
EC-Store: Bridging the Gap Between Storage and
Latency in Distributed Erasure Coded Systems

Michael Abebe, Khuzaima Daudjee, Brad Glasbergen, Yuanfeng Tian
Cheriton School of Computer Science, University of Waterloo
{mtabebe, kdaudjee, bjglasbe, y48tian}@uwaterloo.ca

Abstract—Cloud storage systems typically choose between
replicating or erasure encoding data to provide fault tolerance.
Replication ensures that data can be accessed from a single site
but incurs a much higher storage overhead, which is a costly
downside for large-scale storage systems. Erasure coding has a
lower storage requirement but relies on encoding/decoding and
distributed data retrieval, which can result in straggling requests
that increase response times. We propose strategies for data
access and data movement within erasure-coded storage systems
that significantly reduce data retrieval times. We present EC-
Store, a system that incorporates these dynamic strategies for
data access and movement based on workload access patterns.
Through detailed evaluation using two benchmark workloads,
we show that EC-Store incurs significantly less storage overhead
than replication while achieving better performance than both
replicated and erasure-coded storage systems.

Keywords-distributed storage, erasure coding, replication, data
movement, data placement

I. INTRODUCTION
The need to store and retrieve big data has fueled the

development and adoption of cloud storage systems. In cloud
deployments, however, machines frequently experience down-
time. For example, Google observed that at any point in
time, up to 5% of the nodes within their storage system
were unavailable [12]. To ensure data remains available in
the presence of these failures, systems must be fault tolerant.
Large-scale distributed storage systems typically provide fault
tolerance either by replicating [4,14] or erasure encoding data
[11,15,19,23,30,52]. Replication creates complete copies of
data, incurring a significant storage overhead over erasure
coding that partitions data and stores the partitions and their
parity fragments on multiple nodes to provide the same level
of fault tolerance as replication. Consequently, while erasure
encoding stores less data, accessing it requires multi-node
retrieval resulting in an increase in data access cost compared
to replication [51].

To demonstrate that performance in erasure-coded dis-
tributed storage systems is largely determined by the cost of
data retrieval, we show a breakdown of average response times
in Figure 1 for a workload that retrieves multiple 100 KB
blocks.1 The response time is divided into four categories:
the cost of locating data (metadata access), determining which
data chunks to retrieve (access planning), retrieving data, and
decoding data. As Figure 1 shows, the performance difference
between replication and erasure coding is primarily due to

1Details are in Section VI.

Replication Erasure Coding
0

10

20

30

1.6 1.90.8 0.9

20.9

31.9

0.0 0.8

re
sp

.t
im

e
(m

s)

Metadata access Access Planning Data retrieval Decoding

Fig. 1: Response time breakdown for replication and erasure
coding under skewed access. Data retrieval times dominate the
overall response time.

the time it takes to retrieve data, which dominates overall
response times. However, while both systems can tolerate the
same number of faults (two, in the example of Figure 1), the
replicated system stores 50% more data than the erasure-coded
system. These differences motivate a fault tolerant storage
system that can achieve the best of both worlds: low storage
overhead and low latency data retrieval.

When compared to replicated data stores, retrieval costs are
higher for erasure-coded storage systems because of the effects
of stragglers: the time taken to retrieve the slowest, or strag-
gling, data chunk dominates retrieval time [19,29]. Even when
parallelism is leveraged, straggler effects are more pronounced
in systems that must wait for multiple requests to complete
(e.g. in erasure-coded storage) than in systems that wait for
only a single request to complete (e.g. in replicated stor-
age) [9,26,46,49,53]. Given that large-scale storage systems
are typically deployed in distributed environments, concurrent
clients issuing requests in parallel over the distributed storage
system inevitably result in the occurrence of stragglers [9].

In our erasure-coded storage system, EC-Store, we propose
a novel approach to the stragglers problem: intelligently select
chunks to retrieve so as to avoid stragglers. This dynamic data
access strategy uses chunk location information to generate
a cost-effective strategy on-the-fly for data retrieval. By in-
corporating this strategy in EC-Store, we reduce data access
latencies and satisfy our best of both worlds goal.

To mitigate the effects of stragglers, some systems use a
late binding strategy [19,38,49] in which additional requests
are made and the slowest responses are ignored. Late binding
can reduce response time but places additional load on the
system: responses that will be ignored must still be generated.
In contrast, EC-Store’s dynamic data access strategy offers
excellent performance and places little additional load on the

system. Moreover, if additional load can be tolerated, EC-Store
can incorporate late binding by intelligently issuing additional
requests and ignoring the slowest responses.

EC-Store is designed to take advantage of workloads that
contain multi-item retrievals. Such workloads are common [21,
31,39]; for example, all images on a web page are retrieved
from a storage system. The items in multi-item requests are
often correlated by application semantics [21,28,39]. EC-Store
leverages these correlated access patterns to dynamically co-
locate data items that are accessed together, thereby reducing
chunk retrieval times. EC-Store considers the location of
the chunks and their correlations to generate effective data
placement and flexible data access plans that enable efficient
data retrieval.

The contribution of our work is three-fold: (i) We demon-
strate how the performance of erasure-coded storage systems
can be improved significantly through dynamic data placement
and data access to mitigate retrieval costs (Section III). We
formulate our data access and movement strategies as cost
functions with the aim of minimizing expected cost (Sec-
tion IV). (ii) We present EC-Store, a system that incorporates
the efficient design and implementation of our techniques
(Section V). (iii) Through detailed evaluation of EC-Store
using both the Yahoo! Cloud Serving Benchmark [7] and a real
workload trace of Wikipedia image accesses [47], we validate
that our techniques deliver low overhead, fault tolerant, low
latency data access for storage systems (Section VI).

II. ERASURE CODED STORAGE AND FAULT TOLERANCE
Formally, systems provide r-fault tolerance if they can

tolerate r independent faults.2 Replicated storage systems
provide r-fault tolerance under the fail silent assumption [5]
by writing data to r + 1 different locations. Therefore, if r
copies of the data become unavailable due to failures, one copy
remains available. Many systems default to storing a total of
three copies of each data item [4,14].

Erasure codes can provide the same or better fault toler-
ance guarantees than replication, but with significantly lower
storage requirements [51]. Maximum distance separable codes,
such as Reed-Solomon (RS) codes, create k+r chunks of data
from an original block of data so that it is possible to recreate
the original data from any of the k chunks [40]. Data encoded
with these codes are able to tolerate the unavailability of any
r of its k+ r chunks of data, and is therefore r-fault tolerant.

For a block of data encoded with RS codes parameterized
by k and r (denoted as RS(k, r)), the original block of data
is divided into k ≥ 2 chunks from which r parity chunks
are generated. Therefore, storing data that has been encoded
requires a factor of k+r

k times the amount of storage needed
for a single copy of the data. Because replication stores r+ 1
times the amount of data, and k ≥ 2, erasure coding uses less
space to provide the same level of fault tolerance. However,
unlike replication, erasure coding requires that a block access
retrieves k of the blocks’ chunks in parallel followed by

2We avoid using the terminology k-fault tolerance, as the variables k and
r conflict with standard notation used to describe erasure coding.

(a) Under load

(b) After movement

Fig. 2: Data access and movement strategies improve perfor-
mance. Client R3 is offered a load aware strategy and does
not access the overloaded site S5. Client R4 accesses fewer
sites after A3 is moved from S5 to site S4.

a decoding step to reconstruct the data. In this paper, we
focus on encoding schemes that access k chunks without the
presence of a complete copy of a data block, such as in
Facebook’s f4 [30] and Windows Azure Storage [19], because
these schemes reduce the storage overhead.

Like other erasure coded storage systems, EC-Store pro-
vides an interface to access and store data as blocks [4,11,
19,52]. Each block is identified by a primary key and has a
well-known size, although EC-Store can flexibly accommodate
used-defined block sizes.

