creates a single partition p =
(start(pL), end(pH)), and removes partitions pL and pH .

The examples in Figure 2 show the benefits of physical
design changes. MorphoSys performs changes prudently by
considering the workload to avoid unnecessary changes or
changes that it will undo in the immediate future.

4. TRANSACTION EXECUTION AND
PHYSICAL DESIGN CHANGE

In this section, we describe MorphoSys’ novel concurrency
control and update propagation mechanisms and how they
provide efficient physical design changes and transaction exe-
cution. We begin by presenting the design to achieve efficient
transaction execution followed by the mechanics of the physi-
cal design operators. Appendix B includes correctness proofs
of MorphoSys’ protocols.

4.1. Transaction Isolation and Concurrency
MorphoSys supports ACID transactions and provides

strong-session snapshot isolation (SSSI) [13], which is a pop-
ular isolation level for distributed and replicated database
systems [3, 7, 13, 56]. SSSI guarantees snapshot isolation
(SI) but also prevents transaction inversion and ensures that
client transactions always see all updates from their previ-
ous transactions. In SSSI, every transaction T is assigned
a begin timestamp such that T sees the updates made by
transactions with earlier commit timestamps. SSSI systems
select begin timestamps that are larger than the latest com-
mit timestamps of prior transactions submitted by the client
to prevent transaction inversion. SSSI systems also ensure
that if two transactions update the same data item and have
overlapping timestamps, only one transaction can commit [6].
SSSI is layered on top of SI, which allows distinct begin and
commit transaction timestamps and write skew, and thus is
weaker than serializability in which all operations come at
the same point in time in a serialization history [6, 13].

MorphoSys decouples read and write operations as these
operations do not conflict under SSSI; SSSI writes create new
consistent logical snapshots, based on the commit timestamp,

while reads occur from logically consistent snapshots indi-
cated by the begin timestamp. This decoupling allows concur-
rent execution of reads at replicas while data sites apply prop-
agated updates. MorphoSys uses multi-versioning [14, 33] to
efficiently decouple reads and writes.

All of MorphoSys’ operations, including transactions and
physical design change operations, occur on a per partition
basis. That is, operations access a partition or its metadata
only if accessed in a transaction’s read or write set or as
part of a design change operator. Per partition operations
minimize contention and blocking as the system accesses only
relevant partitions, and replicas wait for only the necessary
updates to relevant partitions to preserve consistency.

4.2. Partition-Based Multi-version
Concurrency Control

Guided by our design requirements of supporting session
consistency with SI, decoupling reads and writes, and per-
forming operations on a per partition basis, we propose a
novel concurrency control algorithm. Our algorithm main-
tains per partition version information and a lock per parti-
tion. Any update to a partition by transactions or physical
design change operators acquires the partition’s lock using
lock ordering to avoid deadlocks. Consequently, at most
one writer to a partition executes at a time, which prevents
unnecessary transactional aborts. Concurrent writes and
design changes to different partitions are supported since
these are conflict-free with locks held on a per partition basis.
Dynamic partitioning, through split and merge operators,
ameliorates contention within and across partitions. Read
operations leverage multi-versioning to execute freely without
acquiring partition locks.

MorphoSys uses per partition version information and
tracks transactional dependencies to implement a dependency-
based concurrency control protocol [44,45], which allows Mor-
phoSys to apply updates in parallel and on a per partition
basis at replicas (Section 4.3). To track partition depen-
dencies, each partition p maintains a version number v(p).
Multiple versions of each data item d are kept, and each
version is called a versioned data item, consisting of a version
number v(d) that coincides with the version number v(p) of
the partition p that contains d when d was updated. When a
transaction T updates data item d in a partition p, it creates
a new version of the data item and its associated data. On
commit, T increments the partition version number v(p) and
assigns that number as v(d) for the new versioned data item.

In addition to storing per partition version numbers, Mor-
phoSys maintains dependency information to ensure transac-
tions read from a consistent snapshot of data. In particular,
for version v(pi) in partition pi, MorphoSys stores the ver-
sion number of partition pj belonging to the same logical
snapshot as v(pi), which we denote as depends(pi, v(pi), pj).

To track dependencies, MorphoSys uses the following de-
pendency recording rule. If a transaction T updates data
items in partitions pi and pj , then when T commits Mor-
phoSys assigns partition version numbers v(pi) and v(pj).
MorphoSys then records v(pj) as depends(pi, v(pi), pj), and
similarly v(pi) as depends(pj , v(pj), pi). To capture any exist-
ing transitive dependencies, MorphoSys extends the recording
rule to the rule presented in Equation 1, which applies to
any partition pk that MorphoSys has not already recorded
dependencies for as part of the transaction update, and par-
titions pi and pj in the write set. Equation 1 captures direct
dependencies that involve partitions updated in the same



transaction, and transitive dependencies that are inherited
from previous transactions. Taking the maximum of a parti-
tion’s direct and inherited dependencies ensures transactions
observe consistent state.

depends(pi, v(pi), pk) = maxj (depends(pi, v(pi)− 1, pk),

depends(pj , v(pj)− 1, pk))

(1)

MorphoSys efficiently maintains tracked dependencies by
storing them in recency order with partition metadata at
a data site. As OLTP transactions typically access a small
amount of data relative to the database size [15, 36], tracked
dependencies are often small, while long-running transactions
accessing many partitions induce more dependencies for the
system to track. To ensure tracked dependencies do not
grow unbounded, MorphoSys garbage collects versioned data
items and dependency information of partitions with version
numbers lower than a watermark version number, which is
the smallest most recent version number at any site.

4.2.1. Strong Session Snapshot Isolation
To enforce SSSI, MorphoSys uses the recorded depen-

dencies to guarantee that transactions read data from a
consistent snapshot state using the consistent read rule: a
transaction T reads versions v(pi) of every partition p in its
read set such that v(pi) ≥ depends(pj , v(pj), pi) if pj is also
in T ’s read set. T reads the latest version of data item d
such that v(d) ≤ v(pi).

MorphoSys uses the depends relationship as the basis of
transaction timestamps. When a transaction T intends to
read partitions {pr} and write partitions {pw}, T acquires
write locks on each pw. T then reads the version number for
each partition v(p) in its read and write set, and stores this
value as TB(p). As defined by the consistent read rule, T
then determines the version TB(pi) of each partition such
that TB(pi) ≥ depends(pj , T

B(pj), pi) for pi and pj in T ’s
read and write set. The values {p, TB(p)} form T ’s begin
timestamp TB . T then reads and writes transactionally.

On commit, MorphoSys generates a commit timestamp TC

by incrementing v(pw) for each pw in T ’s write set and follows
the dependency recording rule. Mutual exclusion of partition
writes ensures that the updated version v(pw) = TB(pw) + 1,
which is assigned to TC(pw), and along with TB(pr) for each
read partition forms the commit timestamp.

Appendix A includes more details on our concurrency
control protocol, which ensures that long forks [56] are not
allowed under SSSI, and describes how session timestamps
prevent transaction inversions.

4.3. Update Propagation
To support dynamic replication of lazily maintained parti-

tions, MorphoSys propagates and applies updates on a per
partition basis. If a transaction T updates a partition p then
the data site maintains a redo buffer of T ’s changes. When T
commits, for each updated partition p, the data site serializes
the changes made to p, consisting of the updated data items,
p’s version number (v(p)), and the recorded dependencies
(TC). The data site writes this serialized update to a per
partition redo log. Data sites replicating p subscribe to the
partition’s log, asynchronously receive the serialized update,
and apply the update as a refresh transaction.

Replicas ensure a snapshot consistent state by applying
T ’s refresh transaction to partition p only after applying all
previous updates to the partition, based on the partition

version number. The refresh transaction installs T ’s updates
to p by creating new versioned data items and makes the
update visible by incrementing p’s version number.

MorphoSys’ design choices reduce the overhead of maintain-
ing replicas because: (i) multi-versioning allows concurrent
execution of read-only transactions and refresh transactions
on replica partitions, and (ii) tracking transaction dependen-
cies allows per partition execution of refresh transactions,
which eliminates blocking on updates to other partitions.

4.4. Physical Design Change Execution
To execute the five physical design change operators ef-

ficiently, we integrate them with the concurrency control
algorithm and the update propagation protocol.

4.4.1. Adding and Removing Replicas
MorphoSys leverages multi-versioning to efficiently add a

partition replica by snapshotting the partition’s master state
without acquiring locks. A data site snapshots a partition p
by reading the last written position in its redo log, the version
number of the partition (v(p)), p’s dependency information,
and a snapshot of all data items in the partition at version
v(p). At the newly created replica, the data site installs this
snapshot of the partition, records the version number, and
subscribes to updates to the partition beginning from the
last known position in the redo log. At this point, the data
site continues to apply propagated updates.

A data site removes a replica of a partition by stopping its
subscription to the partition’s updates. The data site then
deletes the partition structure so future transactions do not
access the partition. MorphoSys uses reference-counted data
structures [27] to access partitions, which ensures that ongo-
ing transactions can read from the removed partition replica
without blocking the physical design change operation.

