
Digital Object Identifier (DOI) 10.1007/s00530-003-0129-9
Multimedia Systems (2004) Multimedia Systems

© Springer-Verlag 2004

VDBMS: A testbed facility for research in video database benchmarking�

Walid Aref1, Ann Christine Catlin1, Ahmed Elmagarmid1, Jianping Fan2, Moustafa Hammad1, Ihab Ilyas1,
Mirette Marzouk1, Sunil Prabhakar1, Yi-Cheng Tu1, Xingquan Zhu3

1 Department of Computer Sciences, Purdue University, West Lafayette IN 47907, USA
2 Department of Computer Science, University of North Carolina, Charlotte, NC 28223, USA
3 Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Abstract. Real-world video-based applications require
database technology that is capable of storing digital video
in the form of video databases and providing content-based
video search and retrieval. Methods for handling traditional
data storage, query, search, retrieval, and presentation cannot
be extended to provide this functionality. The VDBMS
research initiative is motivated by the requirements of video-
based applications to search and retrieve portions of video
data based on content and by the need for testbed facilities to
facilitate research in the area of video database management.
In this paper we describe the VDBMS video database research
platform, a system that supports comprehensive and efficient
database management for digital video. Our fundamental
concept is to provide a full range of functionality for video
as a well-defined abstract database data type, with its own
description, parameters, and applicable methods. Research
problems that are addressed by VDBMS to support the
handling of video data include MPEG7 standard multimedia
content representation, algorithms for image-based shot
detection, image processing techniques for extracting low-
level visual features, a high-dimensional indexing technique
to access the high-dimensional feature vectors extracted
by image preprocessing, multimedia query processing and
optimization, new query operators, real-time stream man-
agement, a search-based buffer management policy, and an
access control model for selective, content-based access to
streaming video. VDBMS also provides an environment for
testing the correctness and scope of new video processing
techniques, measuring the performance of algorithms in
a standardized way, and comparing the performance of
different implementations of an algorithm or component.
We are currently developing video component wrappers
with well-defined interfaces to facilitate the modification or
replacement of video processing components. The ultimate
goal of the VDBMS project is a flexible, extensible framework
that can be used by the research community for developing,
testing, and benchmarking video database technologies.

� This work was supported in part by the National Science Foun-
dation under Grants IIS-0093116, EIA-9972883, IIS-9974255, and
IIS-0209120 and by the NAVSEA/Naval Surface Warfare Center,
Crane.
Correspondence to: A. Catlin (e-mail: acc@cs.purdue.edu)

1 Introduction

A significant and ever increasing portion of the information
created today has audiovisual components, and most of it is
now available in digital form. Real-world video-based appli-
cations require database technology that is capable of stor-
ing this information in the form of video databases and pro-
viding content-based video search and retrieval. Methods for
handling traditional data storage and retrieval cannot be ex-
tended to provide this functionality for video. Two standard
approaches have been developed for handling video data: stor-
age in video servers and storage as binary large objects. Storing
video data in video servers with few data management capa-
bilities has been widely adopted by video-on-demand (VOD)
systems. The Fellini VOD system [27] supports real-time and
non-real-time storage and retrieval of continuous media data
(video, audio.) It focuses primarily on media streaming and
provides no support for content search and retrieval of the
stored media. Many research VOD systems focus on efficient
buffer management of raw video streams [8,22] and provide ei-
ther very limited support or no support at all for content search
and retrieval. It is not possible for such systems to address the
integration of content search, retrieval, and streaming. Inte-
gration of the search and streaming of video data is, how-
ever, supported by some commercial systems. Virage1 pro-
vides textual extraction, encoding, search, and streaming of
continuous media. As a specialized video server, Virage offers
a great deal of flexibility for applications that access video by
textual content. On the other hand, it is difficult to integrate
their video functionality with other types of data (e.g., rela-
tional data or high-dimensional data) or to express and execute
complex declarative queries (e.g., SQL queries) on the stored
media.

The second approach views video as a binary large ob-
ject (BLOB) whose content is hidden from the system and
for which no meaningful processing or optimization can be
performed. BLOBs are supported by many industrial-strength
database systems. The problem with the BLOB representa-
tion is that once it leaves the database, it is handled by a
user application in an application-specific manner, resulting
in data type mismatches between the database and the appli-

1 http://www.virage.com



2 Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking

cation. Moreover, much important functionality, such as on-
line and customized video views, query by content, similarity
search queries, video editing functionalities, and data abstrac-
tion, cannot be provided as an integral part of a BLOB-based
system. Some recent video research has focused on new appli-
cations of data management functionality to video data, such
as mining videos [29,36] and monitoring/tracking objects in
video streams using continuous queries [15]. Such features
will benefit from the efficient storage, query, and indexing ca-
pabilities of a video database system that supports video data
as a first-class database object. This functionality cannot be
satisfied by handling video data as BLOBs. The requirements
must be addressed by building upon existing database tech-
nologies and extending them as needed to efficiently support
video database functionality.

VDBMS provides a full range of functionality for video as
a well-defined data type, with its own description, parameters,
and applicable methods. The development and integration of a
video data type into the database management system achieves
a clear separation between the video processing and database
components. This allows video-based application design to
focus on details of the application itself while relying on the
underlying video framework components for storage, search,
retrieval, analysis, and presentation of the video data. Video
applications thus inherit all the powerful functionality gen-
erally provided by database management systems, including
query processing, optimization, concurrency, and recovery.
Furthermore, VDBMS is a general-purpose data management
system and supports extensions to include new data processing
functionalities such as video mining and continuous queries.