III. MOTIVATING EXAMPLE

Straggling chunks lead to stalls in data retrieval for erasure-
coded storage: a client cannot continue until all k chunks
have been retrieved. Thus, one slow chunk retrieval request
can drastically increase the overall request latency. Straggling
chunks occur when a site is unable to keep up with the rate
that other sites service retrieval requests. Therefore, where
data is placed — and how it is accessed — plays a crucial
role in performance. We demonstrate the effect that dynamic
data access and movement strategies can have on performance
using a simple example. Figure 2 shows the storage of data
using an RS(2,1) encoding scheme. This scheme requires
storing each data item as three chunks, and reconstructing the
data item requires retrieving any two of its chunks.

In Figure 2a, data item A has chunks A1, A2, A3 stored
at sites S2, S3, S5 respectively. Suppose a client R1 wishes
to retrieve data items A and B. The arrows indicate that R1

retrieves data from sites S1, S3 and S5. The presence of a
popular chunk H1 on site S5, accessed by a second client
R2, causes S5 to be under higher load. Consequently, R1’s
request at S5 is slow and the request becomes a straggler. An
alternative, load-aware data access strategy is offered to client
R3, allowing it to avoid requesting a chunk of A from S5 and
instead retrieve it from site S2. This data access strategy avoids
accessing the overloaded site S5 and waiting for a straggling
chunk. We can improve performance further by moving chunk
A3 from site S5 to S4, as in Figure 2b. This movement allows
for co-located data access for client R4 that can now retrieve

A and B by accessing only two sites. By accessing fewer
sites, the number of requests that must be issued and serviced
is reduced thereby reducing the likelihood of stragglers and
consequently improving performance [9]. The movement of
A3 will reduce load on S5, resulting in additional improvement
in performance for client R2.

Although Figure 2 presents a simple motivating example, re-
ality presents a much more complex and challenging environ-
ment. In large-scale storage systems, data is distributed across
many sites, and access patterns resulting from concurrent
client workloads typically overlap. As a result, the objectives
to co-locate data and maintain even load distribution can
conflict. Erasure coding provides great flexibility for how data
should be accessed and placed. We leverage this flexibility by
constructing a cost model that captures and compares different
data access and placement options to select the most effective
strategy for minimizing access cost. In the next section, we
describe how we formulate this model and solve the data
access and movement problem, allowing us to overcome the
aforementioned challenges.

IV. DYNAMIC DATA ACCESS AND MOVEMENT
STRATEGIES

In addition to load imbalance, several other factors can also
cause straggling chunks. For instance, the rate at which data is
retrieved from a storage device, how quickly data is sent over
the network, and the rate at which client requests are serviced
all contribute to slow chunk retrieval times. Load imbalance
itself can be the result of skew in item popularity, data size,
or the number of items that are retrieved [46,53].

With these factors in mind, we have developed data access
strategies that minimize expected retrieval time. As shown
in Figure 2, our data access strategy reduces the number of
distributed requests by accessing sites that have co-located
data. By placing data so as to minimize distributed access,
we develop a data movement strategy that promotes data co-
location based on application access patterns. To ensure that
load remains evenly distributed, our data movement strategy
uses load statistics to relocate data to spread load away
from overloaded sites. Finally, as data access and movement
strategies allow for alternate choices, we develop our strate-
gies as optimization problems. This optimization formulation
quantifies the effects of different data movement choices and
allows us to efficiently select access strategies that minimize
expected costs, enabling the selection of data movement plans
that improve both data access performance and load balance.

As our formulations for data access and movement strategies
rely on descriptions of system state, we introduce notation to
describe state next.

A. Notation
Table I summarizes our notation. We refer to an individual

block as Bi, and the size of its chunks as zi. We refer to the
j-th site (physical machine) as Sj . We use a binary variable
ci,j to indicate whether a chunk of Bi is present at site Sj .
Note that if Bi is a (ki, ri)-encoded block, from the definition

Chunk and Site Selection Variables
C = ci,j = 1 State of blocks in system: Bi has a chunk at Sj

si,j = 1 Bi’s chunk at Sj was selected to be read
aj = 1 Site Sj was selected to be accessed.

Formula

cost(C,Q)
The estimated read cost of performing request Q
when the system is in state C

∆(C, b, s, d)
The estimated gain of moving Bb’s chunk from site
Ss to Sd

Cost Model Parameters
oj The performance overhead of accessing site Sj

mj
The overhead of performing a read on the storage
media present at site Sj

zi The size of block Bi’s chunks

TABLE I: Notation used and their meaning

of (ki, ri) erasure coding, there are exactly ki + ri such ci,j
that are 1. That is, two chunks from the same block cannot
be located at the same site as otherwise the r-fault tolerance
guarantees are violated. We consider the state of the system
to be a numBlocks × numSites matrix C with entries ci,j
representing the chunk placements.

To denote access decisions, we use the binary variable
si,j = 1 to indicate that a chunk from block Bi located at
site Sj was selected for access. To indicate that site Sj was
accessed, we use the shorthand aj =

∨
i si,j .

B. Estimating Data Access Cost
For evaluating the cost of performing a read request, EC-

Store considers two key factors: the overhead of accessing a
remote site, and the retrieval cost of each requested chunk at
that site.

Modelling Access Costs: Given an access plan that satisfies
a request for a set of blocks Q = {Bi}, we model the access
cost cost(Q) in Equation 1 as follows. For each site Sj that is
considered accessed, that is aj = 1, there is an associated
overhead of accessing that site denoted by oj that can be
determined dynamically and allows adaptation as system load
changes. This overhead includes factors such as the network
latency of accessing a remote site, and the time between when
a request is received and when it is processed at a remote site.
This time interval is influenced by site load — a site under
high load will experience a longer delay before a request is
finished processing. The cost of retrieving a chunk from a site
depends on the rate that I/O can be performed on the storage
media at the site, represented by mj , and the amount of data
that is retrieved, zi. Our model incorporates this access cost
by multiplying these factors (mj · zi).

cost(Q) =
∑
j

(
(oj · aj) +

∑
Bi∈Q

(si,j ·mj · zi)
)

(1)

Satisfying Access Constraints: Given our cost model, a
client should minimize the cost of access while satisfying the
constraints imposed by the system state, the request, and the
erasure coding parameters. To determine the optimal access
plan, we minimize cost(Q) over all valid combinations of the
binary decision variables si,j . Observe that for any instance of
the problem, oj , mj and zi are constant and therefore cost(Q)
is a linear function in terms of si,j . Thus, if we can also
define linear constraints that generate valid combinations of
si,j , we can exploit existing integer linear programming (ILP)

tools to compute an optimal solution. We present two linear
inequalities in Equations 2 and 3 that provide the necessary
constraints for our ILP formulation.

The first constraint (Equation 2) ensures that any access
plan retrieves at least ki chunks for each block Bi in the
request, guaranteeing that the block can be reconstructed by
the property of maximum distance separable codes. A chunk
must both exist at a site (ci,j = 1) and be selected for access
(si,j = 1) for it to be counted towards Bi’s required ki chunks
for retrieval. The second constraint (Equation 3) enforces that
a site sj is considered accessed, that is aj = 1, if any chunk
located at that site is accessed.3∑

j

(ci,j · si,j) ≥ ki,∀Bi ∈ Q (2)(
|Q| · aj

)
−
∑
Bi∈Q

si,j ≥ 0,∀Sj (3)

Selecting an Optimal Access Plan: Our cost model is used
to determine the optimal data access plan and the associated
cost of that access. We denote this cost as cost(C,Q) as it
depends not only on the query Q but also on the state of the
system, C. We formally define the ILP problem as follows:

cost(C,Q) = min
C

cost(Q)

subject to constraints in Equations 2 and 3.
(4)

1) Late Binding
As mentioned earlier, late binding [38] is a complementary

approach to our techniques. Late binding requests k+δ chunks
where 0 < δ ≤ r, but waits for only the first k responses. Our
cost model can support late binding with a slight modification.
By changing the right hand side of Equation 2 to ≥ ki+δ, our
cost model incorporates the late binding strategy by enforcing
a data access plan that will retrieve ki+δ chunks for each block
in the request. Furthermore, our cost model will optimize the
request for an additional δ chunks so that data access has the
lowest cost estimate.

