RNN for Sentiment Analysis: Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Borui(Athena) Ye

University of Waterloo

borui.ye@uwaterloo.ca

July 15, 2015

## **Overview**

#### 1 Introduction

#### 2 Related Work

#### **3 Stanford Sentiment Treebank**

#### **④ Recursive Neural Models**

RNN: Recursive Neural Network MV-RNN: Matrix-Vector RNN RNTN: Recursive Neural Tensor Network Tensor Backprop through Structure

#### **5** Experiments

## **Paper Information**

Richard Socher, Alex Perelygin, Jean Y.Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng and Christopher Potts, **Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank**,

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp 1631-1642. 2013.

## Introduction

Semantic Compositionality : to calculate in a systematic way the polarity values of larger syntactic constituents as some function of the polarities of their subconstituents[1]. Corpus (Sentiment Treebank)

- 11,855 sentences based on extracted from movie reviews [ 2]
- 215,154 phrases parsed from sentences using Stanford Parser[3], each annotated by 3 annotators.

Introduction

<sup>[1]</sup> K. Moilanen and S. Pulman, "Sentiment composition," in Proceedings of RANLP, vol. 7, 2007, pp. 378–382.

<sup>[2]</sup> B. Pang and L. Lee, "Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales," in *Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics*, Association for Computational Linguistics, 2005, pp. 115–124.

<sup>[3]</sup> D. Klein and C. D. Manning, "Accurate unlexicalized parsing," in *Proceedings of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1*, Association for Computational Linguistics, 2003, pp. 423–430.

## Introduction (Cont.)



# Introduction (Cont.)

#### Experiments

- 1 Fine-grained Sentiment For All Phrases
- **2** Full Sentence Binary Sentiment
- **3** Model Analysis: Contrastive Conjunction
- Model Analysis: High Level Negation
  - Negating Positive Sentences
  - Negating Negative Sentences
- **6** Model Analysis: Most Positive and Negative Phrases

#### **Related Work**

**Semantic Vector Spaces.** Distributed similarities of single words. But often fail to distinguish antonyms.

- Co-occurence of a word and its context [4].
- How often a word appears in a certan syntactic context [5].

**Compositionality in Vector Spaces.** Most of them capture two word compositions.

- Word vector addition, multiplication, etc. [6]
- Represent phrases as matrixes and define composition method as matrix multiplication. [7]

Related Work

Borui(Athena) Ye

<sup>[4]</sup> P. D. Turney, P. Pantel, et al., "From frequency to meaning: Vector space models of semantics," *Journal of artificial intelligence research*, vol. 37, no. 1, pp. 141–188, 2010.

<sup>[5]</sup> S. Padó and M. Lapata, "Dependency-based construction of semantic space models," *Computational Linguistics*, vol. 33, no. 2, pp. 161–199, 2007.

<sup>[6]</sup> J. Mitchell and M. Lapata, "Composition in distributional models of semantics," *Cognitive science*, vol. 34, no. 8, pp. 1388–1429, 2010.

<sup>[7]</sup> E. Grefenstette and M. Sadrzadeh, "Experimental support for a categorical compositional distributional model of meaning," in *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, Association for Computational Linguistics, 2011, pp. 1394–1404.

# **Related Work (Cont.)**

#### Sentiment Analysis.

- Bag-of-words representations [ 8].
- Extracting features or polarity shifting rules on syntactic structures [9]

Recursive Neural Models Will be covered later.

<sup>[8]</sup> B. Pang and L. Lee, "Opinion mining and sentiment analysis," *Foundations and trends in information retrieval*, vol. 2, no. 1-2, pp. 1–135, 2008.

<sup>[9]</sup> L. Polanyi and A. Zaenen, "Contextual valence shifters," in *Computing attitude and affect in text: Theory and applications*, 2006, pp. 1–10.

# **Stanford Sentiment Treebank**

#### Data retrieval and processing:

- Get movie review excerpts from the rottentomatoes.com, which includes 10,662 sentences, half positive, half negative.
- Parse sentences using the Stanford Parser.
- Using Amazon Mechanical Turk to label the resulting 215,154 phrases.



#### Stanford Sentiment Treebank

Borui(Athena) Ye

## **Statistics**

Findings:

- 1 Most of the short n-grams are neural;
- 2 Longer n-grams are evenly distributed;
- 3 Extreme sentiment degrees rarely happen.



## **Recursive Neural Models**

Tri-gram example of bottom up fashion:



#### Initialization

- Initialize each word vector using uniform distribution: U(-r,r), where r = 0.0001.
- Stack word vectors into matrix  $L \in \mathbb{R}^{d \times |V|}$ , where d is vector dimension, |V| is vocabulary size.

### **RNN: Recursive Neural Network[ 10]**

$$p_1 = f\left(W\left[\begin{array}{c}b\\c\end{array}\right]\right), p_2 = f\left(W\left[\begin{array}{c}a\\p_1\end{array}\right]\right)$$

where  $f = \tanh, W \in \mathbb{R}^{d \times 2d}$ 



**Recursive Neural Models** 

Borui(Athena) Ye

<sup>[10]</sup> R. Socher, J. Pennington, E. H. Huang, et al., "Semi-supervised recursive autoencoders for predicting sentiment distributions," in *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, Association for Computational Linguistics, 2011, pp. 151–161.