VDBMS system components include a video preprocess-
ing toolkit, a high-dimensional index manager, a stream man-
ager, and a search-based buffer management policy. These
VDBMS system components are described in this paper, and
details can be found in the literature [2,11,14,18]. We present
VDBMS as a research platform because it provides an open
and flexible environment for investigating new research areas
related to video database management, including the imple-
mentation, integration, and evaluation of new and existing al-
gorithms. Research problems that were addressed within the
VDBMS environment to support the handling of video data
include MPEG7 document compliance for importing and ex-
porting video features [1], algorithms for image-based shot de-
tection [20], image processing techniques for extracting low-
level visual features [11], camera motion detection algorithms
[35], hierarchical video summarization strategies for abstract-
ing video content, a high-dimensional indexing technique to
access the high-dimensional feature vectors extracted by im-
age preprocessing, new multifeature rank-join query operators
for image similarity matching [18], a new real-time stream
manager to admit, schedule, monitor, and serve concurrent
video stream requests periodically, an enhanced buffer man-
agement policy that integrates knowledge from the query pro-
cessor to improve streaming performance [14], and an access
control model that provides selective, content-based access to
streaming video data [6].

The development of the VDBMS video database manage-
ment research platform was motivated by the requirements
of video-based applications to retrieve portions of video data
based on content and by the need for testbed facilities to fa-
cilitate research in the area of video database management.

While investigating, developing, and testing the fundamen-
tal components required supporting full video database func-
tionality, we utilized VDBMS as a testbed for integrating and
evaluating video processing technologies from other sources.
As such, the system has provided us with an environment for
testing the correctness and scope of algorithms, measuring the
performance of algorithms in a standardized way, and compar-
ing the performance of different implementations of a com-
ponent. The next step in VDBMS system development is the
construction of video component wrappers with well-defined
interfaces that allow video components to be easily modified
or replaced. We also plan to provide the corresponding semi-
automatic mechanisms for integrating these components into
VDBMS. The ultimate goal of the VDBMS project is a flex-
ible, extensible framework that can be used by the research
community for developing, testing, and benchmarking video
database technologies.

We describeVDBMS system components in Sects. 2 and 3.
To demonstrate the usefulness of VDBMS as a testbed for
video database benchmarking, Sect. 4 presents experimental
studies and analysis for alternative techniques implemented
within the VDBMS environment.

2 The query interface

A VDBMS query interface client supports end-user content-
based query, search, retrieval, and real-time streaming for the
VDBMS video database server. End users can query by image,
camera motion type, or keywords or specify an SQL statement.
In image-based queries, users present an example image and
query the database for images or shots “most similar” to the
example based on any number and combination of the listed
visual features. The features of the user’s query image are ex-
tracted online and sent to the server for execution. Results can
be either frame level (video frame images with similar visual
features) or shot level (video shots with similar aggregate vi-
sual features, where feature aggregation is computed across
shot frames). Keyword queries are matched against video an-
notation data associated with logical video scenes. The query
interface generates and displays the SQL equivalent of the
user’s query for all non-SQL queries. The VDBMS query pro-
cessor returns a ranked list of results, where the user deter-
mines the number of top-ranked results to retrieve. Users can
navigate an image skim of the results using any step size.When
the user requests shot-level results, a key frame representing
shot content is returned to the user, and the user can select the
key frame to stream the shot directly from the database to the
query interface media player.

Users access the VDBMS query interface using the
Windows-based client shown in Fig. 1. The client connects
to the VDBMS system that resides on a Sun Enterprise 450
machine with four UltraSparc II processors, running the So-
laris 5.6 operating system. The system memory is 1 GB, with
RAID disks of 170 GB of storage. VDBMS functionality has
been tested against more than 500 h of medical videos ob-
tained from the Indiana University School of Medicine. The
medical videos are digitized, compressed into MPEG1 for-
mat, processed offline by the VDBMS preprocessing toolkit
to generate image-based and content-based metadata, and then
stored together with their metadata in the VDBMS database.



Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking 3

Fig. 1. VDBMS query interface

Fig. 2. VDBMS layered system architec-
ture

3 The video database management system

The VDBMS database management system is built on top of
an open source system consisting of Shore [33], the storage
manager developed at the University of Wisconsin, and Preda-
tor [30], the object relational database manager from Cornell
University. The VDBMS research group has developed the
extensions and adaptations needed to support full database
functionality for the video as a fundamental, abstract database
data type. Key database extensions include high-dimensional
indexing, video store and search operations, new video query
types, real-time video streaming, search-based buffer man-
agement policies for continuous streaming, and support for ex-
tended storage hierarchies including tertiary storage. These ex-
tensions required major changes in many traditional database
system components. Figure 2 illustrates our layered system

architecture with its functional components and their interac-
tions. The system consists of the object storage system layer at
the bottom, the object relational database management layer
in the middle, and the user interface layer at the top.

3.1 A video preprocessing toolkit

The VDBMS video preprocessing toolkit applies image and
semantic processing to partition raw video streams into shots,
then associates the shots with extracted visual and seman-
tic descriptors that represent and index the video content for
searching. Preprocessing algorithms detect the video scene
boundaries that partition the video into meaningful shots using
a process that computes color histogram differences and in-
corporates a mechanism for dynamic threshold determination.



4 Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking

Video shots are then processed to extract MPEG7-compatible
low-level visual feature descriptors, camera motion classifi-
cation, spatial and temporal segmentation, representative key
frames, and the semantic annotations of domain experts. The
video and its features and indices are stored in the VDBMS
database, along with physical metadata such as resolution for
quality-of-service presentation. Our system follows the recent
trend of representing the video content description in an XML-
like format according to MPEG7 [19] multimedia content de-
scriptors. MPEG7 is the worldwide standard for video content
description and has been incorporated as an integral part of
VDBMS feature representation. VDBMS video preprocess-
ing extracts nearly all low-level features defined by MPEG7,
including color histogram in both HSV and YUV formats,
texture tamura, texture edges, color moment and layout, mo-
tion and edge histograms, dominant and scalable color, and
homogeneous texture.