C. Estimating Chunk Movement Gain
As data movement affects data accesses, we use our cost

model to estimate access costs after movement. Our data
movement strategy considers the effect of moving a single
chunk at a time. By doing so, we efficiently compute the
expected performance gains from moving the chunk. In this
section, we describe our function that quantifies the effect
of moving a chunk, deferring discussion to Section IV-D for
how this function is used. Similarly to our methodology for
estimating the cost of executing a request, by quantifying the
effects of movement, we are able to compare multiple data
movement strategies and select the best strategy for execution.

EC-Store considers two important factors when measuring
how moving a chunk affects the system: how movement affects
data access costs, and how it affects the distribution of load
to sites that store data. We present each of these factors

3If a site is accessed then
∑

Bi∈Q si,j ≥ 1. However, no more than |Q|
chunks can be requested from a single site. Therefore, if the site is accessed
then aj must be set to 1 for the inequality to hold.

separately before merging them into a single cost function.
Each computation is formulated such that a positive result
represents an expected performance improvement, a zero result
denotes no expected change in performance, and a negative
value implies an expected performance degradation.

Consider the case where we wish to evaluate moving block
Bb’s chunk from source site Ss to destination site Sd. To
ensure r-fault tolerance, site Sd must be chosen so that it does
not already contain a chunk of Bb. We represent this change
in system state by creating a new state matrix Cb,s,d from C.4

Change in Data Access Costs: To estimate the change in
data access costs, we compare the cost of data access under
the existing system state to the cost of the next future state. It
is infeasible to consider the effect of chunk movement on all
queries, so we assemble a set of queries that reflect how block
Bb has been historically accessed. Specifically, we generate
queries that are of the form {Bb, Bi}, such that Bi is a block
that has appeared in a prior client query that also contained Bb,
that is {Bb, Bi} ⊆ Q for some client submitted query Q. To
ensure that infrequent accesses are not considered as important
as frequent accesses, we weight the change in data access
costs by the likelihood that Bb and Bi were accessed together,
captured statistically as λb,i = P ({Bb, Bi} ⊆ Q|Bb ∈ Q).
Equation 5 summarizes how we quantify the change in data
access costs, comparing the before and after costs for each
generated query weighted by access likelihood:
E(C, b, s,d) =∑

bi∈B

(
cost(C, {Bb, Bi}) − cost(Cb,s,d, {Bb, Bi})

)
· λb,i

(5)
For the example in Figure 2, we would observe that accessing
data would have lower estimated cost after moving A3, as
in Figure 2b. As a result, this movement plan would have a
positive value for E(C, b, s, d).

Quantifying System Load: In addition to the estimated
change in data access costs, we consider the effect of moving
a chunk on the load of a system. Recall that high load at a
site can slow data retrieval requests at that site, which leads
to stragglers [19]. To avoid the effects of skewed load, we
strive to distributed load evenly across sites. To achieve this
load balance, we promote data movement from heavily loaded
sites to lightly ones. We model site load before and after data
movement to quantify load balance improvements.

We calculate the load at site Sj in state C as ω(C, Sj)
from the site’s CPU utilization and I/O load. We observed that
these factors were correlated with the rate at which requests
were serviced. To model the load at a site after movement,
ω(Cb,s,d, Sj), we proportionally shift the CPU utilization and
I/O load from the source site to the destination site based on
chunk size and chunk access likelihood.

Normalizing System Load: To represent the degree to
which a site has diverged from the average load ω̃(C), we
define a site load balance factor as: Ω(C, Sj) =

∣∣∣1− ω(C,Sj)
ω̃(C)

∣∣∣.
4To change the system state we set cb,s,db,s to 0, cb,s,db,d to 1, and leave other

values in Cb,s,d unchanged from C.

Algorithm 1 selectMovementPlan

1: blocksUnderConsideration =
GETCANDIDATEBLOCKS(); . Recent & frequent blocks

2: Scoreopt = 0; . Init. Bb−opt, Ss−opt, Sd−opt to NULL
3: for all Block Bb : blocksUnderConsideration do
4: candidateDestinations =

GETCANDIDATEDESTINATIONS(Bb); . Exclude sites
where Bb’s chunks are present

5: for all Chunk c : Bb.chunks do
6: Site Ss = c.chunk location; . Ss is the source site;
7: for all Site Sd : candidateDestinations do . Sd is a

potential destination;
8: Score = ∆(C,Bb, Ss, Sd);
9: if Score > Scoreopt then

10: (Scoreopt, Bb−opt, Ss−opt, Sd−opt) =
(Score,Bb, Ss, Sd);

11: return (Bb−opt, Ss−opt, Sd−opt);

If Ω(C, Sj) = 0 then Sj has exactly average load, but as
Ω(C, Sj) continues to increase, Sj drifts away from average
load. In Figure 2a, site S5 would have a larger Ω(C, S5) value
than Ω(C, S4) as S5 is under higher than average load.

Estimating Change in System Load: We consider the
effect of load created by data movement on both the source and
destination site by using the load balance factor of the most
imbalanced site. To represent the load of the most imbalanced
site, we construct Ω(C, Ss, Sd) given by Equation 6:

Ω(C, Ss, Sd) = max(Ω(C, Ss),Ω(C, Sd)) (6)
The difference between Ω(C, Ss, Sd) and Ω(Cb,s,d, Ss, Sd)
represents the change in load balance factors at the source
and destination as a result of chunk movement, which we
summarize as I(C, b, s, d) in Equation 7. In Figure 2, we
observe that moving data from site S5 to S4 will decrease the
load factor of S5, resulting in a positive I(C, b, s, d) value.

I(C, b, s, d) = Ω(C, Ss, Sd)− Ω(Cb,s,d, Ss, Sd) (7)
Estimating Benefit from Chunk Movement:
To combine the two factors, namely, effect of data access

and effect on load, we sum Equations 5 and 7. To control the
relative influence of the two factors, we use weight parameters
w1 and w2. The total estimated benefit of moving block Bb’s
chunk from source site Ss to destination Sd when the system
is in state C is represented by ∆(C, b, s, d) in Equation 8.
∆(C, b, s, d) is positive if the movement of the chunk is
expected to be beneficial and negative if it is expected to
worsen costs.

∆(C, b, s, d) = w1 · E(C, b, s, d) + w2 · I(C, b, s, d) (8)

D. Selecting Chunks for Movement
The previous section described how expected changes in

system performance are measured both in terms of data
accesses and load distribution when moving chunks. We select
chunks for movement and their target destinations through
the use of movement plans. A movement plan consists of
a block Bb, a site Ss containing a chunk of Bb, and a
candidate destination site for that chunk Sd. As it is infeasible

Fig. 3: System architecture showing division of control and
data planes including processes for reading (R1-R3) and
writing data (W1-W3).

to compute expected performance gains exhaustively for every
movement plan (Bb, Ss, Sd), we employ a heuristic strategy
for generating movement plans. Our heuristic is guided by two
principles: recently accessed blocks are likely to be accessed
again [21], and sites that are under heavy load contribute to
the straggling chunk problem [19].

We summarize how we select a plan for data movement
in Algorithm 1. We first retrieve a set of blocks that are
candidates for movement because they have been recently
accessed (Line 1). We probabilistically generate this set based
on access likelihood, which allows us to explore the effect of
moving many other different data items. For each candidate
block, we consider moving its chunks to new destination
locations (Line 4). Finally, for each candidate movement
plan, we compute the expected benefit of executing the move
(Line 8).