## MV-RNN: Matrix-Vector RNN[ 11]

**Main Idea**: represent every node in the parse tree both as a vector and a matrix.



$$p_1 = f\left(W \begin{bmatrix} Cb\\ Bc \end{bmatrix}\right), P_1 = f\left(W_M \begin{bmatrix} B\\ C \end{bmatrix}\right)$$

#### where $W, W_M \in \mathbb{R}^{d \times 2d}$

[11] R. Socher, B. Huval, C. D. Manning, et al., "Semantic compositionality through recursive matrix-vector spaces," in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Association for Computational Linguistics, 2012, pp. 1201–1211.

#### **Recursive Neural Models**

#### Borui(Athena) Ye

## MV-RNN: Matrix-Vector RNN (Cont.)

**Problem**: size of parameters becomes very large and depends on the size of the vocabulary.

**Solution**: use a simple powerful composition function with a fixed number of parameters.

# **RNTN: Recursive Neural Tensor Network**

**Main Idea**: use the same, tensor-based composition function for all nodes.



#### Definition

- *h* ∈ ℝ<sup>d</sup>: output of the tensor product
- $V^{[1:d]} \in \mathbb{R}^{2d \times 2d \times d}$ : tensor that defines multiple bilinear forms.

• 
$$V^{[i]} \in \mathbb{R}^{2d \times 2d}$$
: each slice of  $V^{[1:d]}$ .

$$\mathbf{h} = \left[ \begin{array}{c} b \\ c \end{array} \right]^T V^{[1:d]} \left[ \begin{array}{c} b \\ c \end{array} \right]; \mathbf{h}_i = \left[ \begin{array}{c} b \\ c \end{array} \right]^T V^{[i]} \left[ \begin{array}{c} b \\ c \end{array} \right]$$

# RNTN: Recursive Neural Tensor Network (Cont.)

Intuitively, we can interpret each slice of the tensor as capturing a specific type of composition.



#### **Tensor Backprop through Structure**



#### Tensor Backprop through Structure (Cont.)

**Goal**: minimize the KL-divergence between the predicted distribution  $y^i \in \mathbb{R}^{C \times 1}$  at node i and the target distribution  $t^i \in \mathbb{R}^{C \times 1}$ . The error function of a sentence is:

$$E(\theta) = \sum_{i} \sum_{j} t_{j}^{i} \log y_{j}^{i} + \lambda \|\theta\|^{2}$$

where  $\theta = (V, W, W_s, L)$ .

# **Experiments**

Two kinds of experiment:

- Large quantitative evaluations on the test set.
- Linguistic phenomena: contrastive conjunction and negation.

Baselines:

- Bag-of-words features + Naive Bayes (NB)
- Bag-of-words features + SVM (SVM)
- Bag-of-bigram features + Naive Bayes (BiNB)
- Averages of neural word vectors (VecAvg)
- RNN
- MV-RNN

#### **Sentiment Classification**

- Exp. 1: Fine-grained Sentiment For All Phrases
  Exp. 2: Full Sentence Pinery Sentiment
- 2 Exp. 2: Full Sentence Binary Sentiment



#### Accuracy

- Recursive models work better on shorter grams.
- RNTN upper bounds other models at most n-gram lengths.

| Model  | Fine-grained |      | Positive/Negative |      |
|--------|--------------|------|-------------------|------|
|        | All          | Root | All               | Root |
| NB     | 67.2         | 41.0 | 82.6              | 81.8 |
| SVM    | 64.3         | 40.7 | 84.6              | 79.4 |
| BiNB   | 71.0         | 41.9 | 82.7              | 83.1 |
| VecAvg | 73.3         | 32.7 | 85.1              | 80.1 |
| RNN    | 79.0         | 43.2 | 86.1              | 82.4 |
| MV-RNN | 78.7         | 44.4 | 86.8              | 82.9 |
| RNTN   | 80.7         | 45.7 | 87.6              | 85.4 |

# Exp. 3: Model Analysis: Contrastive Conjunction

X but Y Structure : two phrases, X and Y, connect by "but".



**Experiment result**: the test set includes 131 cases (subset of the original test set), RNTN achieve a accuracy of 41%, compared to MV-RNN (37), RNN (36) and biNB(27).

Experiments

Borui(Athena) Ye

# Exp. 4: Model Analysis: High Level Negation

Set 1: Negating Positive Sentences



# Exp. 4: Model Analysis: High Level Negation (Cont.)

Set 2: Negating Negative Sentences



# Exp. 4: Model Analysis: High Level Negation (Cont.)

| Model  | Accuracy         |                  |  |  |
|--------|------------------|------------------|--|--|
|        | Negated Positive | Negated Negative |  |  |
| biNB   | 19.0             | 27.3             |  |  |
| RNN    | 33.3             | 45.5             |  |  |
| MV-RNN | 52.4             | 54.6             |  |  |
| RNTN   | 71.4             | 81.8             |  |  |

# Thank you!