We are currently developing a wrapper that abstracts the
extraction, representation, and query of features. This plug-in
component allows users to define a new feature, supply its ex-
traction (image processing) algorithm, and query against the
feature for image similarity matching. Our wrapper and in-
tegration mechanisms incorporate the feature into the query
interface, create the schema for database representation, and
apply the user-provided algorithm during video preprocessing
and image-based queries. We provide users with a graphical
interface for defining and integrating video segmentation al-
gorithms, feature extraction algorithms, camera motion clas-
sification techniques, and other video processing techniques
that can be used for content representation and content-based
retrieval. This will allow researchers to compare and evaluate
alternative methods, improve existing algorithms, or develop
new ones.

3.2 High-dimensional video indexing

Since high-dimensional feature data are collected for each
video frame and aggregated for each video shot, the metadata
that represent and index video content occupy more disk space
than the video itself. The magnitude of these metadata and their
storage in the database as high-dimensional vectors present se-
rious indexing and searching difficulties in the execution and
optimization of feature-based queries. The VDBMS research
group extended the indexing capability of Shore by incorporat-
ing the GiST v2.0 implementation [16,17,34] of the SR-tree as
the high-dimensional index [4,5,21] and modified the query-
processing layer of Predator to access the Shore/GiST index.
VDBMS added the vector ADT to be used by all feature fields
and implemented

CREATE GSR INDEX <table> <fieldname> <table>

to create an instance of the GiST SR-tree for each field to be
used as the access path in feature matching queries. The multi-
dimensional indexing structure handles the high-dimensional
feature vectors that are produced by visual feature extraction
and used in image similarity searches.

We are currently building an interface to support a plug-in
component for indexing techniques so that alternative index-
ing mechanisms can be implemented, tested, and compared
within the VDBMS system.

3.3 The query processor and video query operators

The query processor was modified extensively to handle the
new high-dimensional indexing scheme as well as to support
new video query operators and their integration into the query
execution plan. VDBMS query processing must take into ac-
count the video methods and operators in generating, opti-
mizing, and executing query plans. Image similarity search
is performed by issuing nearest neighbor queries to the high-
dimensional access path.

In multifeature image similarity queries, users generally
present a sample image and query the database for images
“most similar” to the example based on some collection of
visual features. Results should be determined according to a
combined similarity order [13,24]. We have developed a prac-
tical, binary, pipelined query operator, NRA-RJ, that deter-
mines an output global ranking from the input ranked video
streams based on a score function [18]. Our algorithm extends
Fagin’s optimal aggregate ranking algorithm [10] by assum-
ing no random access is available on the input streams. The
output of NRA-RJ thus serves as valid input to other operators
in the query pipeline, supporting a hierarchy of join operations
and integrating easily into the query processing engine of any
database system.

We created a new VDBMS query operator that encapsu-
lates the rank-join algorithm in its GetNext operation. Each
call to GetNext returns the next top element from the ranked
inputs. The internal state information needed by the operator
consists of a priority queue of objects encountered thus far,
sorted by worst score in descending order. GetNext is binary
(although this restriction is merely practical), and the algo-
rithm holds for more than two inputs. Our modifications to
the original NRA algorithm are the following:

• The right input list is a source stream that provides the
operator with the ranked objects and their exact scores.
The left input may not be a source list since it can be the
output of another NRA-RJ operator. In this case, the score
is expressed as a range, from worst to best. This means
that GetNext must be able to handle a score range rather
than an exact score from the left iterator.

• The parameter k, the number of requested output objects,
is not known in advance; rather it increases for each call
to GetNext. The modified algorithm first checks if another
object can be reported from the priority queue without
violating the stopping condition and, if not, moves deeper
into the input streams to retrieve more objects.

• In each call to GetNext, the current depth of the caller
is passed to the operator. This extra information assures
synchronization among the pipeline of NRA-RJ operators.

The incremental and pipelining properties of our aggre-
gation algorithm are essential for practical use in real-world
database engines, and our new operator will help in imple-
menting this type of join in ordinary query plans.

A modular interface for the integration of query operators
into the VDBMS query processor is currently underway. The
interface will support the integration of user-developed oper-
ators into the query execution plan and will also support the
performance evaluation and comparison of alternative algo-
rithms for implementing query operators by allowing devel-
opers to identify performance metrics and test point locations



Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking 5

for collecting measurements and statistics. In Sect. 4.2, we
demonstrate this concept in the context of performance anal-
ysis for different algorithms that implement the multifeature
ranking query operator. The experimental study investigates
scalability as well as time and space complexity and discusses
performance trade-off issues

3.4 The stream manager

The VDBMS stream manager is responsible for handling the
special needs of video streaming. Each request for video data
needs to be streamed at a predetermined rate (MPEG1 needs,
on average, a 1.5-Mbps display rate). Violating the rate of
streaming by either increasing or decreasing the display rate
may result in overflow at the client buffer or hiccups at the
client side. To hide the latency associated with access to disk
storage, the stream manager streams part of the data (a seg-
ment) while prefetching the next segment into the memory
buffers.

Since many stream requests are serviced simultaneously
by the manager, resources such as memory buffers and
disk bandwidth must be divided among the streams. This is
achieved by serving each stream request periodically and serv-
ing additional concurrent streaming requests within that pe-
riod. Due to limited memory and disk bandwidth, the manager
can only serve a specific number of requests within a single
period. To serve requests in real time, the segment referenced
next should be retrieved into the buffer before the end of the
current period. We have implemented a real-time stream man-
ager above the buffer manager layer in VDBMS [1], and its
functionality is as follows:

1. Admit a new stream request if the maximum number of
concurrent streams has not been reached; otherwise delay
the request and retry when one of the current requests
finishes.