At any point in time we can halt execution of Algorithm 1
and execute the movement plan that has the best score so far.
Therefore, we use early stopping conditions when searching
for candidate plans and greedy subroutines that return lists
of candidates ordered by the best candidate first. For instance,
Line 5 iterates over chunks ordered by site load so that chunks
located at the most heavily loaded site are evaluated first.

V. EC-STORE: ARCHITECTURE AND IMPLEMENTATION

We have developed EC-Store, a system that incorporates the
design and implementation of our data access and movement
strategies. Similar to other systems, EC-Store clients store and
access data by communicating with a service API to put a
block, read block(s), or delete a block [4,11,19,52]. Figure 3
shows the steps involved for reading and writing data. Our
system inserts an additional step to decide how data should
be placed (W1) and accessed (R2).

EC-Store’s architecture is logically separated into two com-
ponents: a control plane and a data plane. The data plane
consists of sites that execute a storage service to manage the
storage and retrieval of chunks. The location of each block’s
encoded chunks within the data plane are managed by the
metadata service in the control plane, which implements the
strategies described in Section IV.

EC-Store services were developed in C++ and communicate
with each other using remote procedure calls through the
Apache Thrift library [44]. We use the Jerasure 2.0 library [34]
for encoding and decoding blocks. Next, we describe the
functionality and implementation of the statistics, chunk place-
ment, and repair services.

A. Statistics Service
To maintain load and access correlation statistics used by the

data movement strategies described in Section IV, a statistics
service is provided. This service approximates each site’s load
by tracking the CPU utilization, I/O load, and the number
of chunks stored at each site. These values are reported by
storage services to the statistics service at regular intervals,
and used as ωj in our data movement strategy. Statistics
are reported every 5-10 seconds, which we found provided
up-to-date information. The statistics service also maintains
information on sampled block access patterns within a slid-
ing interval of previous requests. Each block co-access pair
(Bb, Bi) within a sampled request is tracked to compute the
conditional likelihood of block co-access, stored as λb,i. When
the access pattern exits the interval of previous requests, the
likelihood of co-access is adjusted so that the statistics service
can capture changes in workload. Tracking likelihoods and
reporting statistics more frequently would require more space
and increase communication overheads but provide higher
accuracy. In our experiments, we tracked a sliding interval
of 5000 requests which was large enough to capture access
correlations.

B. Chunk Placement Service
The chunk placement service consists of two sub-modules

that provide EC-Store with strategies for data access and data
movement: the chunk read optimizer and the chunk mover.

1) Chunk Read Optimizer
To access data, the client service calls into a local chunk

read optimizer, which receives chunk locations for a set of
blocks that a client wishes to read and returns the set of chunks
that should be retrieved from each site. The read strategy is
computed by finding the solution to the cost(C,Q) function
as described in Section IV-B using the SCIP library [1] as an
ILP solver.

Preliminary experiments showed that solving the ILP prob-
lem to decide on a data access strategy took in the order of
tens of milliseconds, which is much higher than the access
costs that were observed in Figure 1. To address this latency
concern, we cache and reuse previous access plans that satisfy
a new request for data access. If there is no access plan in the
cache that can satisfy the request then we generate an access
plan using a greedy heuristic, which works as follows. We
decide for each block whether a given chunk will be retrieved
based on the state of the existing access plan. If a chunk for
the requested block is present at an accessed site, that chunk
is added to the access plan. If k chunks for the block have not
been added to the access plan, after all previously accessed

sites in the plan are examined, sites for the remaining chunks
are randomly selected.

An access plan cache miss triggers a background worker
thread that solves the data access problem using the ILP solver.
Once the ILP solution is computed, it is stored in the cache
and replaces the greedy solution, enabling all future requests
for the same blocks to use the ILP solution without the need
to solve the ILP problem. When the cost parameters in the
ILP problem change as a result of new system state, we
dynamically reload solutions.

2) Chunk Mover
The chunk mover is responsible for asynchronously mov-

ing chunks within the system to improve block co-access
performance and load balance. The chunk mover executes
Algorithm 1 to select a movement plan to copy the chunk
from source to destination. The block metadata is then updated
to reflect the new chunk location, and the old chunk can be
deleted as all future accesses receive the new chunk location.
The chunk mover can throttle the rate at which chunks are
moved to ensure that data movement does not add overhead
to the system, as we experimentally show in Section VI-C5.

3) Parameter Choices
The data access and movement strategies employed by the

chunk placement service are parameterized for generality. The
cost model depends on two factors: oj and mj that reflect
the cost of accessing a site and the cost of reading from a
site, respectively. We dynamically set oj for each site based
on the average response time of periodic load-status requests
to storage services. These requests are decoupled from data
access requests and therefore measure request processing time.
Thus, an increase in load proportionally increases the response
time of load-status requests. We empirically determined mj

by measuring the time taken to retrieve increasing numbers
of chunks from a single site. Because our experiments were
conducted on homogeneous hardware, we set mj to be the
same value for each machine. We found that an approximate
value of mj , normalized to an average value of oj , was mj = 1
when oj = 5. Both the chunk read optimizer and chunk mover
receive the oj and mj parameters from the statistics service
to support dynamic strategies for data access and movement.

In our data movement strategy, w1 and w2 weight the
expected improvement in query performance and expected
improvement in load balance, respectively. The largest value
for I(C, b, s, d) is 1, and occurs when the system state changes
from unbalanced to perfectly balanced. Figure 2 shows an
example of accessing one less site after data movement, which
results in E(C, b, s, d) = avg(oj). Initially, we set w1 = 1
and w2 = avg(oj) = 5 to balance the factors, but then
performed a parameter search by varying w2. Empirically, we
found that (w1 = 1, w2 = 3) yielded the best performance,
which indicates that expected query performance is the more
dominant factor in the data movement strategy.

As discussed in Section II, erasure coded storage systems
must choose parameters k and r. By default, we use a k =

2, r = 2 encoding scheme. Choosing a value of k poses a
trade-off: larger values of k reduce the storage overhead, but
must access more sites in parallel and therefore incur higher
access costs. Hence, k = 2 is a popular option for applications
aiming to reduce access costs [38].

C. Repair Service
To ensure availability in the presence of node failures, EC-

Store reconstructs chunks on sites that have failed. The repair
service polls each site’s storage service and marks the site
unavailable for access if it does not respond. The repair service
waits 15 minutes, as in GFS [12], before reconstructing chunks
using our data movement strategy to select chunk destinations.

VI. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
our EC-Store system. We first describe the experimental setup
and then present system performance results.

A. Experimental Setup
The objective of our experiments is to evaluate how our

data placement and access strategies improve performance,
and to verify that our system operates with low overhead. We
compare our techniques against replication (R) and traditional
erasure coding (EC), which use the strategies of random data
placement and access [38]. Although strategies exist for re-
ducing replication response times as discussed in Section VII,
we use a randomized strategy because it offers a baseline
comparable to erasure coding, and it is common in many
systems [10,24]. We compare these baselines against our two
configurations of data access: (i) erasure coding with our cost
model (EC+C), and (ii) erasure coding with our cost model
and chunk movement (EC+C+M). This setup allows us to
differentiate the performance contribution of the cost model
for data access from that of data movement. To investigate the
effects of additional requests, we also evaluate erasure coding
with late binding (EC+LB) and our data movement and access
strategy with late binding (EC+C+M+LB). All configurations
are implemented into EC-Store.

Our experimental testbed consists of 36 identical machines,
of which 32 machines are used to co-locate the I/O intensive
storage service with the compute intensive EC-Store client
service. The remaining four machines are allocated, one each,
to the metadata service, the chunk placement service, the
statistics service, and for running the benchmark workload.
All machines are within the same local area network, in-
terconnected by a 10 Gb Ethernet link. Each machine runs
Ubuntu 16.04, and has 12 physical cores (two Intel E5-2620v2
processors), 32 GB of memory, and 1 TB of local disk storage
(Seagate Constellation ES.3 6 Gb/s SATA hard drives).