4.4.2. Splitting and Merging Partitions
MorphoSys’ partition-based concurrency control executes

the splitting and merging of partitions as transactions. These
transactions update only partitions’ metadata and not any
data items. Hence, when splitting a partition p to create
new partitions pL and pH , the data site mastering p ac-
quires a partition lock on p. Thus, no other updates to p
can take place during the split. Then, the data site creates
new partitions pL and pH and assigns them both a version
number equal to the version number of the original partition
v(p). The data site logically copies the reference-counted
data items from p to the corresponding new partition, pL or
pH . Committing the split operation induces a dependency
between the three partitions (p, pL, pH) and results in pL
and pH receiving p’s dependency information, which ensures
that transactional accesses to the new partitions observe a
consistent state. On commit, the data site removes p. The
bidirectional tracking of the depends relationship among par-
titions allows MorphoSys to split partitions without updating
other partitions’ state, thus reducing overhead.

Data sites replicating partition p observe the split oper-
ation in the redo log. Replicas apply the split as a refresh
transaction as outlined at the master data site, subscribe
to updates of the newly created partitions pL and pH and
remove their subscription to p. While a split is in progress,
ongoing read transactions can access p but all subsequent
transactions run on the newly created pL and pH .

Data sites merge partitions by following the reverse of
splitting a partition, with two differences. First, when merg-
ing two partitions pL and pH to create partition p, the data



site assigns the version of p as the maximum of pL’s and pH ’s
version numbers. Second, at a replica, the merge operation
does not complete until both pL and pH are at the same
state (as indicated by version numbers) as when the merge
occurred at the master site.

4.4.3. Changing Partition Mastership
MorphoSys changes the mastership of a partition from site

Si to Sj as a metadata-only operation via update propaga-
tion of the mastership change information to all partition
replicas. The old master site Si executes the request to
release the mastership of a partition p as an update transac-
tion. This transaction changes the status of the partition to
a replica, and writes an update containing the mastership
change information to the partition’s redo log. Afterwards,
no update transactions to partition p can execute at Site Si.
Site Sj does not become the master of the partition until it
applies the propagated update from the old master site S,
and hence all prior updates to the partition.

MorphoSys’ concurrency control and update propagation
protocol reduce blocking times when changing mastership
as the new master waits only for the partition undergoing
remastering to reach the correct state. By contrast, prior
approaches [3, 38] require all data items in the system to
reach the same, or later, state as the prior master.

5. PHYSICAL DESIGN STRATEGIES
As a workload executes, MorphoSys automatically decides:

(i) how to alter its physical design with the aforementioned
operators, and (ii) when to do so. The transaction router
makes these decisions by quantifying the expected benefit of
the feasible design changes and greedily executing the set of
changes with the greatest expected benefit. We quantify the
benefit of a physical design change by modelling the effect
that a design change will have on the future workload as
well as the cost of performing the change. The transaction
router uses a workload model (Section 5.1) and learned costs
of transactions and physical design changes (Section 5.2) to
make its design decisions (Section 5.3).

5.1. Workload Model
MorphoSys continuously captures and models the transac-

tional workload to make design decisions. The transaction
router samples submitted transactions and captures data
item read and write access frequencies. For a partition p,
the transaction router maintains the probability of reads
R(p), and writes W (p), to the partition compared to all
partition accesses. The transaction router computes R(p)
(or W (p)) by dividing the per partition read (write) count
by the running count of all reads and writes to all partitions.

As data item accesses are often correlated [3, 10, 53], Mor-
phoSys tracks data item co-access likelihood. MorphoSys
leverages these statistics to determine the effect of a pro-
posed physical design change on future transactions (Sec-
tion 5.3). Formally, P (r(p2)|r(p1)) represents the probability
that a transaction reads partition p2 given the transaction
also reads p1. We define similar statistics for write-write
(P (w(p2)|w(p1))), read-write (P (r(p2)|w(p1))), and write-
read (P (w(p2)|r(p1))) co-accesses. MorphoSys adapts its
model to changing workloads using adaptable damped reser-
voir sampling [5]. The reservoir determines sampling of
transactions, generation of their access statistics and ex-
piration of samples based on a configurable time window.
MorphoSys uses statistics from these transactions in the
reservoir to adapt its design to workload changes.

5.2. Learned Cost Model
Given a physical design, the transaction router estimates

the costs of executing transactions and applying physical
design changes using a learned cost model. This cost model
predicts the latency of design change and transaction ex-
ecution operations. MorphoSys’ implementation of these
operations (Section 4) translates to a natural system latency
decomposition: waiting for service at a site, waiting for up-
dates, acquiring locks, reading and writing data items, and
commit. Thus, we decompose the cost model into five cor-
responding cost functions (Table 1) that MorphoSys learns
and combines to predict the latency of operations.

The transaction router learns these cost functions con-
tinuously using linear regression models because they are
easy to interpret, do not require large amounts of train-
ing data, and are efficient for both inference and model
updates [19]. Our linear regression models (F) consume a
vector of numeric inputs (xi) and output a scalar prediction
(y) by taking the sum of the inputs, each scaled by a learned
weight (ωi). In general, we favour cost functions with few
input parameters as such functions tend to be robust and
accurate (Section 7.3.6). The transaction router continuously
updates the weights in the learned cost functions based on
its predictions and corresponding observed latencies.

Next, we discuss the five cost functions in Table 1 and how
we combine them to predict latency of operations. Section 5.3
details how we use the cost functions to compute the expected
benefit of different physical designs.

5.2.1. Waiting for Service
The load at a site determines how quickly the site ser-

vices a request, with a site under heavy load taking longer.
As MorphoSys is an in-memory system, and thus CPU
bound [23, 35], we model data site load based on average
CPU utilization, which the transaction router polls for reg-
ularly. Hence, we model the service time at a data site S
as Fservice(cs = cpu util(S)). To compute the service time,
we subtract the latency of the operation measured at the
data site from the observed latency at the transaction router.
Hence, network latency is captured in the service time. All
operations take into account the service time at a site. In
the case of operations that involve multiple sites (remaster ,
add replica), we compute Fservice for each involved site.

5.2.2. Waiting for Updates
Recall that remastering does not complete until all nec-

essary updates have been applied to the partition being
remastered (Section 4.4). Similarly, transactions may wait
when reading a replica partition to observe a consistent state.
The waiting time depends on the number of propagated up-
dates needed and the relative frequency of those updates,
both of which implicitly include an estimate of the network
latency. We model the waiting time at a partition p as
Fwait updates(vn, vr, us), where vn is the version of the parti-
tion required at the replica, vr is the current version of the
replica partition, and us is the fraction of updates applied
at the replica S relevant to partition p. We determine us

using Equation 2; the denominator represents the total likeli-
hood of updates to partitions that have replicas at S, which
MorphoSys aggregates.

us =
W (p)∑

pi:S∈replicas(p)W (pi)
(2)



Table 1: Cost functions and their use in predicting costs for transactions and physical design change operators.

Cost Function Arguments
Operations

transaction remaster split merge add replica remove replica
Fservice(cs) cs = CPU utilization of site S X X X X X X

Fwait updates(
vn, vr, us)

vn = partition version necessary
vr = version of partition at replica
us = fraction of updates to partition
compared to all replicas at site S

X (If reads) X

Flock(w) w = write contention of partitions X (If writes) X X X

Fread write(rd, wd)
rd (wd) the number of data items
read (written)

X X

Fcommit(rp, wp)
rp (wp) the number of partitions
read (written)

X X X X

We use the session timestamp to determine vn for transac-
tions while remastering uses the latest polled version from
the old master. As data sites apply updates in parallel that
a transaction may require, we consider the largest predicted
Fwait updates from all partitions in the read set.

5.2.3. Acquiring Locks
Recall from Section 4.2 that update operations acquire

per partition locks. Hence, increased write contention on
a partition results in longer partition lock acquisition time.
Thus, we predict lock acquisition time as Flock(w) where w
represents write contention. MorphoSys estimates w using
W (p), the probability of writes to a partition. For opera-
tions that access multiple partitions such as transactions or
partition merging, data sites acquire locks sequentially. We
define w =

∑
pW (p) for all relevant p, i.e., partitions pL, pH

for merge, and all partitions in a transaction’s write set.

5.2.4. Reading and Writing Data Items
The primary function of transactions is to read/write data.

Hence, we estimate the time spent reading and writing data
items using the cost function Fread write(rd, wd), where rd
and wd represent the number of data items read and written,
respectively. The transaction router determines rd and wd

from a transaction’s read and write set. Adding a replica
of a partition requires reading a snapshot of the partition
and installing it into the newly created replica. Hence when
estimating the latency of adding a replica, we also consider
Fread write using the number of data items in the partition
as the number of data items read and written.

5.2.5. Commit
Data sites commit operations by updating partition ver-

sion numbers and dependency information (Section 4). The
number of updates depends on the number of partitions
involved in the operation. We use the number of partitions
read (rp) and written (wp) by the operation to estimate the
commit time as Fcommit(rp, wp). Given that adding and
removing a replica of a partition does not entail committing,
we omit commit latency for these operations.

5.2.6. Putting it Together
The transaction router predicts the latency of each opera-

tion by summing the values of the cost functions shown in
Table 1 that are associated with the operation. For exam-
ple, to predict the latency of a split at a site, MorphoSys
uses the recorded CPU utilization of the site (cs) and write
contention of the partition (w) to compute Fservice(cs) +
Flock(w) + Fcommit(0, 3). The system tracks the latency of
the entire split operation, as well as the portion of the time
spent in the network waiting for service, locking and commit-
ting. Given these observed latencies and latency predictions

(e.g. Fservice(cs)), the transaction router uses stochastic
gradient descent [52] to update its cost-functions.