2. Schedule segment prefetching by sending requests to the
buffer manager. Each page of the allocated segment is fixed
in the buffer pool until the page is streamed.

3. Send the segment to the client according to a predeter-
mined streaming rate. The segments are processed page-
wise, and each page is unfixed and returned to the buffer
manager after streaming the content.

4. Communicate with the query manager to keep track of
search results. The stream manager is implemented as mul-
tithreaded modules and has well-defined interfaces with
the query engine, the buffer manager, and the Extensible
Abstract Data Type (E-ADT) interface. The stream man-
ager operates by issuing requests to the buffer manager,
guiding the underlying buffer management policies, com-
municating with the query processor, and sending streams
to clients at a specific rate.

3.5 A search-based buffer management policy

Continuous-media servers that support content-based search
and retrieval use a main memory buffer to store the requested
media streams before sending them on to the user. Buffering
policies for media streaming have been investigated in several

studies. Chang and Garcia-Molina [8] introduce a memory-
efficient prefetching schedule based on fixing the time dis-
placement between prefetching requests. A recent study [22]
proposes dynamic buffer allocation for media streaming that
minimizes the memory requirement for concurrent media
streams. The work in [12] presents the basic functionalities of
buffer management for delay-sensitive multimedia data, and in
[28] Ozden et al. describe changes needed by database man-
agement systems to support multimedia data. Replacement
policies for media streams have been studied for target applica-
tions such asVOD [9,23,26], which are designed for streaming
purposes only. Brown et al. [7] propose a goal-oriented buffer
allocation for different database workloads, where a target
goal (average execution time, for instance) is designated for
each workload. In the VDBMS project, we have investigated a
new buffer management policy that addresses the relationship
between the searching and streaming processes of video data.

Caching parts of media streams that may be referenced in
the near future enhances streaming performance in two ways:
it reduces the number of references to disk storage and it min-
imizes delay associated with the start of streaming. However,
precise caching decisions are often difficult to make. Optimal
prefetch and replacement policies would prefetch the data be-
fore their first reference and replace the data block that will
not be referenced for the longest time [28]. An obvious diffi-
culty is the policy’s dependence on knowledge about expected
streams, which is generally not available. In the case of video
streaming, however, there is an inherent connection between
query processing and streaming. Choices for streaming are
usually based on query results, and this relationship can be
used by the buffer manager to prefetch and cache pages ex-
pected for reference.

We have developed an efficient buffer management pol-
icy that uses feedback from the search engine to make more
accurate replacement and prefetching decisions. Top-ranked
query results from the query processor are used to predict fu-
ture video streaming requests, and a weight function [3] deter-
mines candidates for caching. By integrating knowledge from
the query and streaming components, VDBMS can achieve
better caching of media streams, thus minimizing initial la-
tency and reducing disk I/O. Many factors must be considered
when basing prefetching or replacement decisions on search
results. Streaming based on the search context is probabilistic:
new streaming requests can be based on any of the search re-
sults or even on none of them. Also, since the caching space is
now shared by pages for current as well as expected streams,
there will be increased overhead in the replacement policy
associated with balancing the space assigned to each.

In our search-based replacement policy, pages in the buffer
pool that are referenced by either current or expected streams
are considered for caching. To maximize the number of
caching pages, we replace the page that will be referenced
by current or expected streams after a long period of time
has passed. Also, we prefer caching pages that will be refer-
enced by current streams to those that will be referenced by
expected streams by assigning higher keep weight values [31]
to the current streams. Lookup tables contain pointers to ex-
pected streams, which are collected from the search results
and checked by the stream manager for matches when deter-
mining pages to replace. With knowledge collected in lookup
tables for expected streams, we predict with high probability



6 Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking

that one of the expected streams will be requested. The stream
manager tracks the utilization of the streaming period and uti-
lizes any fraction of the streaming period unused by current
streams to prefetch the first segment of the top-ranked ex-
pected streams into the memory buffer. If an expected stream
becomes an actual request, most of the pages in the first seg-
ment would already be cached in the buffer pool, and as a result
the number of references to lower-level storage would be sig-
nificantly reduced. The prefetching policy does not introduce
much overhead since it operates only during idle period time,
utilizing unused and reserved streaming resources.

The performance of the search-based policy was evaluated
by investigating the effects of buffer management on the num-
ber of I/Os when referencing the first segment of a requested
stream. Experimental results are presented in Sect. 4.1. They
show that initial latency of the search-based policy is reduced
on average by 20% when compared with traditional policies.

3.6 Extended storage hierarchies

Video database storage and buffer managers handle huge vol-
umes of data with real-time constraints [23,26]. In VDBMS,
the buffer pools are divided between the database buffer area
and the streaming area where requests for streams are serviced.
Extended buffer management handles multiple page requests
with segment allocation (instead of the traditional page-based
approach) for the large streaming requests from the stream
manager. An interface between the buffer manager and the
stream manager is used to exchange information that guides
buffer caching for stream requests. The storage manager was
extended to perform necessary video operations and process
both real-time and non-real-time requests. VDBMS methods
for handling extended storage hierarchies support transparent,
real-time access to buffer, disk, and tertiary storage. Different
caching levels on buffer and disk storage enhance access for
frequently referenced data, and a tertiary storage server man-
ages access to tertiary resident data, making them directly
accessible to the VDBMS system.