To tolerate two faults, we use a RS(2,2) block encoding
scheme for erasure coding, and keep 3 copies of all blocks for
replication. Under these configurations replication stores three
times, and erasure coding two times, the amount of original
data. Therefore, replication stores 50% more data than erasure
coding while providing the same level of fault tolerance.

B. Benchmarks
We use two benchmarks that store and retrieve objects

of various sizes to evaluate our data access strategies and
techniques. The first benchmark is the popular YCSB-E
workload [7] that retrieves ranges of keys together as in a
messaging system. Items within the same range are correlated
and accessed together, representing a chain of messages within
a conversation [7]. The second benchmark is a trace of pages
of Wikipedia image accesses [47]. All images on a page
are retrieved when a page is loaded, resulting in correlations
between images that appear on the same page. The likelihood
of retrieving a page of images is derived from the trace and
follows a Zipf distribution [47]. Both the number of images
on a page and image sizes follow a power law distribution.
The median page consisted of about 10 images, and the
median image was approximately 500 KB in size. Images on
Wikipedia are treated as static resources, making them good
candidates for storing within a block storage system.

Both benchmarks employ a configurable number of concur-
rent clients that submit requests independently with zero think
time between requests. Unless otherwise stated, our default
number of clients was 100. Our experimental methodology is
as follows. For the YCSB-E benchmark workload, the system
is first loaded with 1 million blocks of fixed size. A warm
up scan workload is run for 20 minutes, accessing keys with
a uniform distribution. A second scan workload is then run
for 20 minutes over which we collect performance measure-
ments, this time accessing keys using a power law distribution
(with default exponent 1) to effect workload change. For our
Wikipedia experiments, each trace requests a set of blocks
corresponding to the images found on a specific page over a
measurement interval of 20 minutes after a warm-up run of
the same type and duration as in the YCSB experiments.

C. Experimental Results
In this section, we present and discuss results for our

experiments with the YCSB and Wikipedia workloads. All
results presented are the average of five runs with bars around
the mean representing 95% confidence intervals.

1) Response Time
We study data access performance using a YCSB-E work-

load and show the average response time, over time in
Figure 4a, for each of the configurations. In this figure,
response time for our data access strategy (EC+C) and our
access and movement strategy (EC+C+M) start similarly before
EC+C+M decreases over the first 8 minutes. The movement
strategy quickly learns the workload pattern and moves data to
balance load and co-locate co-accessed data items that together
improve response times. Recall that the workload change
results from inducing skew in data item access. Therefore, our
movement strategy reduces response times is a consequence of
dissipating the effects of skew. By the end of the experiment,
we observe that our data access and movement strategies
achieve a 40% improvement in latency over baseline erasure
coding. Furthermore, we reduce latencies by 20% compared

0 5 10 15 20

20

25

30

35

40

time (min)

re
sp

on
se

tim
e

(m
s)

(a) Response time over time

R EC EC+
LB

EC+
C

EC+
C+M

EC+
C+M
+LB

0

10

20

30

40

23

35

28
30

20
18

21

32
24 27

17 15

(b) YCSB (100 KB Blocks)

80 85 90 95 100

0

100

200

300

400

Percentile
(c) Tail Lat. (YCSB 100 KB)

1 8 16 24 32

5

10

15

20

25

Site number

R
ea

d
I/

O
(M

B
/

s)

(d) Read I/O (YCSB 100 KB)

R EC EC+
LB

EC+
C

EC+
C+M

EC+
C+M
+LB

0

50

100

150

200

250

151

219

143 145
119

87
147

207

133 134
108

77

re
sp

on
se

tim
e

(m
s)

(e) YCSB (1 MB Blocks)

1 2
20

25

30

35

40

Num. Unavailable Sites
(f) Response time with failures

R EC EC+
LB

EC+
C

EC+
C+M

EC+
C+M
+LB

0

50

100

150

200

139

190

148
159

126
109

134
173

131 142
109

94

(g) Wikipedia

90 92 94 96 98 100
300
400
500
600
700
800
900

1,000

Percentile
(h) Tail Lat. (Wikipedia)

Metadata access Access planning Chunk retrieval Block decoding R EC EC+C EC+C+M EC+LB EC+C+M+LB R EC EC+C EC+C+M

Fig. 4: Experimental results for YCSB-E and Wikipedia experiments. Data access and movement strategies significantly improve
performance over standard techniques, by reducing the time taken to retrieve chunks.

to replication while using only two-thirds of the storage space
that replication uses. Our data access strategy (EC+C) alone
reduces response time by 15% compared to erasure coding,
demonstrating the benefit of our cost model.

Figure 4b shows a breakdown of average response time
from the YCSB experiment into four categories: accessing
metadata, determining an access strategy, retrieving chunks,
and decoding the chunks into a block. As noted in Section I,
the most dominant factor in the response time is retrieval of
chunks from the storage services and not the overhead from
block decoding. Metadata access and generation of strategy
for data access also make up a small portion of the remaining
response time. The figure demonstrates that the improvements
come from reducing data retrieval time resulting from the
utilization of our techniques.

The figure also includes late binding (δ = 1), a common ap-
proach for improving erasure-coded storage data retrieval per-
formance. EC+C+M’s proactive data movement and minimiza-
tion of access costs reduces the time taken to retrieve data by
30% when compared to late binding (EC+LB). Our technique
places little extra load on the storage system (Section VI-C5),
but late binding increases load by making additional chunk
requests (Section VI-C2). Because our techniques and late
binding are complimentary, they can be combined as described
in Section IV-B1. This tandem approach (EC+C+M+LB) re-
duces the retrieval latency of late binding (EC+LB) by 40%.

In Figure 4c, we plot a cumulative distribution function
(CDF) of the tail response times from the YCSB experiment.
We observed that in the lower percentiles, the performance

Tech-
nique R EC

EC
+LB

EC
+C

EC
+C+M

EC+C
+M+LB

λ 45.4 43.0 22.8 31.1 24.5 19.8

TABLE II: λ values for experimental techniques in YCSB 100
KB block experiment. Lower λ values indicate lower levels of
load imbalance.

difference between replication and erasure coding is the time
taken to decode blocks. At the tail, overall response times
increase because chunk retrieval time increases but the other
components of response time remain constant. More con-
cretely tail retrieval times are where the effects of straggling
chunks are observed, presenting as a sharp increase in latency.
Therefore, by examining tail latencies, we can see the effect
that different techniques have on reducing stragglers.

As Figure 4c shows, intelligently selecting chunk accesses
(EC+C) reduces the percentage of requests that experience
the straggler effect compared to baseline erasure coding (EC).
Data movement in addition to data access strategies (EC+C+M)
mitigate the effects of stragglers further. Data movement is
effective because it reduces the number of sites needed for
access, and helps balance load. Although late binding (EC+LB)
also reduces the effects of stragglers, EC+C+M has a lower
99th percentile latency than EC+LB because the extra requests
made by late binding place additional load on the storage sites.
We further examine the effects of load in the next section.

2) Effect on Load
Figure 4d shows the average amount of data that is read

per second from each site during the experiment. While a
decrease in latency increases throughput, it causes more data to

be read, which does not always improve performance. For late
binding (EC+LB), the additional requests result in more data
being read than with our data access and movement techniques
(EC+C+M) while EC+C+M has lower data retrieval times. Late
binding’s increase in the amount of data read is the result of
making δ extra chunk requests when retrieving a block, not
from performing more block reads than EC+C+M.