5.3. Physical Design Change Decisions
MorphoSys makes physical design and routing decisions to

improve system performance and to execute transactions at
one site. The transaction router considers each data site as a
candidate for transaction execution and develops a physical
design change plan for the site. A site’s plan consists of a set
of physical design change operators that allow the transaction
to execute at the site, including adding or removing replicas,
splitting or merging partitions, and remastering. For a data
site S, the transaction router computes the cost of executing
the plan, C(S), and expected benefit, E(S). The transaction
router selects the data site, and plan, that maximize the net
benefit net(S) = λ · E(S)− C(S). The magnitude of λ(> 0)
controls the relative importance of the expected benefit of the
plan. We will use the split operation of partition (0, 9) from
Figure 2b as a running example in this section to illustrate
MorphoSys’ decisions.

The cost of executing a plan C(S) is the sum of the ex-
ecution costs of each of the plan’s operators, as defined in
Section 5.2. A low execution cost indicates that the plan
will execute quickly. The input parameters for these costs
correspond to the statistics from the existing physical design.
In the split operator example, MorphoSys estimates C(S)
by computing Fservice(c1) + Flock(W(0,9)) + Fcommit(0, 3),
where c1 represents the CPU utilization at data site 1 and
W(0,9) represents contention of the partition being split.

To determine the expected benefit E(S), we predict the
latency of transactions under the current physical design
and subtract the predicted latency of transactions under the
physical design that would result from executing the plan. A
good plan decreases predicted latencies, which increases E(S)
and thus increases net(S). To determine E(S), we sample
transactions (Section 5.3.1) and use our learned cost model
with input parameters that correspond to the plan’s new
physical design of the database (Section 5.3.2). Consider
the effect splitting partition (0, 9) has on transactions T1

and T2 from Figure 2b. First, we predict the latency of T1

and T2 executing at site 1 under the current physical design.
As both transactions update partition (0, 9), we estimate
Flock(W(0,9)) as part of the transaction latency, which we
call Lcurrent. We then estimate the effect of splitting the
partition into (0, 5) and (6, 10), each of which has less write
contention than partition (0, 9). Then, we use the contention
of partitions (0, 5) and (6, 10) to estimate the latency of
transactions T1 and T2 on the future design, which we call
Lfuture. Finally, we compute E(S) as Lcurrent −Lfuture. If
E(S) is positive, then the design change is predicted to reduce



latency and improve system performance. Design changes
with non-positive E(S) values are unlikely to improve system
performance and are thus avoided.

5.3.1. Sampling Transactions
Computing the expected benefit of a design change plan

ideally requires knowledge of future transactions to be submit-
ted to the system, which is not available. Thus, MorphoSys
draws samples of transactions from its reservoir of previously
submitted transactions to emulate a workload of future trans-
actions, for example T1 and T2, from our running example.
MorphoSys also generates emulated transactions based on
its workload model to ensure robustness in design decisions.
To generate these transactions, we select a partition p1 at
random following the partition access frequency distribution.
Then, we sample a second partition p2 co-accessed with p1
and generate four transactions that access p1 and p2, based
on all combinations of read and write co-accesses, and weight
any expected benefit by the likelihood of co-access.1 If we
generate a transaction T that reads p1 and updates p2, then
we weigh the expected benefit to T by R(p1)×P (w(p2)|r(p1)),
when computing E(S). We select data item accesses to the
partition uniformly at random.

5.3.2. Adjusting Cost Model Inputs
The transaction router predicts the latency effect of physi-

cal design changes by predicting changes to inputs of its cost
model. This is done by considering how design changes affect
CPU utilization, update application rate, and contention.

Recall that Fservice(c) predicts the time spent waiting for
a data site to service a request. Data sites use resources
to perform database reads, writes, and apply propagated
updates. MorphoSys predicts CPU utilization based on the
frequency of reads (rS), writes (wS), and propagated up-
dates applied (uS) using the cost function FCPU (rS , wS , uS).
Remastering a partition p, and adding or removing partition
replicas affect rS , wS and uS based on the probability of
reads and writes to p. We use the output of FCPU as input
to Fservice when predicting the time spent waiting for a
data site to service a transaction. By considering Fservice,
MorphoSys favors designs that distribute the load to all data
sites, which minimizes wait time.

Splitting a partition reduces the probability of reads and
writes to the newly created partitions, which store fewer
data items. The reverse holds for merging partitions. To
reduce tracking overheads, we assume uniform accesses to
data items within a partition when modelling the effects of a
design change on write contention (w in Flock), and update
frequency (fS in Fwait updates). If the design change occurs,
then over time, the partition statistics reflect the partition
access likelihood. Partition splits and merges also change
the number of partitions accessed by a transaction, which
we consider when predicting commit latency (Fcommit).

A physical design change may enable future transactions
to execute at a single site without further design changes.
We encourage such design changes as they account for data
locality in the workload by incorporating the expected bene-
fit of not needing future design changes. To do so, we predict
the latency of previously required physical design changes,
which the plan saves, and add these savings to the expected
benefit. Conversely, we discourage plans that induce designs

1p1 and p2 can represent the same partition if a transaction
accesses the same partition more than once.

precluding single-site transactions by subtracting the pre-
dicted latency of future physical design changes from the
plan’s expected benefit. Hence, MorphoSys avoids generating
design changes that it could shortly undo.

5.3.3. Generating Plans
The transaction router generates a physical design change

plan for a site by adding operations necessary for single-site
transactions: remastering and adding replicas of partitions
in the write and read sets, or removing replica partitions
to satisfy space constraints. The transaction router then
adds further beneficial design changes to the plan: splitting
or merging partitions, and remastering or adding replicas
of partitions co-accessed with written and read partitions.
The partition split in Figure 2b is an example of a beneficial
design change, while the partition remaster in Figure 2d is
necessary for single-site execution.

The transaction router considers partitions in the transac-
tion’s read or write set as candidates for splitting or merging.
If a partition in the read or write set has above-average ac-
cess probability, indicating contention on the partition, and
the split is beneficial then the transaction router adds the
partition split to the plan. Conversely, merging infrequently
accessed partitions reduces the number of partitions in the
system, which reduces metadata overheads. Thus, if a par-
tition in the read or write set, and one of its neighbouring
partitions, have below-average access likelihood and it is
possible and beneficial to merge the two partitions, then we
add the merge operation to the plan. Considering access
frequencies ensures that MorphoSys does not undo the effects
of a split with a merge, or vice versa, in the immediate future
unless the access pattern changes significantly.

When a plan for a site includes remastering, addition or
removal of a partitions replica, MorphoSys piggybacks other
design change operations for correlated partitions. Piggy-
backing operations promotes data locality and future single-
site transactions. For example, when remastering partition
p1, MorphoSys tries to piggyback the remastering of a par-
tition p2 frequently co-written with p1, which occurs when
both of P (w(p1)|w(p2)) and P (w(p2)|w(p1)) are high. This
probability-driven remastering with piggybacking amortizes
partition remastering cost while promoting co-location of co-
accessed partitions. Similarly, if remastering p1, MorphoSys
will try to piggyback replica addition of a frequently read
partition p2 if P (w(p1)|r(p2)) and P (r(p2)|w(p1)) are high.

MorphoSys removes replica partitions when they are no
longer beneficial to maintain or to satisfy memory constraints.
If a data site is within 5% of its memory limit, then the
transaction router removes replica partitions by computing
the expected benefit of removing a partition and iteratively
removes partitions with the least expected benefit first until
the memory constraint is satisfied.

MorphoSys’ generated plans use our cost and workload
models to produce design changes that reduce contention,
encourage data locality and single-site transactions, and
maximize expected benefit when compared to execution costs

— all without immediately undoing or redoing changes.

6. THE MORPHOSYS SYSTEM
We implemented MorphoSys following the architecture

of Figure 1. Our implementation includes (from Sections 4
and 5) the concurrency control protocol, update propagation
scheme, physical design change operators, workload model,
learned cost model, and physical design strategies.



MorphoSys uses Apache Kafka [32] as the redo log, and
cooperatively applies propagated updates at data sites. Ap-
plication of updates is shared between the thread receiving
updates from the Kafka redo log and transaction execution
threads waiting for specific partition versions.

The transaction router tracks the state of each data parti-
tion in per table concurrent hash-table structures for efficient
lookups. This state contains a partitions range of data items,
the location of its master copy, its replica locations, and
partition access frequencies. The transaction router updates
partition state upon the successful completion of a design
change. To minimize latency, the transaction router executes
design change plan operations in parallel.

MorphoSys uses its redo logs to guarantee fault-tolerance.
Data sites write all transaction updates and physical design
changes to the log on commit. A data site recovers by
consulting an existing replica or stored checkpoint of data
and replaying redo logs from the last known position of the
log associated with that partitions state. The transaction
router recovers by checking data sites to determine their data
partitions and whether they are master or replica copies.

7. EXPERIMENTAL EVALUATION
We now present our experimental results that show that

MorphoSys’ ability to dynamically change the physical design
of a database significantly improves system performance.

7.1. Evaluated Systems
We evaluated MorphoSys against five alternative distrib-

uted database systems that employ state-of-the-art dynamic,
or popular static, physical designs. We implemented these
comparative systems in MorphoSys using strong-session snap-
shot isolation and multi-version concurrency control to ensure
an apples-to-apples comparison. Recall that MorphoSys is
designed to deliver superior performance irrespective of its
initial physical design (Appendix D.2). Thus, in each ex-
periment, MorphoSys starts with an initial physical design
containing no replicas and a randomized master placement
of partitions, an unknown workload model, and must learn
its cost model from scratch. By contrast, as described next,
we advantage MorphoSys’ competitors by using a priori
knowledge of the workload to optimize their initial physical
design.