The tertiary storage and cache disk managers are imple-
mented underneath the storage volume manager. A dedicated
disk partition is used for caching hot items in tertiary storage,
and the cache disk manager maintains and reports these items.
The tertiary storage manager communicates with a PowerFile
manager (remote NT process), which locates the requested
page in its changer, loads the CD/DVD, and sends the re-
quested data through the local network via TCP. Due to the
overhead associated with reading from the device, the basic
transfer unit is a block instead of a page. The block is copied
to the cache disk, and the first page is sent to the buffer pool.
DVD jukeboxes can be daisy-chained, giving VDBMS access
to terabytes of data.

4 A testbed for video database benchmarking

While investigating and implementing components to support
full video database management, we have utilized VDBMS
to investigate, integrate, validate, compare, and evaluate alter-
nate video processing techniques and technologies. To illus-
trate the effectiveness of the current VDBMS system for new

component integration, validation, and performance evalua-
tion, we briefly describe three recent research projects carried
out within theVDBMS environment. The contribution of these
and other experimental studies to the understanding of video
processing within the database environment is the motivation
for our effort to create a complete testbed facility for video
database benchmarking.

4.1 Validation of a buffer management policy

To validate the search-based buffer management policy in a
heavy workload environment, we execute 32 simultaneous
clients. Each client submits an image-based query to VDBMS
and receives a collection of key frames representing the results
of a shot-based image similarity search. The client delays for
a random period (uniformly distributed between 10 and 20 s)
after retrieving the results and then submits a streaming re-
quest for one of them. We assume the client plays a shot se-
lected from the four top-ranked results 80% of the time. The
VDBMS stream manager admits the streaming request if pos-
sible; otherwise the request is delayed until one of the current
streams has finished. The client immediately submits a new
search request following the streaming of the selected shot, so
that a heavy load situation is maintained. The search results
are synthesized by random selection of ten candidate shots
from the database. The random selection provides an upper
bound for the performance of our policy. Our keep weight is
set to 3 if a page is referenced by an expected stream from
the top-ranked results and 4 if the page is referenced by a
current stream. Higher values for the keep parameter are not
recommended since they lead to excessive looping over buffer
pages to find replacement candidates. The experimental data
consist of eight 1-h videos, compressed in MPEG1 format
with a total size of 5 GB. Each video has been preprocessed
into shots with lengths between 5 and 10 min. We set the page
size to 8 KB, the segment size to 30 pages and the maximum
number of concurrent streams to 16. Each experimental run
lasts for 30 min, and the total number of buffer references is
approximately 500,000.

We compare the performance of the following policies:

• Search-based replacement (SrchBR): pages are cached if
referenced by current or expected stream requests.

• Search-based prefetching and replacement (SrchBPR):
first segment of expected stream is prefetched; pages are
cached if referenced by current or expected stream re-
quests.

• Stream-based replacement (StrmBR): pages are cached
only if referenced by a concurrent stream request.

• Use&Toss: pages are candidates for replacement immedi-
ately after use [32].

Figure 3a shows the effect of the buffer policies on reduc-
ing the number of I/Os when referencing the first segment of
the stream. For each first segment, we measure the percentage
of pages found in the buffer as we increase the buffer size from
10 to 25 MB. The figure shows that SrchBPR caches about
25% of the total pages of new streams based on the search
results; that is, the initial latency is reduced by 25%. Although
SrchBR achieves better results than StrmBR and Use&Toss, it



Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking 7

a b c

Fig. 3a–c. Performance evaluation of buffer management policies. a Reduction in I/O as buffer size changes. b Reduction in I/O as number of
videos changes. c Relative improvement in buffer hit ratio as buffer size changes

caches only those pages either used by current streams or ref-
erenced by expected streams, and therefore the improvement
is smaller than that of the prefetch policy. StrmBR has no
knowledge of expected streams and performs about the same
as Use&Toss. In Fig. 3b, the buffer size is fixed at 25 MB,
and we measure the reduction in I/O when referencing the
first segment of the stream as the number of stored videos is
increased from two to eight. SrchBPR achieves the best perfor-
mance, as high as 40% reduction in the number of I/Os. This
improvement results from both prefetching and replacement
strategies since more common data now exist between cur-
rent and expected streams. As the number of videos increases,
the chance for interaction decreases. Thus the improvement
is dominated by the positive effects of prefetching. The effect
of the replacement policy is obvious in SrchBR and StrmBR,
as both reduce the I/Os with small data sets. With larger data
sets, StrmBR and Use&Toss contribute similarly to the reduc-
tion of I/O since neither has any knowledge about expected
streams. The short duration of streamed segments represents
an obstacle for replacement algorithms that depend only on
current streams for two reasons: (1) in large data sets with uni-
form access patterns, common pages are infrequent, and (2)
common pages generally exist within a short interval of each
other (intervals are bounded, on average, by half the length
of a shot). Replacement policies based on caching common
pages between current streams will thus have a small number
of pages to recommend for caching.

Figure 3c shows the relative improvement in the buffer
hit ratio for policies based on current streams. As the buffer
size increases, more space is available to cache the data and
the chance of replacement is decreased. With small buffer
sizes, pages are replaced more frequently and the improve-
ment achieved with search-based policies such as SrchBPR
and StrmBR becomes significant.

4.2 Performance evaluation of rank-join query operators

We implemented three state-of-the-art rank-join algorithms as
query operators inVDBMS for an extensive empirical study to
evaluate operator performance and trade-off issues in execut-
ing multifeature queries. Our experimental study compares the
NRA-RJ operator developed by the VDBMS research group
[18], the J∗ operator introduced by Natsev et al. [25], and (for

a baseline comparison) the nonpipelined version of the NRA
algorithm as a multiway rank-join operator, MW-RJ [10]. Al-
though most query optimizers are restricted to binary opera-
tors, MW-RJ provides a reference line for the best possible
performance. We investigated scalability as well as time and
space complexity between the algorithms for executing a join
of multiple ranked inputs (any number and combination of
features) on the stored video objects.