Our techniques help reduce the load imbalance experienced
in erasure-coded systems. To demonstrate this effect, we define
I/O load to be the amount of data read per site, and compare
the I/O load imbalance factor λ for each configuration in
Table II.5 As shown, our data access strategy (EC+C) reduces
load imbalance compared to both baseline erasure coding and
replication. This improvement is due to our cost model that
considers site load through the oj parameter. Intuitively, our
cost model creates a feedback loop: lightly loaded sites are
preferred for access over heavily loaded sites, so load shifts
from heavily loaded sites to lightly loaded sites to reach a
steady state of balanced load. Actively moving data (EC+C+M)
and considering load when doing so further improves load
balance. Late binding can improve load balance [38], and our
techniques provide similar levels of balance. However, late
binding makes extra requests that increase system load while
our techniques place minimal additional load on the system
(Section VI-C5), achieving load balance through load-aware
data movement and access strategies.

3) Block Size
We also experimented with varying block sizes, both smaller

(10 KB) and larger (1 MB), and have observed similar
trends in performance as previously described. We show the
breakdown of response times for our experiment with 1 MB
blocks in Figure 4e. In this experiment, we found that EC+C+M
techniques reduced data retrieval latency by a greater margin
(nearly 50% over EC, 27% over R, and 21% over EC+LB)
than with the smaller block size of 100 KB. The reduction is
greater because large blocks are more expensive to retrieve and
therefore magnify the effects of load imbalance, and stragglers,
that our techniques mitigate. The time taken to generate an
access strategy for our techniques (EC+C and EC+C+M) is the
same as for replication and erasure coding irrespective of block
size. This indicates that our mechanisms for fast access plan
generation using the plan cache, which had a 90% hit rate, and
a greedy solution on cache miss, are effective in minimizing
the latency overhead of the ILP solver. These results confirm
that our techniques are effective over a range of block sizes.

4) Fault Tolerance
To show that our techniques are robust in the presence of

failures, we performed our 100 KB YCSB experiments when
some nodes were unavailable. To do so, we purposefully failed
the storage service on n nodes chosen at random, but did
not trigger reconstruction of unavailable data. Consequently,
requests to unavailable nodes fail and when the failure is

5λ = (
Lmax−Lavg∗

Lavg∗
) ∗ 100, where the load on the maximally loaded site

is denoted by Lmax and the average load by Lavg∗ [38].

Resource Usage Statistics Chunk Read Optimizer Chunk Mover
Memory 2.8 GB 10.5 MB 80 MB
CPU <0.5% 0.5% 15%
Network 20 KB/s <1 KB/s 500 KB/s

TABLE III: Physical resources used by EC-Store.

detected, requests are routed to only the available nodes. In
Figure 4f, we present the average response times for requests
after 1 or 2 nodes have failed. Compared to when there are
no failures (Figures 4a and 4b), the average response time
increases by about 1 ms and 5 ms for all systems when
there are 1 and 2 node failures, respectively. Unlike the 1
node failure, when 2 nodes fail some blocks will have chunks
located on both of the failed nodes, causing our data access
strategy (EC+C) to formulate a data access plan in which the
remaining available 2 chunks must be retrieved. However, as
our strategy considers the cost of accessing a site, the access
plans for the remaining blocks can adapt as site load increases.
As our data movement strategy (EC+C+M) moves chunks to
help balance overall system load, the relative performance
improvements persist when failures occur.

5) Resource Consumption
Table III summarizes the physical resources used by the

chunk placement service (chunk read optimizer and chunk
mover) and the statistics service during a YCSB experiment
with 1 million 1-megabyte blocks. The chunk placement
service uses resources to generate background access plans,
manage the plan cache, and to create and cost movement plans.
For these components, the resource usage scales with the num-
ber of blocks accessed in a request, which is generally small,
(e.g. 10 [21,31,39]) and the number of blocks considered for
movement, which our movement heuristics limit.

The statistics service uses memory exclusively to track
access patterns. As more blocks are stored, the relative amount
of space needed for the statistics service decreases because
there is a long tail of blocks that are infrequently accessed, that
therefore require little space for tracking access correlations.
However, if there is a uniform distribution of block accesses
then the space required for tracking access correlations can
increase substantially. Overall, to provide dynamic data access
and movement strategies, EC-Store used only an additional
0.3% of the space needed to store data.

The network overhead of our techniques is also minimal.
We limit the chunk mover to moving less than one chunk
per second, so the data transfer necessary for dynamic data
movement is less than 1 additional block request every second.
Consequently, EC-Store incurs a network overhead of less than
0.1% compared to the total data transferred during the bench-
mark. Comparatively, late binding adds an additional chunk
request to every data item access (50% more chunk requests
in our experiments). These results show our techniques use
meager resources to achieve large performance gains.

6) Wikipedia Results
We performed experiments using the Wikipedia image ac-

cesses as described in Section VI-B, and show average re-
sponse times in Figure 4g. The figure shows that our dynamic

data movement and access strategies (EC+C+M) significantly
reduce the time taken to retrieve data: over erasure coding (EC)
by 40%, replication (R) by 20%, and late binding (EC+LB)
by 17%. Our techniques achieve these improvements without
making extra requests that late binding generates, storing 50%
less data than replication, and using little additional resources
(Table III). The results show that our intelligent data access
strategy (EC+C) provides about half of the overall reduction
in latency. As with the YCSB experiments, when late binding
is combined with our approach (EC+C+M+LB), data retrieval
times are reduced by an additional 15%.

Figure 4h shows a tail latency (CDF) graph for the
Wikipedia experiments. Unlike the YCSB experiment (Fig-
ure 4c), the Wikipedia graph is smoother in appearance and
lacks the sharp increase in latency that occurs from stragglers.
This difference is due to the distribution in block sizes
that appear in the Wikipedia workload but not the YCSB
workload. As Section VI-C3 noted, the time taken to retrieve
data increases as block size increases. Therefore, a straggling
request for small chunks can have the same retrieval latency
as a straggler-free request for large chunks. This property
makes the effects of stragglers less prominent in a single CDF.
We observe that EC+C+M and EC+C+M+LB have the lowest
latencies for the entire distribution of requests, and it is only
at the extreme tail that late binding (EC+LB) has comparable
latency to EC+C+M. These improvements are possible due to
our techniques providing a size-aware access and movement
strategy to ensure that load remains balanced in the presence
of varying I/O costs for different requests.

VII. RELATED WORK

Erasure-coded storage is popularly used by industrial com-
panies that have designed large-scale (distributed) storage
systems [11,15,30,32]. Some systems [43,56,57] have used
erasure coding to build highly available key-value stores. EC-
Store’s distributed architecture is motivated by these systems,
but differs in its dynamic data access and placement strategies.

To avoid the straggling chunks problem, several systems use
a late binding strategy [19,38,49]. Our work demonstrates that
dynamic data movement as well as dynamic access strategies,
in addition to being complementary to late binding, can
provide performance gains over late binding.

To reduce the overhead of encoding, researchers have de-
signed new erasure codes [19,22,36,37,42,48] or exploited
their algebraic properties [29]. These approaches do not ad-
dress strategies for placement and access of encoded data.
Theoretical work has examined bounds on latency in erasure-
coded storage systems [2,6,41,55]. Instead of a single static
placement policy, our work contributes algorithms for dynamic
data movement and placement including a practical system
using these strategies. This design allows EC-Store to adapt
to changing workloads and access patterns.

Data access and placement strategies have been proposed
for replicated data [8,17,20,33,35,39,46] but they cannot be
used for erasure coded systems as they rely on the assumption
that a complete copy of every data item is accessible at a

single storage site, which does not hold for encoded data. EC-
Store builds upon the ideas of these systems by tracking access
history, co-locating data, and dynamically moving data. EC-
Store offers erasure-coded storage systems a holistic approach
for data access, placement, and movement by incorporating
system load, block access patterns, and access frequency into
its strategies. In contrast, WPS [50] makes data placement
decisions using only chunk access frequency statistics, and
does not specify strategies for data access.

The Triones [45] tool proposes to place encoded chunks
across data centers to provide availability in the presence of
entire data center failures. Triones considers the monetary cost
of data access and storage as the primary objective for static
data placement while EC-Store dynamically optimizes for data
access latencies within storage nodes in a data center.