Clay dynamically partitions data based on access fre-
quency to balance load [53]. Clay performs this repartitioning
periodically, with a default period of 10 seconds. Unlike Mor-
phoSys, Clay does not replicate data and uses 2PC to execute
transactions that access data mastered at multiple sites [53].
Clay begins with an initial master placement so that each
site masters the same number of data items, such as by
warehouse in TPC-C [53]. Adaptive Replication (ADR)
is a widely used algorithm to dynamically determine what
data to replicate, and where [24,40, 42,64]. Like Clay, ADR
uses 2PC for multi-site transactions. We advantage ADR
with offline master partition placement using Schism [10].
Schism is a state-of-the-art offline tool that uses a workload’s
data access patterns to generate partitioning and placement
of master copies of data items and their replicas such that
distributed transactions are minimized while distributing
load. Single-Master is a popular fully and lazily replicated
database architecture [2, 8, 12, 31, 66] that statically places
all master copies of partitions at a single master site. All
updates execute at the single-master site, while replicas ex-
ecute read-only transactions. Multi-Master is a common

fully-replicated database architecture [8, 62, 66] that uses
Schism’s master partition placement, and 2PC to execute
update transactions accessing data mastered at multiple sites.
DynaMast is a fully-replicated database that dynamically
remasters data items to guarantee single-site transactions [3].
Unlike MorphoSys, DynaMast does not dynamically repli-
cate or partition data. DynaMast begins each experiment
with the same starting master placement as Clay in which
masters are uniformly placed among sites. Finally, we com-
pare MorphoSys with the off-the-shelf commercial version of
the partitioned, database system VoltDB that uses a static
physical design [58]. We favour VoltDB using Schism’s initial
design and follow VoltDB’s benchmarking configuration [51]
that reduces durability to optimize performance by disabling
synchronous commit to reduce commit latency and delaying
snapshots to reduce overheads. VoltDB is also configured to
use the maximum available hardware resources on each node
as well as the optimized executable.

7.2. Benchmark Workloads
Our experiments execute on up to 16 data sites each having

12-cores and 32 GB of RAM, as well as a transaction router
machine, and two machines that run Apache Kafka. A 10
Gbps network connects the machines. All results are averages
of at least five, 5-minute OLTPBench [15] runs with 95%
confidence intervals shown as bars around the means.

We conduct experiments using the YCSB, TPC-C, Twitter
and SmallBank benchmark workloads [1,9,15] as they contain
multi-data item transactions and access correlations repre-
sentative of real-world workloads. In YCSB, we use two
transactions: multi-key read-modify-write (RMW), which
reads and updates three keys, and scan, which reads 200
to 1000 sequentially ordered keys. In YCSB we use skewed
(Zipfian) and uniform access patterns, and 50 million data
items. The industry standard TPC-C models a complex
order-entry transactional workload. Our evaluation uses two
update intensive transactions (New-Order (45%), Payment
(45%)) and the read-only Stock-Level (10%) transaction.
Twitter models a social networking application, featuring
heavily skewed many-to-many relationships among users,
their tweets, and followers. Consequently, Twitter’s predom-
inantly read-intensive workload (89%) contains transactions
with complex accesses spread across the social graph data.
SmallBank models a banking application, with 1 million
bank accounts and five standard transactions that are a mix
of multi-data item updates (40%), multi-data item reads
(15%) and single data item updates (45%).

7.3. Results
We now discuss MorphoSys’ experimental results for vary-

ing access patterns, load, and read-write mixes.

7.3.1. Workloads With Skew
Skewed workloads generate contention and load imbalance,

both of which MorphoSys mitigates using dynamic physical
design changes. To evaluate MorphoSys’ effectiveness under
skewed data accesses, we used YCSB workloads with read-
mostly (50% scans, 50% multi-key RMW) and write-heavy
(10% scans, 90% multi-key RMW) transaction mixes with
Zipfian access skew. Throughput results for both workloads
(Figures 3a and 3b) demonstrate that MorphoSys delivers
significantly better performance, about 98× to 1.75× higher
throughput than the other systems as it dissipates contention
and balances load by dynamically repartitioning heavily
accessed and contended data items into smaller partitions.



(a) Read-Mostly (Skew) (b) Write-Heavy (Skew) (c) Read-Mostly (Uniform) (d) Write-Heavy (Uniform)

Figure 3: Performance results for YCSB, showing throughput as the number of clients increases.

(a) Partition Size (b) Replication (c) Adaptivity (d) Scalability (e) Prediction Accuracy

Figure 4: Performance results showing MorphoSys’s design decisions, scalability, adaptivity and prediction accuracy.

In Figure 4a, we classify data items as hot if they are in
the top 10% of the most frequently accessed data, medium if
in the top 30%, and the remaining as cold data. As Figure 4a
shows, on average, MorphoSys groups the hottest data items
into small partitions containing up to 100 data items. By
contrast, MorphoSys groups infrequently accessed or cold
data items into partitions that, on average, contain 5000
records. Such dynamic partitioning of data reduces lock
acquisition time by more than a factor of 7, from nearly 850
µs to 110 µs compared to the other systems.

In addition to dynamic partitioning, MorphoSys employs
dynamic replication. Figure 4b shows the replication factor
for data items with different access frequencies. In con-
trast to the fully replicated DynaMast, single-master and
multi-master architectures, MorphoSys replicates frequently
accessed data items but avoids replicating infrequently ac-
cessed data. By keeping, and maintaining, fewer replicated
data items, MorphoSys uses less compute resources to apply
propagated updates, thereby freeing up resources to improve
throughput by 2.6× over the single-master architecture in the
write-heavy workload (Figure 3b). Although multi-master
fully replicates data, and ADR dynamically adds replicas of
frequently read partitions, they both suffer heavily from the
compounding effects of contention as a result of static parti-
tioning and distributed transaction coordination. MorphoSys
combines both dynamic replication and partitioning while
guaranteeing single-site transactions resulting in throughput
improvements of up to 13× over ADR and multi-master.

Both Clay and MorphoSys dynamically partition to mit-
igate the effects of contention. However, unlike Clay, Mor-
phoSys replicates hot partitions frequently to distribute read
load among sites and make remastering more efficient. Mor-
phoSys groups together colder co-accessed data items to
reduce the metadata needed to track partitions, dependen-
cies, and version histories. MorphoSys converges to its final
design faster than Clay as MorphoSys uses every transaction
as an opportunity to make design changes while guaran-
teeing single-site execution, in contrast to Clay’s periodic
operation and use of expensive 2PC. Thus, MorphoSys im-
proves throughput over Clay by 8.5× and 5× for the update-

intensive (Figure 3b) and read-heavy (Figure 3a) workloads,
respectively. The scan-heavy workload exacerbates the ef-
fects of distributed reads in VoltDB as it requires enqueueing
the scan operator on every site blocking all other transactions
from executing due to VoltDB’s single-threaded execution
model [51,58]. VoltDB’s static design cannot adapt to heavy
skew effects, unlike MorphoSys that improves throughput
over VoltDB by almost 100×.

By taking a holistic approach to dynamic physical design
and considering all 3 factors, namely, partitioning, replication
and mastering, MorphoSys outperforms its competitors that
consider only one of these multiple aspects of design.

7.3.2. Workloads with Uniform Access Patterns
We next evaluate MorphoSys in the presence of a uni-

form access pattern. In this workload, MorphoSys groups
data items into partitions containing approximately 3000
data items, and on average replicates these partitions to
one replica. This partial replication reduces the computa-
tional resources needed to maintain replicas when compared
to fully replicated systems (single-master, multi-master and
DynaMast). Hence, in the read-mostly case (Figure 3c), Mor-
phoSys improves throughput over fully replicated systems in
the range 1.85× to 1.6×.

A replica partition in MorphoSys supports read transac-
tions and flexibly provides mastership opportunity when
deciding on master placement. MorphoSys uses this flexibil-
ity to guarantee single-site transactions and to judiciously
amortize the cost of design changes. As such, MorphoSys
eliminates costly distributed coordination that Clay, ADR,
VoltDB, and multi-master continually incur.

Clay initiates data repartitioning only when it detects
an imbalance in partition accesses. In this workload, Clay
rarely detects any imbalance in accesses, and thus rarely
repartitions data. Hence, Clay must continually execute
costly multi-site transactions, which in the case of scans, are
susceptible to stragglers. By contrast, MorphoSys performs
physical design changes as transactions execute, and co-
locates co-accessed data together via dynamic replication
and mastering to execute single-site transactions.



ADR dynamically adds replicas, which allows for efficient
single-site scan execution, thus improving performance over
Clay but falls short of MorphoSys. By considering master
placement, replication, and data partitioning, MorphoSys
improves throughput over ADR and Clay by almost 1.9×.

Next, we stress the systems’ ability to balance update
load among data sites using a write-heavy YCSB workload
(Figure 3d). MorphoSys achieves even load distribution
among sites in the distributed system by predicting the time
spent waiting for service at a site, which is primarily deter-
mined by site load (Section 5.2). Evenly distributing load
improves throughput by 3× as compared to single-master,
which executes all updates at one master site. By contrast,
multi-master must rely on Schism’s offline analysis to ensure
even routing of requests among all sites. Despite balancing
the load, multi-master fully replicates data and requires dis-
tributed transaction coordination; thus, MorphoSys improves
throughput over multi-master by 2.4×. ADR does not fre-
quently replicate in this write-heavy workload and improves
performance compared to multi-master, but MorphoSys re-
mains unmatched outperforming ADR by 1.35×. The shorter
read-modify-write transactions improve VoltDB’s through-
put compared to the scan-heavy workload. However, like
ADR, VoltDB must coordinate transactions with 2PC, hence
MorphoSys improves throughput over VoltDB by over 38×.