The following multifeature query for the k top-ranked re-
sults was issued against the VDBMS features:

Retrieve the top k video shots “most similar” to a given
image based on m visual features.

The query evaluation plan has m nearest neighbor (NN)
operators on m different visual features, and m − 1 rank-join
binary operators are used, where the results of one operator
are pipelined to the next operator in the pipeline. The num-
ber of features m in our study varies from 2 to 6, and the
number of top-ranked results k varies from 5 to 100. To evalu-
ate the operators, we used the following performance metrics:
(1) query running time for retrieving the top matching k out-
put results, (2) size of the buffer maintained by the operator,
and (3) number of database accesses in disk pages. While the
number of database accesses should give a good indication of
the time complexity of the operator, the experiments show a
significant CPU time complexity difference between the two
operators that affects the total running time, especially for
small numbers of inputs.

Figures 4 and 5 give performance comparisons for
NRA-RJ, J∗, and MW-RJ, for m = 2 and m = 3, respectively,
where m is the number of input sources that give a pipeline
of length m − 1. For m = 2, NRA-RJ is identical to MW-RJ
since there is no pipeline. Figure 4a compares the total running
time of the NRA-RJ and J∗ operators. The J∗ algorithm has
a significant CPU overhead due to the execution of its under-
lying A∗ graph search algorithm, which considers more join
combinations. Thus, NRA-RJ shows a faster execution time.
Both operators are nearly equal in the database access count
depicted in Fig. 4c. NRA-RJ has a smaller maximum queue
size than that of J∗, as shown in Fig. 4b, and the difference
increases as k increases (i.e., as more results are requested).
The difference in the maximum queue size and in the execu-
tion time can be explained by the fact that the J∗ algorithm
has to consider more join combinations than NRA-RJ since



8 Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking

Fig. 4. Performance comparison for NRA-RJ and J∗ when m = 2

Fig. 5. Performance comparison for NRA-RJ, J∗, and MW-RJ for m = 3

Fig. 6. A query pipeline with m = 3

it was developed for a general join condition. When used in
self-join problem settings, the generality of the J∗ algorithm
causes expensive unnecessary computations that increase both
the queue size and the running time.

Figure 5 compares the NRA-RJ, J∗, and MW-RJ operators
for m = 3. Figure 5a shows that NRA-RJ still outperforms
J∗ in total running time, and the pipeline does not affect the
speed of the NRA-RJ operator when compared with MW-RJ.
For the maximum queue size given in Fig. 5b and the number
of database accesses given in Fig. 5c, we make the following
observations:

• NRA-RJ has a larger maximum queue size and more
database accesses than MW-RJ. To understand this dif-
ference, we clarify how NRA-RJ operates in a pipeline
of three inputs. Figure 6 shows NRA-RJ with three input
streams, L1, L2, and L3. When the top NRA-RJ opera-

tor, OP1, is called to produce the next top-ranked object,
several GetNext calls for the left and right children are in-
voked. According to NRA-RJ’s GetNext algorithm, OP1
gets the next tuple from its left and right children at each
step. Hence, OP2 will be required to deliver as many top-
ranked objects for L2 and L3 as for L1. These calls to
the ranking algorithm in OP2 force L2 and L3 to retrieve
unnecessary objects, which results in larger queue sizes
with more database accesses. We refer to this as the local
ranking problem, that is, the NRA-RJ operator in the early
pipeline stages tends to retrieve more database objects in
order to deliver as many ranked tuples as required by the
next NRA-RJ operator.

• The J∗ operator has less database access cost than NRA-RJ
and is close to the cost of MW-RJ, despite NRA-RJ’s local
ranking problem. In contrast to NRA-RJ, the J∗ algorithm
does not retrieve equal numbers of objects from its left and
right children.

• For the same reason that J∗ has fewer disk accesses than
NRA-RJ, J∗ starts with smaller maximum queue size than
NRA-RJ. However, as in the case for m = 2, J∗ begins
to save many candidate join combinations in the queue,
causing its maximum queue size to become larger than
that of NRA-RJ as k increases. This also explains the fact
that J∗ has a larger queue size than MW-RJ, even though
both are retrieving almost the same number of database
objects, as shown in Fig. 5c.



Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking 9

Fig. 7. Optimized NRA-RJ operator

We now evaluate the scalability of the two pipelined oper-
ators with respect to the length of the query pipeline m. By fix-
ing k = 20, the operators NRA-RJ and J∗ are again compared
with respect to our three chosen performance metrics.As m in-
creases from 2 to 6, NRA-RJ has a larger queue size because
of the increased local ranking overhead in the pipeline. As
NRA-RJ encounters greater database access, I/O cost begins
to dominate total running time. The overhead finally affects the
running time enough to make NRA-RJ’s performance worse
than J∗’s, demonstrating clearly that J∗ is scalable in terms of
increased ranked inputs while NRA-RJ is not.

Our evaluation of the performance of NRA-RJ led to an
important insight: we must minimize the excessive local rank-
ing calls in earlier stages of the pipeline. Our solution was to
unbalance the depth step in the operator children. We changed
the NRA-RJ GetNext algorithm to reduce the local ranking
overhead by changing the way it retrieves tuples from its chil-
dren, that is, to require less expensive GetNext calls to the
left child, which is also an NRA-RJ operator. Using different
depths in the input streams had a major effect on performance.
Figure 7 shows the comparison between the modified NRA-
RJ, the J∗, and the MW-RJ operators. In the optimized version
of the NRA-RJ operator, one tuple is retrieved from the left
NRA-RJ child for each p tuple retrieved from the right input
child (in the figure, p = 2.) The optimized NRA-RJ oper-
ator showed significant performance improvements in both
the maximum queue size and in the number of database ac-
cesses due to the reduction of local ranking overhead in the
inner pipeline stages. With this improvement, the optimized
NRA-RJ operator is superior to the J∗ operator, even for large
m. The optimized NRA-RJ operator is an order of magnitude
faster, has fewer space requirements, and has a comparable
number of disk accesses.