There has been work that focuses on repair performance by
clustering anti-correlated blocks [18,58]. In these approaches,
an original copy of data is kept at one site and erasure-
coded chunks at other sites for fault tolerance. These encoded
chunks are accessed for repair only if the original data copy is
unavailable, unlike in EC-Store where encoded data is always
accessed. These systems offer access strategies but do not
perform dynamic data movement like EC-Store.

Encoding-aware replication [27] supports both encoded and
replicated data to decrease chunk access times. Other sys-
tems [3,13,16] improve response times by caching chunks or
complete copies of data. These approaches increase storage
overheads and do not lower response times more than replica-
tion, unless the copies are stored on faster storage media. EC-
Store outperforms replication without increasing the storage
overhead of erasure coding. Other work [25,54] focuses on
choosing erasure coding parameters that minimize response
times for hot data items at the cost of increased storage
overheads by decreasing or increasing k. As described in
Section V-B3, EC-Store targets performance improvements of
erasure coded storage regardless of choices for k and r.

VIII. CONCLUSION
We presented EC-Store, a distributed erasure-coded stor-

age system that is designed for dynamic data access and
movement. Our optimization-driven approach allows for data
accesses that minimize response times. By considering access
patterns, EC-Store improves the distribution of load within
the system and supports efficient retrieval by co-locating
frequently accessed data items. EC-Store reduces the average
time to retrieve data by nearly 50% when compared to standard
erasure coding techniques, and 30% compared to replication.
EC-Store improves the state-of-the-art in storage systems
by incorporating the best of both erasure-coded storage and
replication to provide fault tolerance, low latency data access
and low overhead storage.

ACKNOWLEDGMENTS
Funding for this project was provided by the Natural

Sciences and Engineering Research Council of Canada, the
University of Waterloo, Canada Foundation for Innovation,
Ontario Research Fund, and the province of Ontario.

REFERENCES
[1] ACHTERBERG, T. Scip: solving constraint integer programs. Mathe-

matical Programming Computation 1, 1 (2009), 1–41.
[2] AGGARWAL, V., AL-ABBASI, A. O., FAN, J., AND LAN, T. Taming tail

latency for erasure-coded, distributed storage systems. arXiv preprint
arXiv:1703.08337 (2017).

[3] AGGARWAL, V., CHEN, Y.-F. R., LAN, T., AND XIANG, Y. Sprout:
A functional caching approach to minimize service latency in erasure-
coded storage. In Distributed Computing Systems (ICDCS), 2016 IEEE
36th International Conference on (2016), IEEE, pp. 753–754.

[4] BORTHAKUR, D. Hdfs architecture guide, 2008.
[5] BRASILEIRO, F. V., EZHILCHELVAN, P. D., SHRIVASTAVA, S. K.,

SPEIRS, N. A., AND TAO, S. Implementing fail-silent nodes for
distributed systems. IEEE Transactions on Computers 45, 11 (1996),
1226–1238.

[6] CHEN, S., SUN, Y., KOZAT, U. C., HUANG, L., SINHA, P., LIANG, G.,
LIU, X., AND SHROFF, N. B. When queueing meets coding: Optimal-
latency data retrieving scheme in storage clouds. In INFOCOM, 2014
Proceedings IEEE (2014), IEEE, pp. 1042–1050.

[7] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,
AND SEARS, R. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM symposium on Cloud computing (2010),
ACM, pp. 143–154.

[8] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN, S. Schism:
a workload-driven approach to database replication and partitioning.
Proceedings of the VLDB Endowment 3, 1-2 (2010), 48–57.

[9] DEAN, J., AND BARROSO, L. A. The tail at scale. Communications of
the ACM 56, 2 (2013), 74–80.

[10] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G.,
LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S., VOSSHALL,
P., AND VOGELS, W. Dynamo: amazon’s highly available key-value
store. In ACM SIGOPS operating systems review (2007), vol. 41, ACM,
pp. 205–220.

[11] FIKES, A. Storage architecture and challenges. http://static.
googleusercontent.com/external content/untrusted dlcp/research.
google.reverse-proxy.org/en/us/university/relations/facultysummit2010/
storage architecture and challenges.pdf, 2010. Accessed: 2010-07-29.

[12] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M., TRUONG,
V.-A., BARROSO, L., GRIMES, C., AND QUINLAN, S. Availability in
globally distributed storage systems. In OSDI (2010), vol. 10, pp. 1–7.

[13] FRIEDMAN, R., KANTOR, Y., AND KANTOR, A. Replicated erasure
codes for storage and repair-traffic efficiency. In Peer-to-Peer Computing
(P2P), 14-th IEEE International Conference on (2014), IEEE, pp. 1–10.

[14] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file
system. In ACM SIGOPS operating systems review (2003), vol. 37,
ACM, pp. 29–43.

[15] HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. Glacier: Highly
durable, decentralized storage despite massive correlated failures. In
Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2 (2005), USENIX Association,
pp. 143–158.

[16] HALALAI, R., FELBER, P., KERMARREC, A.-M., AND TAÏANI, F.
Agar: A caching system for erasure-coded data. In Distributed Com-
puting Systems (ICDCS), 2017 IEEE 37th International Conference on
(2017), IEEE, pp. 23–33.

[17] HOSE, K., AND SCHENKEL, R. Warp: Workload-aware replication and
partitioning for rdf. In Data Engineering Workshops (ICDEW), 2013
IEEE 29th International Conference on (2013), IEEE, pp. 1–6.

[18] HU, Y., AND NIU, D. Reducing access latency in erasure coded cloud
storage with local block migration. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications
(April 2016), pp. 1–9.

[19] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER, B., GOPALAN,
P., LI, J., AND YEKHANIN, S. Erasure coding in windows azure storage.
In Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12) (2012), pp. 15–26.

[20] HUANG, J., AND ABADI, D. J. Leopard: lightweight edge-oriented
partitioning and replication for dynamic graphs. Proceedings of the
VLDB Endowment 9, 7 (2016), 540–551.

[21] HUANG, Q., BIRMAN, K., VAN RENESSE, R., LLOYD, W., KUMAR, S.,
AND LI, H. C. An analysis of facebook photo caching. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(2013), ACM, pp. 167–181.

[22] KHAN, O., BURNS, R., PLANK, J., PIERCE, W., AND HUANG, C.
Rethinking erasure codes for cloud file systems: minimizing i/o for
recovery and degraded reads. In Proceedings of the 10th USENIX con-
ference on File and Storage Technologies (2012), USENIX Association,
pp. 20–20.

[23] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON,
P., GEELS, D., GUMMADI, R., RHEA, S., WEATHERSPOON, H.,
WEIMER, W., ET AL. Oceanstore: An architecture for global-scale
persistent storage. ACM Sigplan Notices 35, 11 (2000), 190–201.

[24] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010),
35–40.

[25] LI, J., AND LI, B. Zebra: Demand-aware erasure coding for distributed
storage systems. In 2016 IEEE/ACM 24th International Symposium on
Quality of Service (IWQoS) (June 2016), pp. 1–10.

[26] LI, J., SHARMA, N. K., PORTS, D. R., AND GRIBBLE, S. D. Tales
of the tail: Hardware, os, and application-level sources of tail latency.
In Proceedings of the ACM Symposium on Cloud Computing (2014),
ACM, pp. 1–14.

[27] LI, R., HU, Y., AND LEE, P. P. Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems. In
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (2015), IEEE, pp. 148–159.

[28] LI, Z., CHEN, Z., SRINIVASAN, S. M., AND ZHOU, Y. C-miner:
mining block correlations in storage systems. In Proceedings of the 3rd
USENIX conference on File and storage technologies (2004), USENIX
Association, pp. 13–13.

[29] MITRA, S., PANTA, R., RA, M.-R., AND BAGCHI, S. Partial-parallel-
repair (ppr): a distributed technique for repairing erasure coded storage.
In Proceedings of the Eleventh European Conference on Computer
Systems (2016), p. 30.