Clay and DynaMast both aim to balance update load,
but come with significant shortcomings that MorphoSys ad-
dresses. As in the read-mostly case, MorphoSys’ dynamic
and partial replication of data reduces the overhead of main-
taining replicas that DynaMast incurs. While doing so,
MorphoSys still ensures the flexibility necessary to support
dynamic mastership placement. Clay makes a static replica-
tion decision of never to replicate, but suffers as it does not
reduce distributed transaction coordination through effective
master placement. In this update-intensive uniform work-
load, MorphoSys’ comprehensive physical design strategies
and efficient execution result in 1.4× and 1.2× throughput
improvement over Clay and DynaMast, respectively.

7.3.3. Workloads with Complex Transactions
We focus our evaluation now on TPC-C, a workload that

contains complex transactions simulating an order-entry ap-
plication. This workload features correlated data accesses to
warehouses and districts. However, MorphoSys has no knowl-
edge of this pattern and must learn this workload model and
create an effective distributed physical design. Figure 5a
shows that MorphoSys has the lowest average latency of
transactions in the TPC-C workload, reducing latency by
between 99% and 50% over its competitors. MorphoSys
significantly reduces tail latency, as shown in Figure 5b, with
reductions ranging from 167× to 6×.

To understand why MorphoSys reduces latency, we ex-
amined the physical design decisions made by MorphoSys
as well as the core properties of the New-Order transaction
that has the highest latency of all TPC-C transactions. The
New-Order transaction reads the warehouse data item to
determine the purchase tax and updates the district with
the next order identifier. Schism determines that the best
master placement is based on the warehouse identifier of the
district and customer as 90% of New-Order transactions ac-
cess data local to the customer’s warehouse. The remaining
10% execute cross-warehouse transactions.

Examining the physical design decisions made by Mor-
phoSys reveals that it creates single data item partitions

for the warehouse and district tables, and replicates these
partitions to multiple sites. This data partitioning supports
parallel execution of New-Order transactions on different dis-
tricts, while replication ensures efficient dynamic mastering
for cross-warehouse transactions. Additionally, we observed
that MorphoSys heavily replicates the read-only items ta-
ble as its cost model correctly predicts that there is little
overhead required to maintain this table. MorphoSys selec-
tively replicates the remaining tables including the frequently
updated customer and stock tables. For these tables, Mor-
phoSys adds and removes replicas of partitions to balance
system load and ensure single-site transaction execution.

The TPC-C results show the benefit of MorphoSys’ com-
prehensive physical design strategies. MorphoSys’ dynamic
formation of data partitions produces per district partitions
that reduces contention when assigning the next order identi-
fier and decreases New-Order transaction latency. Increasing
the scale factor which controls the number of warehouses
while maintaining constant contention allows for increased
load, which improves throughput. However, increasing the
scale factor increases the amount of data stored in the sys-
tem. Partial and dynamic replication allow MorphoSys to
selectively replicate and store more data than fully repli-
cated systems. Thus, MorphoSys supports a higher scale
factor and improves throughput over the fully replicated
systems by between 48× to 5.5× (Figure 5c). By considering
master placement and guaranteeing single-site transactions,
MorphoSys improves throughput over systems that require
distributed transactions by 900× to 48×.

In Figures 6a and 6b, we show throughput and tail latency
for the Twitter workload. MorphoSys achieves between 32×
and 3× greater throughput than its competitors and reduces
tail latencies by between 58× and 4×. MorphoSys’ tail la-
tency reductions primarily come from reducing the time spent
waiting for updates to tweets in the GetTweetsFromFollowing
transaction by maintaining per partition update queues. As
in the read-mostly YCSB workload, ADR and multi-master
behave similarly, with ADR replicating the most frequently
accessed data. However, MorphoSys guarantees single-site
reads, unlike ADR, and hence does not suffer from straggler
effects due to multi-site scans. As Clay and VoltDB cannot
replicate, they suffer even more from these straggler effects.

7.3.4. Adaptivity
Next, we present MorphoSys’ ability to adapt to workload

change in terms of shifting data accesses and load imbalance.
Such workload shifts occur, for instance, due to changes in
trends on a social network, or shifts in popularity of stocks
on the stock exchange [17,26,34,46,49,65].

The TPC-C experiment in Figure 5d shows how Mor-
phoSys’ adaptivity allows it to cater to different workloads.
The figure depicts New-Order latency as we increase the
percentage of cross-warehouse transactions. When the per-
centage is zero, MorphoSys’ latency is one-quarter of its
closest competitor. When the percentage of cross-warehouse
transactions reaches about one-third, data locality decreases
and MorphoSys’ latency approaches that of single-master’s,
decreasing MorphoSys’ relative benefit. Thus, when data
locality is low, MorphoSys adapts its physical design by in-
creasingly mastering data at a single site to avoid undoing
and redoing physical design changes while distributing load
among sites as much as possible.

To highlight MorphoSys’ ability to react to workload
changes, we experimented with a shifting hotspot [60], a
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Figure 5: Performance results for the TPC-C and SmallBank workloads. In Figure 5c, U ’s indicate that fully replicated
systems (DynaMast, single-master and multi-master) were unable to run due to memory constraints.
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Figure 6: Performance results for the Twitter workload.

phenomenon that frequently occurs in transactional work-
loads [25, 41]. We induce hotspots with a skewed YCSB
workload and shift the center of the skew to a different part
of the database every 60 seconds. This challenging workload
causes MorphoSys to change its physical design to mitigate
the effects of skew and load imbalance. Figure 4c shows
the average latency over five minutes and four workload
shifts. MorphoSys learns its initial design within the first
30 seconds, at which time MorphoSys reaches its minimum
latency that is a reduction of the initial latency by almost
60%, illustrating the benefit of design changes. When a
hotspot shifts, MorphoSys’ latency increases by at most 20%
from its minimum, returning to the minimum latency within
20 seconds on average as MorphoSys quickly splits parti-
tions, adds replicas of the hot partitions and remasters to
balance the load and mitigate the hotspot. These results
show MorphoSys’ effectiveness to rapidly adapt to workload
changes due to its learned workload and cost models, and
low overhead design changes (Section 7.3.6).

7.3.5. Scalability
We scale the number of data sites from 4 to 16 in incre-

ments of 4 while also scaling the number of clients (60 per
data site), and measure peak throughput using the read-
heavy uniform YCSB workload. As shown in Figure 4d,
MorphoSys improves throughput by nearly 3× as the num-
ber of data sites grows from 4 to 16. MorphoSys achieves this
near-linear scalability because its dynamic physical design ef-
fectively distributes transaction load among sites, minimizes
replication overhead, eliminates distributed transaction coor-
dination, and, as we show next, has low overhead.

7.3.6. Overhead and Model Accuracy
To understand MorphoSys’ overheads, including planning

and executing physical design changes, we evaluated per-
formance using the SmallBank benchmark. Transactions

in SmallBank access at most two data items using a uni-
form data access pattern. Thus, the time spent executing
transaction logic is small, making it easier through relative
comparison to identify where time goes in the system. Fig-
ure 5e shows the maximum throughput for the SmallBank
workload. Observe that MorphoSys outperforms its competi-
tors by between 104× and 1.5×, indicating that MorphoSys’
dynamism incurs little overhead. The performance of VoltDB
is severely limited by distributed update transactions and the
single-threaded execution model that blocks non-conflicting
transactions belonging to the same thread of execution.

A latency breakdown for both transactions and physical
design changes is included in Appendix D.1. MorphoSys
spends the plurality of time (43%) executing transaction
logic, just 10% of its time in the transaction router, and
a mere 3% of the time executing physical design changes.
MorphoSys’ low overheads result from amortizing the cost of
design changes over many transactions and executing changes
in parallel when they occur. On average, MorphoSys executes
30 design changes for every 1000 transactions, taking 6 ms
to execute per design change.

Recall from Section 5.2 that MorphoSys uses a cost model
to predict operation latencies. Figure 4e examines the cost
model’s accuracy by comparing the actual and predicted
execution costs (latencies) of the split design change operator.
The predicted latency closely tracks the actual latency with a
coefficient of determination (R2) of 0.81. This result indicates
that our cost model captures design change costs with high
accuracy while being easy to interpret and efficient to train.

8. CONCLUSION
We presented MorphoSys, a distributed database system

that automatically modifies its physical design to deliver ex-
cellent performance. MorphoSys integrates three core aspects
of distributed design: grouping data into partitions, selecting
a partition’s master site, and locating replicated data. Mor-
phoSys makes comprehensive design decisions using a learned
cost model and efficiently executes design changes dynami-
cally using a partition-based concurrency control and update
propagation scheme. MorphoSys improves performance by
up to 900× over prior approaches while precluding the use
of static designs requiring prior workload information. We
expect MorphoSys ability to generate and adjust distributed
physical designs on-the-fly without prior workload knowl-
edge to pave the way for the development of self-driving
distributed database systems.
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APPENDIX
A. MORPHOSYS ’ CONCURRENCY CON-

TROL PROTOCOL
We now expand on the description of MorphoSys’ concur-

rency control protocol from the description in Section 4.2. We
first explain how MorphoSys modifies transaction timestamps
to eliminate transaction inversions and long fork anomalies.
Then we present the complete concurrency control algorithm.