4.3 A component for MPEG7 document compliance

The existing implementation for VDBMS feature extraction
and database representation applies MPEG7 to descriptors
and description schemes, using an XML-like format to de-
fine the semantic and image-based information that identifies
video content. The video preprocessing toolkit extracts nearly
all low-level features defined by MPEG7 as standard, and the
VDBMS query interface allows users to retrieve video shots
based on any combination of these features. Queries combin-

ing multiple low-level features can be used to approximate
high-level content-based searches.

To accommodate the representation and query of MPEG7
features not currently extracted by VDBMS video preprocess-
ing, we have developed an XML wrapper that can import any
MPEG7 document specified with Data Definition Language
(DDL) and map its descriptors to the VDBMS object rela-
tional database schema. The wrapper also supports the export
of VDBMS extracted features and other metadata from the
database as an MPEG7 document. The XML wrapper enables
the VDBMS system to make use of any available preextracted
metadata formatted as MPEG7 documents without prepro-
cessing the video itself. In addition, features that VDBMS
video preprocessing does not extract (such as event-based and
other semantic features) can be integrated, represented, and
queried asVDBMS metadata via this mechanism.A document
import function takes as input a user-supplied MPEG7 docu-
ment that is generated using multimedia description schemes
(MMDS) and contains the high-level and low-level feature
descriptors. The document is passed through the VDBMS
MPEG7 wrapper to extract, parse, and map the descriptors to
the VDBMS database feature schema. The video and its doc-
umented MPEG7 features are then stored inside the database,
where they can be used for image-based and content-based
queries. An export function extracts existing feature descrip-
tors from the database and sends them through the wrapper,
where they are mapped to the MPEG7 descriptors. The gen-
erated document can be used by other video processing tools
or databases.

5 Conclusion

In this paper, we present a video database research initiative
that resulted in the successful development of a video database
management system that provides comprehensive and effi-
cient capabilities for indexing, storing, querying, searching,
and streaming video data. Our fundamental concept was to
support a full range of functionality for video as a fundamental,
well-defined abstract database data type. Research problems
that were addressed by VDBMS to support the handling of
video data include MPEG7 standard multimedia content rep-
resentation, algorithms for image-based shot detection, image
processing techniques for extracting low-level visual features,
a high-dimensional indexing technique to access feature vec-



10 Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking

tors extracted by image preprocessing, multimedia query pro-
cessing and optimization, new query operators, a real-time
stream manager, a search-based buffer management policy,
and an access control model for selective, content-based ac-
cess to streaming video data. We have also used VDBMS as a
testbed for integrating and evaluating video processing tech-
niques and components. As such, the system has provided
us with an environment for testing the correctness and scope
of algorithms, measuring the performance of algorithms in
a standardized way, and comparing the performance of dif-
ferent implementations of components. The use of VDBMS
as a testbed facility was illustrated by performance studies to
investigate and analyze alternative implementations of video
database processing methods.

We are currently constructing video component wrappers
with well-defined interfaces to facilitate the modification or
replacement of video processing components. We are also
developing semiautomatic mechanisms for integrating these
components into VDBMS. The ultimate goal of the VDBMS
project is a flexible, extensible framework that can be used by
the research community for developing, testing, and bench-
marking video database technologies.

References

1. Aref W, Catlin AC, Elmagarmid A, Fan J, Hammad M, Ilyas I,
Marzouk M, Zhu X (2002) A video database management sys-
tem for advancing video database research. In: Proceedings of
the international workshop on management information sys-
tems, Tempe, AZ, November 2002, pp 8–17

2. Aref W, Catlin AC, Elmagarmid A, Fan J, Guo J, Hammad M,
Ilyas I, Marzouk M, Prabhakar S, Rezgui A, Teoh S, Terzi E,
Tu Y, Vakali A, Zhu X (2002) A distributed database server
for continuous media. In: Proceedings of the 18th international
conference on data engineering, San Jose, CA, 26 February–1
March 2002, pp 490–491

3. Aref W, Kamel I, Ghandeharizadeh S (2001) Disk scheduling in
video editing systems. IEEE Trans Knowl Data Eng 13(6):933–
950

4. Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The
R∗-tree: an efficient robust access method for points and rect-
angles. SIGMOD Rec ACM Special Interest Group Manage
Data 19(2):322–331

5. Berchtold S, Böhm C, Jagadish H, Kriegel H-P, Sander J (2000)
Independent quantization: an index compression technique for
high-dimensional data spaces. In: Proceedings of the 16th inter-
national conference on data engineering, San Diego, February
2000, pp 577–588

6. Bertino E, Hammad H,Aref W, ElmagarmidA (2000)An access
control model for video database systems. In: Proceedings of
the 9th international conference on information and knowledge
management, McLean, VA, November 2000, pp 336–343

7. Brown K, Carey M, Livny M (1996) Goal-oriented buffer man-
agement revisited. In: Proceedings of the 1996 ACM SIGMOD
international conference on management of data, Montreal, 4–6
June 1996, pp 353–364

8. Chang E, Garcia-Molina H (1997) Effective memory use in a
media server. In: Proceedings of the 23rd international confer-
ence on very large data bases, Athens, Greece, 25–29 August
1997, pp 496–505

9. Dan A, Sitaram D (1996) A generalized interval caching policy
for mixed interactive and long video environments. In: Proceed-

ings of the IS&T SPIE multimedia computing and networking
conference, San Jose, CA, January 1996