[30] MURALIDHAR, S., LLOYD, W., ROY, S., HILL, C., LIN, E., LIU,
W., PAN, S., SHANKAR, S., SIVAKUMAR, V., TANG, L., ET AL. f4:
Facebook’s warm blob storage system. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14) (2014),
pp. 383–398.

[31] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE, H.,
LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB, P., ET AL.
Scaling memcache at facebook. In NSDI (2013).

[32] OVSIANNIKOV, M., RUS, S., REEVES, D., SUTTER, P., RAO, S., AND
KELLY, J. The quantcast file system. Proceedings of the VLDB
Endowment 6, 11 (2013), 1092–1101.

[33] PAIVA, J., RUIVO, P., ROMANO, P., AND RODRIGUES, L. Auto placer:
Scalable self-tuning data placement in distributed key-value stores. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 9, 4 (2015),
19.

[34] PLANK, J. S., AND GREENAN, K. M. Jerasure: A library in c facilitating
erasure coding for storage applications–version 2.0. Tech. rep., Technical
Report UT-EECS-14-721, University of Tennessee, 2014.

[35] QUAMAR, A., KUMAR, K. A., AND DESHPANDE, A. Sword: scalable
workload-aware data placement for transactional workloads. In Pro-
ceedings of the 16th International Conference on Extending Database
Technology (2013), ACM, pp. 430–441.

[36] RASHMI, K., NAKKIRAN, P., WANG, J., SHAH, N. B., AND RAM-
CHANDRAN, K. Having your cake and eating it too: Jointly optimal
erasure codes for i/o, storage, and network-bandwidth. In 13th USENIX
Conference on File and Storage Technologies (FAST 15) (2015), pp. 81–
94.

[37] RASHMI, K., SHAH, N. B., AND RAMCHANDRAN, K. A piggybacking
design framework for read-and download-efficient distributed storage
codes. In Information Theory Proceedings (ISIT), 2013 IEEE Interna-
tional Symposium on (2013), IEEE, pp. 331–335.

[38] RASHMI, K. V., CHOWDHURY, M., KOSAIAN, J., STOICA, I., AND
RAMCHANDRAN, K. Ec-cache: Load-balanced, low-latency cluster
caching with online erasure coding. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16) (Savannah,
GA, Nov. 2016), USENIX Association, pp. 401–417.

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.reverse-proxy.org/en/us/university/relations/facultysummit2010/storage_architecture_and_challenges.pdf

[39] REDA, W., CANINI, M., SURESH, L., KOSTIĆ, D., AND BRAITH-
WAITE, S. Rein: Taming Tail Latency in Key-Value Stores via Multiget
Scheduling. In Proceedings of the 7th ACM european conference on
Computer Systems (EuroSys’17) (Apr 2017).

[40] REED, I. S., AND SOLOMON, G. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8,
2 (1960), 300–304.

[41] SHAH, N. B., LEE, K., AND RAMCHANDRAN, K. The mds queue:
Analysing the latency performance of erasure codes. In Information
Theory (ISIT), 2014 IEEE International Symposium on (2014), IEEE,
pp. 861–865.

[42] SHAH, N. B., RASHMI, K., KUMAR, P. V., AND RAMCHANDRAN, K.
Distributed storage codes with repair-by-transfer and nonachievability
of interior points on the storage-bandwidth tradeoff. IEEE Transactions
on Information Theory 58, 3 (2012), 1837–1852.

[43] SHANKAR, D., LU, X., AND PANDA, D. K. High-performance and
resilient key-value store with online erasure coding for big data work-
loads. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on (2017), IEEE, pp. 527–537.

[44] SLEE, M., AGARWAL, A., AND KWIATKOWSKI, M. Thrift: Scalable
cross-language services implementation. White Paper: https://thrift.
apache.org/static/files/thrift-20070401.pdf, 2007.

[45] SU, M., ZHANG, L., WU, Y., CHEN, K., AND LI, K. Systematic data
placement optimization in multi-cloud storage for complex requirements.
IEEE Transactions on Computers 65, 6 (2016), 1964–1977.

[46] SURESH, P. L., CANINI, M., SCHMID, S., AND FELDMANN, A. C3:
Cutting tail latency in cloud data stores via adaptive replica selection.
In NSDI (2015), pp. 513–527.

[47] URDANETA, G., PIERRE, G., AND VAN STEEN, M. Wikipedia work-
load analysis. Vrije Universiteit, Amsterdam, The Netherlands, Tech.
Rep. IR-CS-041, Sepember (2007).

[48] VAJHA, M., RAMKUMAR, V., PURANIK, B., KINI, G., LOBO, E.,
SASIDHARAN, B., KUMAR, P. V., BARG, A., YE, M., NARAYANA-
MURTHY, S., HUSSAIN, S., AND NANDI, S. Clay codes: Moulding
MDS codes to yield an MSR code. In 16th USENIX Conference on File
and Storage Technologies (FAST 18) (Oakland, CA, 2018), USENIX
Association, pp. 139–154.

[49] VENKATARAMAN, S., PANDA, A., ANANTHANARAYANAN, G.,
FRANKLIN, M. J., AND STOICA, I. The power of choice in data-aware
cluster scheduling. In Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation (2014), USENIX
Association, pp. 301–316.

[50] WANG, S., HUANG, J., QIN, X., CAO, Q., AND XIE, C. Wps: A
workload-aware placement scheme for erasure-coded in-memory stores.
In Networking, Architecture, and Storage (NAS), 2017 International
Conference on (2017), IEEE, pp. 1–10.

[51] WEATHERSPOON, H., AND KUBIATOWICZ, J. D. Erasure coding vs.
replication: A quantitative comparison. In International Workshop on
Peer-to-Peer Systems (2002), Springer, pp. 328–337.

[52] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D., AND
MALTZAHN, C. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation (2006), USENIX Association, pp. 307–320.

[53] WU, Z., YU, C., AND MADHYASTHA, H. V. Costlo: Cost-effective
redundancy for lower latency variance on cloud storage services. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15) (Oakland, CA, 2015), USENIX Association, pp. 543–557.

[54] XIA, M., SAXENA, M., BLAUM, M., AND PEASE, D. A tale of two
erasure codes in hdfs. In FAST (2015), pp. 213–226.

[55] XIANG, Y., LAN, T., AGGARWAL, V., AND CHEN, Y.-F. Optimizing
differentiated latency in multi-tenant, erasure-coded storage. IEEE
Transactions on Network and Service Management 14, 1 (2017), 204–
216.

[56] YIU, M. M., CHAN, H. H., AND LEE, P. P. Erasure coding for small
objects in in-memory kv storage. In Proceedings of the 10th ACM
International Systems and Storage Conference (2017), ACM, p. 14.

[57] ZHANG, H., DONG, M., AND CHEN, H. Efficient and available in-
memory kv-store with hybrid erasure coding and replication. In 14th
USENIX Conference on File and Storage Technologies (FAST 16) (2016),
pp. 167–180.

[58] ZHU, Y., LIN, J., LEE, P. P., AND XU, Y. Boosting degraded reads
in heterogeneous erasure-coded storage systems. IEEE Transactions on
Computers 64, 8 (2015), 2145–2157.

https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf

	Introduction
	Erasure Coded Storage and Fault Tolerance
	Motivating Example
	Dynamic Data Access and Movement Strategies
	Notation
	Estimating Data Access Cost
	Late Binding

	Estimating Chunk Movement Gain
	Selecting Chunks for Movement

	EC-Store: Architecture and Implementation
	Statistics Service
	Chunk Placement Service
	Chunk Read Optimizer
	Chunk Mover
	Parameter Choices

	Repair Service

	Experimental Evaluation
	Experimental Setup
	Benchmarks
	Experimental Results
	Response Time
	Effect on Load
	Block Size
	Fault Tolerance
	Resource Consumption
	Wikipedia Results

	Related Work
	Conclusion
	References