To prevent transaction inversion, MorphoSys maintains
per client session state called a session timestamp. A client,
C, maintains session state CS = {p,maxT T

C(p)} for all
transactions T submitted by the client, which represents
the latest version number of all partitions it has accessed.
MorphoSys initially sets TB(p) = CS(p) for every partition
p in T ’s read and write set. Hence, when T executes, it
observes the state at least as up-to-date as the last observed
state.

MorphoSys enforces a total commit order that transactions
and data sites follow to avoid the long fork anomaly [56].
The long fork anomaly is allowed under parallel snapshot
isolation, but not under snapshot isolation [6]. Hence, long
forks cannot occur in strong session snapshot isolation. The
long fork anomaly occurs as a consequence of the write
skew anomaly, which is allowed under all forms of snapshot
isolation. If transactions T1 and T2 experience write skew,
then the long fork anomaly occurs if subsequent transactions
can possibly observe both states: T1’s effects but not T2’s
effects, and T2’s effects but not T1’s effect. If the long fork
anomaly is eliminated, the system can only observe one of:
T1’s effects but not T2’s effects, or T2’s effects but not T1’s
effects. That is, there is a total commit order: either T1

commits before T2 or T2 commits before T1.
MorphoSys uses the transaction router to enforce the com-

mit order. To enforce a commit order, the transaction router
tracks the committed version numbers of partitions. When
transactions are routed to data sites, these versions numbers
are used to enforce a total commit order as part of the be-
gin and commit timestamp information. Hence when two
transactions T1 and T2 give rise to write skew, as allowed
in SI, where say T2 commits after T1, T2 will have a greater
commit timestamp than T1. Hence, subsequent transactions
observe one of three database states: (i) the initial state in
which no transactions have committed, (ii) T1’s update (but
not T2’s), or (iii) both T1 and T2’s updates. Transactions
cannot see a state that includes T2’s update but not T1’s
update; thus, long fork is avoided.

MorphoSys’ concurrency control algorithm is presented in
Algorithm 1. MorphoSys initializes a transaction’s begin and
commit timestamp to the session timestamp to ensure the
transaction observes state at least as up to date as the latest
previously observed state from the same session (Line 3). To
ensure transactions respect a total commit order, the trans-
action router initializes the begin timestamps to the commit
version number (Line 6). At the data site, the transaction
locks the partitions in the write set (Line 12) to ensure mu-
tual exclusion of updates. As there may have been in-flight
updates to the partition, the data site updates the begin
timestamp for partitions in the write set (Line 14). Then, the
data site ensure the transaction observes a consistent snap-
shot by following the consistent read rule (Lines 19 and 20).
Once the transaction has a consistent begin timestamp, Mor-
phoSys constructs the commit timestamp (Lines 24 to 26)
by copying the begin timestamp for read partitions, and
incrementing the begin timestamp for write partitions. Once

begin and commit timestamps are assigned, a transaction
can execute its logic by writing new versioned data items
(Line 28) and reading the data items belonging to the snap-
shot determined by the begin timestamp (Line 29). When the
transaction commits, the data site builds the new depends
relationship following the dependency recording rule (Lines 31
to 35), and records this dependency information (Line 37).
The data site then makes any updates visible by updating the
partition version (Line 38). Finally, the transaction router,
updates the commit number (Line 45) followed by the session
timestamp (Line 46) so that subsequent transactions abide
by the commit order and avoid the long fork anomaly, and
within a session clients avoid transaction inversions.

B. CORRECTNESS OF STRONG SESSION
SNAPSHOT ISOLATION

We now prove that MorphoSys preserves strong-session
snapshot-isolation (SSSI). We first prove that MorphoSys pre-
serves snapshot-isolation (SI) without physical design change
operators (Appendix B.1). Then we consider the effect that
physical design change operators have on SI (Appendix B.2).
Finally, we put these two aspects of the proof together to
prove MorphoSys provides that SSSI (Appendix B.3).

B.1. Snapshot Isolation
We now prove that MorphoSys provides SI in the absence

of physical design changes.

Lemma 1. A transaction T1 observes the updates made
by a transaction T2 that has a commit timestamp smaller
than T1’s begin timestamp.

Proof. Let TB
1 be transaction T1’s begin timestamp and

TC
2 be transaction T2’s commit timestamp. If TC

2 ≤ TB
1 then

there exists a partition p such that TC
2 (p) ≤ TB

1 (p). Suppose
that T2 updated a data item d in partition p, then as stated
in Section 4.2, T2 creates a new version of d assigned value
TC
2 (p). Since there are no physical design changes, then

when T1 performs a read operation on data item d, it occurs
in partition p. As described in Section 4.2, when T1 performs
a read operation on d, in partition p, T1 reads the largest
version of d, denoted as v(d), such that v(d) ≤ TB

1 (p) holds.
Given that TC

2 (p) ≤ TB
1 (p), and T2 performed an update,

then there must exist a v(d) such that v(d) = TC
2 (p). Thus,

when T1 performs its read TC
2 (p) ≤ v(d) must hold. Hence,

T1 must observe T2’s update, or some later update to the
data item.

Lemma 2. If two transactions T1 and T2 have overlapping
begin and commit timestamps, then T1 and T2 can commit
only if T1 and T2 write different data items.

Proof. We say that two transactions T1 and T2 have
overlapping begin and commit timestamps, if there exists
a partition p that was in both of T1 and T2’s read or write
sets, and the begin and commit version numbers for p (that
is TB

1 (p), TC
1 (p), TB

2 (p), TC
2 (p)) overlap. Recall, from Sec-

tion 4.2 that for read-only transactions T , TB = TC . Ad-
ditionally, if a transaction T updates a partition p, then
TB(p) + 1 = TC(p), as an update transaction acquires a
mutually exclusive partition lock. Using this information we
now prove, by way of contradiction, that the lemma holds.

Assume both transactions are updates and update the
same data item, otherwise the lemma is trivially false. Ad-
ditionally, as no physical design changes occur, then we



Algorithm 1 MorphoSys Concurrency Control Protocol

Input: Transaction T ’s sorted write set {pw}, read set {pr},
and session timestamp, CS

Output: The updated session timestamp
1: // Begin
2: // At the transaction router
3: TB = CS

4: {p} = sort {pw} ∪ {pr}
5: for p ∈ {p} do
6: read lock p metadata
7: TB(p) = p.commit version number
8: unlock {p} partition metadata
9: // At the data site

10: for p ∈ {p} do
11: wait for p’s version to reach TB(p)
12: if p ∈ {pw} then
13: write lock p
14: TB(p) = p’s version number
15: partitions to check = {p}
16: for pi ∈ partitions to check do
17: remove pi from partitions to check
18: for pj ∈ {p} do
19: if TB(pi) < depends(pj , T

B(pj), pi) then
20: TB(pi) = depends(pj , T

B(pj), pi)
21: TC(pi) = TB(pi)
22: wait for p’s version to reach TB(p)
23: insert pi into partitions to check
24: TC = TB

25: for p ∈ {pw} do
26: TC(p) = TB(p) + 1
27: // Transaction Logic
28: Write versioned data items in partition pw with version

TC(pw)
29: Read the largest versioned data items d in partition pr,

such that v(d) ≤ TB(pr)
30: // Commit
31: loc depends = TC

32: for pi ∈ {p} do
33: for pj ∈ depends(pi, T

B(pi)) do
34: if depends(pi, T

B(pi), pj) > loc depends(pj) then
35: loc depends(pj) = depends(pi, T

B(pi), pj)
36: for p ∈ {pw} do
37: depends(pi, T

C(pi)) = loc depends
38: set p’s version to TC(p)
39: unlock p
40: // At the transaction router
41: for p ∈ {p} do
42: if p ∈ {pw} then
43: wait for p.commit version number to reach TB(p)
44: write lock p metadata
45: p.commit version number = TC(p)
46: CS(p) = max(TC(p), CS(p))
47: unlock {pw} partition metadata
48: return CS

have that d is in the same partition p. Then, we have that
TB(p) + 1 = TC(p) for both T1 and T2. In the first case, we
have that TB

1 (p) ≤ TB
2 (p) < TC

2 (p) ≤ TC
1 (p). In the second

case, we have that TB
1 (p) ≤ TB

2 (p) < TC
1 (p) ≤ TC

2 (p).
Observe that in both cases, for both of these inequalities to

be true, and for TB(p) + 1 = TC(p) to hold for both T1 and
T2, then we must have that TB

1 (p) = TB
2 (p) and TC

1 (p) =
TC
2 (p). However, as stated in Section 4.2 transactions acquire

partition locks before reading the partition version number

and constructing TB and release the locks after setting TC

and updating the partition version number. As we assume no
physical design changes, then T1 and T2 must execute at the
same site. Thus one of T1 or T2 will acquire the partition lock
first, so TB

1 (p) 6= TB
2 (p) must hold. However this inequality

is a contradiction with TB
1 (p) = TB

2 (p)

Lemmas 1 and 2 satisfy the requirements of SI, under
the assumption of the correctness of the begin and commit
timestamps. We now prove that our begin and commit
timestamps produce a consistent snapshot of data items
across partitions.

Lemma 3. MorphoSys’ transactions begin and commit
timestamps produce snapshot consistent state. That is, if T2

updates data items in partitions p1 and p2, and T1 reads data
items in partitions p1 and p2, then either TC

2 ≤ TB
1 , and

hence T1 will observe T2’s updates, or TC
2 > TB

1 and T1 will
not observe T2’s updates.