10. Fagin R, Lotem A, Naor M (2001) Optimal aggregation
algorithms for middleware. In: Proceedings of the 20th
ACM SIGACT-SIGMOD-SIGART symposium on principles of
database systems, Santa Barbara, CA, May 2001, pp 102–113

11. Fan J, Aref W, Elmagarmid A, Hacid M-S, Marzouk M, Zhu X
(2001) Multiview: multi-level video content representation and
retrieval. J Electric Imag 10(4):895–908

12. Gemmell J, Christodoulakis S (1992) Principles of delay sen-
sitive multimedia data storage and retrieval. In: ACM Trans Inf
Sys 1(1):51–90

13. Guntzer U, Balke W-T, Kiessling W (2000) Optimizing multi-
feature queries for image databases. In: Proceedings of the 26th
international conference on very large databases. Cairo, Egypt,
10–14 September 2000, pp 419–428

14. Hammad M,Aref W, ElmagarmidA (2002) Search-based buffer
management policies for streaming in continuous media. In:
Proceedings of the IEEE international conference on multime-
dia and expo, Lausanne, Switzerland, 26–29 August 2002

15. Hammad M, Aref W, Elmagarmid A (2003) Stream window
join: tracking moving objects in sensor network databases. In:
Proceedings of the 15th international conference on scientific
and statistical database management, Boston, June 2003, pp 75–
84

16. Hellerstein J, Naughton J, Pfeffer A (1995) Generalized search
trees for database systems. In: Proceedings of the 21st interna-
tional conference on very large data bases, Zurich, Switzerland,
11–15 September 1995, pp 562–573

17. Ilyas I, Aref W (2001) SP-GiST: an extensible database
index for supporting space partitioning trees. J Intell Sys
17(2–3):215–235

18. Ilyas I, Aref W, Elmagarmid A (2002) Joining ranked inputs in
practice. In: Proceedings of the 28th international conference on
very large data bases, Hong Kong, China, 20–23 August 2002,
pp 950–961

19. ISO/IEC/JTC1/SC29/WG11 (2001) Text of ISO/IEC 15938-3
Multimedia Content Description Interface, Part 3: Visual final
committee draft document no N4062. Singapore, March 2001

20. Jiang H, Helal A, Elmagarmid A, Joshi A (1998) Scene
change detection for video database systems. J Multimedia Sys
6(2):186–195

21. Katayama N, Satoh S (1997) The SR-tree: an index structure
for high dimensional nearest neighbor queries. SIGMOD Rec
ACM Special Interest Group Manage Data 26(2):69–380

22. Lee S-L, Whang K-Y, Moon Y-S, Song I-Y (2001) Dynamic
buffer allocation in video-on-demand systems. In: Proceedings
of the ACM SIGMOD international conference on management
of data, Santa Barbara, CA, 21–24 May 2001

23. Moser F, Kraiss A, Klas WL (1995) A buffer management strat-
egy for interactive continuous data flows in a multimedia dbms.
In: Proceedings of the 21st international conference on very
large data bases, Zurich, Switzerland, 11–15 September 1995,
pp 275–286

24. Nepal S, Ramakrishna M (1999) Query processing issues in
image (multimedia) databases. In: Proceedings of the 15th in-
ternational conference on data engineering, Sydney, Australia,
23–26 March 1999, pp 22–29

25. NatsevA, ChangY-C, Smith J, Li C-S,Vitter J (2001) Supporting
incremental join queries on ranked inputs. In: Proceedings of the
27th international conference on very large data bases, Rome,
August 2001, pp 281–290

26. Ozden B, Rastogi R, Silberschatz A (1996) Buffer replacement
algorithms for multimedia storage systems. In: Proceedings of



Walid Aref et al.: VDBMS: A testbed facility for research in video database benchmarking 11

the IEEE international conference on multimedia computing
and systems, Hiroshima, Japan, June 1996, pp 172–180

27. Ozden B, Biliris A, Rastogi R, Silberschatz A (1994) Fellini:
a low-cost storage server for movie on demand databases. In:
Proceedings of the 20th international conference on very large
data bases, Santiago, Chile, September 1994

28. Ozden B, Rastogi R, Silberschatz A (1997) Multimedia sup-
port for databases. In: Proceedings of the 16th ACM SIGACT-
SIGMOD-SIGART symposium on principles of database sys-
tems, Tucson, AZ, 12–14 May 1997, pp 1–11

29. Pan J-Y, Faloutsos C (2002) GeoPlot: spatial data mining on
video libraries. In: Proceedings of the international conference
on information and knowledge management, McLean, VA, 4–9
November 2002

30. Seshadri P (1998) Predator: a resource for database research.
SIGMOD Rec 27(1):16–20

31. Smith J (1978) Sequentiality and prefetching in database sys-
tems. ACM Trans Database Sys 3(3):223–247

32. Stonebraker M (1981) Operating system support for database
management. Commun ACM 24(7):412–418

33. Storage Manager Architecture (1999) Shore Documentation,
Computer Sciences Department, University of Wisconsin-
Madison, June 1999

34. Thomas M, Carson C, Hellerstein J (2000) Creating a cus-
tomized access method for blobworld. In: Proceedings of the
16th international conference on data engineering, San Diego,
March 2000, p 82

35. Zhu X, Elmagarmid A, Xiangyang X, Catlin A (2003) In-
sightVideo: toward hierarchical content organization for effi-
cient video browsing summarization and retrieval. IEEE Trans
Multimedia J (in press)

36. Zhu X, Fan J,Aref W, CatlinAC, ElmagarmidA (2003) Medical
video mining for efficient database indexing management and
access. In: Proceedings of the 19th international conference on
data engineering, Bangalore, India, 5–8 March 2003, pp 569–
580