Proof. Observe that for this proof to hold, either TC
2 (p) ≤

TB
1 (p) must hold for both p1 and p2, in which case it follows

from Lemma 1 that T1 observes T2’s updates, or, TC
2 (p) >

TB
1 (p) must hold for both p1 and p2, in which case T1 will

not observe T2’s updates.
Recall, from Section 4.2, that if T2 updates partitions p1

and p2, then the update results in a depends relationship
between p1 and p2. That is, if TC

2 (p1) and TC
2 (p2) are

the versions of p1 and p2 updated by T2, then MorphoSys
records TC

2 (p2) = depends(p1, T
C
2 (p1), p2) and TC

2 (p1) =
depends(p2, T

C
2 (p2), p1). It follows that there are three cases

in the construction of T1’s begin timestamp.

Case 1: Suppose that T1 initially selects TB
1 (p) such that

TC
2 (p) ≤ TB

1 (p) for both p1 and p2. This case trivially results
in TC

2 ≤ TB
1 , hence T1 observes both of T2’s updates.

Case 2: Suppose that T1 initially selects TB
1 (p) such that

TC
2 (p) > TB

1 (p) for both p1 and p2. This case trivially
results in TC

2 > TB
1 , hence T1 does not observe either of T2’s

updates.

Case 3: Suppose, without loss of generality, that T1 initially
selects TB

1 (p1) and TB
1 (p2), such that TC

2 (p1) > TB
1 (p1) and

TC
2 (p2) ≤ TB

1 (p2) holds. Following the consistent read rules,
T1 updates TB

1 (pi) such that TB
1 (pi) ≥ depends(pj , T

B
1 (pj), pj)

for all pi and pj in its read set. Setting pi as p1 and pj
as p2, we get that TB

1 (p1) ≥ depends(p2, T
B
1 (p2), p1). As

TB
1 (p2) ≥ TC

2 (p2), and the depends relationship always
uses the max operator (Equation 1), then we have that
depends(p2, T

B
1 (p2), p1) ≥ depends(p2, T

C
2 (p2), p1). Recall

that depends(p2, T
C
2 (p2), p1) = TC

2 (p1), so combining all
equations we get that TB

1 (p1) ≥ TC
2 (p1). Thus, we have that

TB
1 (p) ≥ TC

2 (p) for both p1 and p2, a contradiction as we
selected TC

2 (p1) > TB
1 (p1). Hence, we have that TC

2 ≤ TB
1 ,

and T1 observes both of T2’s updates.

Lemma 4. There exists a total commit order between trans-
actions T1 and T2.

Proof. We define the total commit order for transactions
T1 and T2, by considering four cases.

Case 1: For all p, TC
1 (p) < TC

2 (p), thus T1 commits before
T2.



Case 2: For all p, TC
1 (p) = TC

2 (p), thus T1 and T2 have
the same commit time, and hence are placed in the same
position in the total order. Note that in this case, at most
one of T1 and T2 are update transactions.

Case 3: There exists p1 and p2, such that TC
1 (p1) < TC

2 (p1)
and TC

1 (p2) = TC
2 (p2). Then T1 commits before T2.

Case 4: There exists p1 and p2, such that TC
1 (p1) < TC

2 (p1)
and TC

1 (p2) > TC
2 (p2). Such a scenario arises from write

skew, and as outlined in Appendix A the transaction router
determines the commit order. Transactions reading parti-
tions p1 and p2 can observe one of four states, neither of T1

or T2’s updates, both of T1 and T2’s updates, T1’s updates,
but not T2’, or T2’s updates both not T1’s. Recall that the
transaction router uses locking (Algorithm 1) to ensure that
all transactions can observe the same three states, by elimi-
nating one of: T1’s updates but not T2’s, or T2’s update but
not T1’s. This elimination determines the commit order: if
T1’s update can be observed but not T2, then T1 commits
before T2. Otherwise, T2, commits before T1.

We have outlined all four possible cases given transaction
commit timestamps and defined a commit order; hence there
exists a commit order.

Together, Lemmas 1, 2, 3 and 4 prove that MorphoSys
satisfies the requirements of SI, when there are no physical
design changes.

B.2. Physical Design Changes and Snapshot
Isolation

Appendix B.1 proved that MorphoSys provides SI when
there are no physical design change operators. We now prove
that MorphoSys provides SI in the presence of these physical
design change operators. We make four critical observations
about the proofs in Appendix B.1, and the changes that arise
in the presence of physical design changes.

First, removing a replica does not change the correctness
of the proofs, as a replica partition is no longer present at a
data site.

Second, adding a replica does not change the correctness
of the proofs. Recall from Section 4.4.1, that MorphoSys
installs a snapshot of the replicated partition that includes
the partition version number, the depends relationship, and
versioned data items. Hence, as replicas execute only read-
only transactions, all of the state necessary to ensure the
correctness of Lemmas 1 and 3 exist at the newly created
replica, or in the case of Lemma 4, at the transaction router.

Third, to prove Lemma 2, we assumed that updates to
partitions occurred on the same master data site. This as-
sumption does not hold if the system remasters a partition.
Hence, we need only prove that a partition cannot be up-
dated at two data sites concurrently, as a consequence of
remastering. Recall, from Section 4.4.3, that remastering
occurs transactionally, and hence the remaster operator ac-
quires the partition lock. Additionally, after the old master
site releases the mastership of a partition, it can no longer
service update transactions to the partition. Furthermore,
the new master site does not become the new master until
it applies the propagated update releasing the mastership
from the old master and all previous updates to the partition.
Consequently, no update transactions to the partition occur
while it is being remastered. Thus, given two transactions
that update the same data item (and thus partition), either
the updates both occur at the same site, proven correct in

Lemma 2, or one transaction (T1) updates the data item
at the old master, and the other (T2) at the new master.
However, because the new master blocks updates until all
previous updates to the partition are applied, we have that
TB
1 (p) < TC

1 (p) ≤ TB
2 (p) < TC

2 (p), hence the updates do not
overlap.

Fourth, in Lemmas 1 and 2 we assumed that data items
always belong to the same partition. This assumption does
not hold if the system splits partitions apart, or merges
them together. Recall from Section 4.4.2, that MorphoSys
performs these operations while holding the partition locks,
consequently, after the split or merge operator completes
subsequent transactions execute on the newly created parti-
tions. Additionally, these physical design change operators
assign the newly created partition’s version numbers as the
maximum of the original partitions’ version number and
induce a depends relationship among the partitions. Thus,
as shown in the proof in Lemma 3, subsequent transactions
generate transaction begin timestamps that observe snapshot
consistent state. Consequently, the dependency relationship
determines the transactions total commit order, as we can
place the transaction either occur before or after the split or
merge operation.

Given our fourth observation, we must prove that updates
to the same data item do not occur concurrently, in the
presence of split or merge operations. Similar to the remas-
tering case, updates to the same data item either occur in
the same partition, or, before and after a split or merge
operation, and thus in different partition. In the former case,
Lemma 2 holds. Considering the latter case, without loss
of generality, suppose T1 updates data item d in partition
p, p is split into pL and pH , and T2 updates d that is now
contained in pL. By definition, we have that TB

1 (p) < TC
1 (p)

and TB
2 (pL) < TC

2 (pL). By construction of pL, we also have
that the intial partition version of pL, v(pL) ≥ TC

1 (p), and T ,
hence TC

1 (p) ≤ TB
2 (pL) < TC

2 (pL). Additionally, as p does
not exist for T2, but is stored as part of the depends relation-
ship, we have that TC

1 (p) ≤ depends(pL, T
B
1 (pL), p) = TB

2 (p).
Hence, we have TB

1 (p) < TC
1 (p) ≤ TB

2 (p) = TC
2 (p) and thus

the updates do not occur concurrently. A similar argument
follows for the merge operator.

Given our four observations and associated proofs, it is
clear that MorphoSys provides SI in the presence of physical
design changes.

B.3. Enforcing Strong Session Snapshot
Isolation

We now prove that MorphoSys provides SSSI by proving
the session requirement of SSSI.

Theorem 1. If two transactions T1 and T2 belong to the
same session, and the commit of T1 precedes the start of
T2, then T2’s begin timestamp is greater than T1’s commit
timestamp.

Proof. Recall from Section 4.2.1 and Appendix A, that
MorphoSys tracks a session timestamp CS , composed of
the maximum observed TC(p) for all transactions T in the
same session, and accessed partitions p. Thus TC

1 ≤ CS .
Furthermore, MorphoSys uses this session timestamp as the
initial transaction begin timestamp, before updating it based
on observed partition version numbers, blocking if necessary.
Thus CS(p) ≤ TB

2 (p). Combining the two inequalities, we
have that TC

1 ≤ TB
2 , as required.



Theorem 1, together with Lemma 1, prove that if T1 and
T2 belong to the same session, and the commit of T1 precedes
the start of T2, then T2 observes any state observed or created
by T1. Given that MorphoSys provides SI, in addition to the
session requirements of SSSI, then MorphoSys guarantees
SSSI.

C. FORMAL DEFINITIONS
In Section 3, we outlined the definition of a partition, the

requirements for transactions, and the five physical design
change operators. We now formalize these definitions.

A partition of data p contains all data items with row
id ’s that fall in the inclusive range (start(p), end(p)). The
partition p has its master copy located at site Si = master(p),
and replicas placed at a (possibly empty) set of sites {Sj |j 6=
i} = replicas(p).

A transaction must specify its read and write set. We
formally define the data items in the read set as {dr}, and
the data items in the write set as {dw}. Given these data
items, the transaction router identifies the set of partitions
{pr} and {pw} as the read and write set, respectively. To
identify a partition given a data item d, the transaction
router finds the partition p such that start(p) ≤ d ≤ end(p)
holds. A transaction can execute at a site S if for all pw in
the write set master(pw) = S holds, and if for all pr in the
read set S ∈ {master(pr)} ∪ replicas(pr) holds

The definition of our five physical design change operators
is as follows.

split: given a partition p, and k such that start(p) < k ≤
end(p), then split(p, k), creates new partitions pL and pH
and removes p. Partitions pL and pH are defined such that
pL = (start(p), k − 1) and pH = (k , end(p)), master(pL) =
master(pH) = master(p), and replicas(pL) = replicas(pH) =
replicas(p).

merge: given partitions pL, and pH then merge(pL, pH),
creates new partition p, and removes pL and pH . For merge
to succeed, pL and pH must satisfy the following end(pL) =
start(pH)−1, master(pL) = master(pH), and replicas(pL) =
replicas(pH). Partition p is defined such that p = (start(pL),
end(pH)), master(p) = master(pL) = master(pH), and we
set replicas(p) = replicas(pL) = replicas(pH).

add replica: given partition p, with replicas(p) = R, and
Sj , such that Sj 6= master(p) and Sj 6∈ R then
add replica(p, Sj) sets replicas(p) = R ∪ {Sj}.

remove replica: given partition p, with replicas(p) = R,
and Sj , such that Sj ∈ R then remove replica(p, Sj) sets
replicas(p) = R \ {Sj}.

remaster: given partition p, with replicas(p) = R, and Sj ,
such that Sj ∈ R, and master(p) = Si, then remaster(p, Sj),
sets master(p) = Sj , and sets replicas(p) = R \ {Sj} ∪ {Si}.

D. ADDITIONAL EXPERIMENTAL
RESULTS

D.1. System Overheads
Recall from Section 7.3.6 that we used SmallBank with

its short transactions to assess the overheads of MorphoSys.
Table 2 breaks down SmallBank transaction latency in Mor-
phoSys. Observe that the system spends the plurality of
time (43%) executing transaction logic. At data sites, just
25% of overall transaction latency is spent on MorphoSys’
concurrency control, including waiting for any necessary up-
dates, locking, and recording dependencies during commit.
Given the small transaction footprint, this translates to low
overhead as the latency is comparable to the amount of time

that transactions spend in the network. This low latency
is a consequence of our partition-based concurrency control
and update propagation scheme. Finally, transactions spent
just 10% of their time at the transaction router, including
an average of just 3.3% of time executing physical design
changes. This small overhead results from MorphoSys amor-
tizing the cost of design changes over many transactions, and
executing design changes in parallel when they do occur.

Table 3 shows the relative frequency and average latency
of each of the physical design operators. On average, Mor-
phoSys executes a physical design change operator 30 times
for every 1000 transactions, taking just over 6 ms to execute.
The most expensive physical design change operators require
physical copying of data, as in the case of adding a replica
of a partition or waiting for all updates to arrive at the soon
to be designated new master.
Table 2: Transaction latency breakdown within MorphoSys.

Operation Avg. Latency
Percent of
Txn. Time

Locating Partitions 27± 1.0 µs 2.1%
Plan Generation 49± 9.2 µs 3.8%

Workload & Cost Model 13± 6.8 µs 1.0 %
Design Change 42± 2.9 µs 3.3 %

Network & Queuing 252± 51 µs 19.8%
Locking 114± 39 µs 8.9%

Waiting for Updates 65± 5.9 µs 5.1%
Transaction Logic 550± 97 µs 43.0%

Commiting 158± 8.4 µs 12.4%
Total 1270± 310 µs 100%

Table 3: Design change operator frequency and latency.

Operator
Frequency
(per 1000 Txns.)

Avg. Latency

split 3.9± 0.3 3.7± 0.67 ms
merge 0.15± 0.06 8.3± 1.7ms

remaster 14.4± 0.5 33.3± 2.3 ms
add replica 12.1± 0.4 40.4± 0.4 ms

remove replica 0.12± 0.01 0.79± 0.04 ms
Total 30.7± 1.2 6.1± 11.7 ms

D.2. Different Intial Physical Designs
In our experiments in Section 7 we provided ADR, VoltDB,

and multi-master with offline a priori knowledge of the
workload, when initializing the physical design, by using
Schism [10] (Section 7.1). We advantaged DynaMast and
Clay by balancing the number of partitions mastered at each
site. However, for MorphoSys, the initial physical design
was completely random. To examine the effect of these
different initial physical designs on performance, we ran
experiments with our skewed read-mostly YCSB workload
and measured peak throughput under two initial physical
designs: Schism and a randomized design. Additionally, for
the initial randomized design, we measured the time it took
for the system to converge to within the confidence interval of
its peak throughput. These results are presented in Table 4.

As shown in Table 4, MorphoSys has the highest through-
put under both initial physical designs. Furthermore, with
a randomized initial physical design, MorphoSys converges
quickly (in 23 seconds) to within 2% of its throughput when
initialized with a priori knowledge. Without a priori work-
load knowledge, ADR and Clay reach only about two-thirds
of their peak throughput. Additionally, ADR and Clay take
nearly 3× as long as MorphoSys to converge to their peak



Table 4: YCSB Read-Mostly Skew Throughput, using two different initial physical designs: Schism [10] and random. We
additionally show the time the system takes to converge to peak throughput for each initial physical design. Single-master uses
the same physical design for both Schism and random, as it always places master copies of partitions on a single node.

System
Schism

Avg. Throughput
(txn/sec)

Random
Avg. Throughput

(txn/sec)

Schism
Time to

Peak Throughput

Random
Time to

Peak Throughput
MorphoSys 309 ± 11k 302 ± 11k 6 s 23 s

Clay 61.7± 2.9k 41.6± 1.5k 3 s 58 s
ADR 29.7± 3.0k 18.5± 1.3k 3 s 82 s

DynaMast 210± 3.5k 198± 2.2k 5 s 122 s
single-master 170± 1.5k 168± 3.5k 2 s 2 s
multi-master 46.1± 3.4k 21.8± 1.1k 4 s 9 s

VoltDB 3.21± 0.02k 1.98± 0.02k 7 s 6 s

Table 5: Effect of record size on physical design operations latency.

Metric
Record Size (Bytes)

split
Avg. Latency

merge
Avg. Latency

add replica
Avg. Latency

remove replica
Avg. Latency

remaster
Avg. Latency

1 6.95± 1.9 ms 19.1± 2.0 ms 56.5± 1.2 ms 3.07± 1.3 ms 50.7± 9.1 ms
10 7.05± 1.5 ms 19.8± 2.4 ms 58.7± 2.0 ms 3.51± 2.3 ms 52.9± 7.1 ms
100 7.29± 2.1 ms 20.3± 4.0 ms 62.2± 2.3 ms 4.65± 2.7 ms 61.4± 8.6 ms
1000 7.31± 1.5 ms 21.3± 3.6 ms 69.1± 1.3 ms 4.96± 1.4 ms 64.9± 10.5 ms

Relative Change 5.17% 11.5% 22.3% 61.5% 28.0%

throughput, a consequence of performing design changes
periodically. MorphoSys converges to its peak throughput
faster than these systems because it uses every transaction
as an opportunity to make physical design changes, in con-
trast to the periodic design changes made by ADR and Clay.
DynaMast takes 5× longer than MorphoSys to reach peak
throughput when initialized with a random physical design.
Finally, as stated in Section 7.3.1, by taking a holistic ap-
proach to distributed physical design and considering all of
dynamic partitioning, replication and mastering, MorphoSys
outperforms its competitors that consider only one of these
aspects of physical design.

Single-master, multi-master and VoltDB, all reach their
peak throughput in a short period of time as they do not
change their physical designs in response to a workload. Note
that the throughput of single-master is nearly identical in the
two experiments, as the single-master architecture imposes a
single physical design: a single site masters every partition,
and each partition is replicated at all other sites. By contrast,
the throughput of multi-master and VoltDB drop by 50%
and 40%, respectively, when a random physical design is used
compared to Schism’s physical design. Throughput degrades
for these systems as the frequency of distributed transactions
increases in the randomized initial physical design, compared
to Schism’s physical design that aims to place partitions to

minimize distributed transactions.

D.3. Effects of Record Size
To understand the effect that record size has on both sys-

tem performance and the physical design change operators,
we experimented with our read-mostly, skewed YCSB work-
load. We use YCSB for this experiment, as it allows us to
easily control the size of each data item. Table 5 shows the
results of this experiment as we vary the record sizes by a
hefty 3 orders of magnitude, i.e., from 1 byte to 1000 bytes.

As the record sizes increase, the average latency of splitting
and merging partitions remains mostly the same, with only
5% and 11% increases, respectively. The split and merge
operations are not dependent on record size, because they
operate on metadata of partitions; they do not need to read
or write any of the records.

Adding a replica requires physically reading record data,
and sending it over the network. Thus, as the data size
increases, so too does the time taken to add a replica. Sim-
ilarly, removing a replica partition must free the memory
associated with the replica record, which results in increased
latency for larger records. Finally, remastering may need to
wait for the system to propagate and apply updates that take
longer for larger records. Thus the latency of remastering
increases as the record size increases.


