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Introduction

Semantic Compositionality : to calculate in a systematic way
the polarity values of larger syntactic constituents as some
function of the polarities of their subconstituents[ 1].
Corpus (Sentiment Treebank)

• 11,855 sentences based on extracted from movie reviews [
2]

• 215,154 phrases parsed from sentences using Stanford
Parser[ 3], each annotated by 3 annotators.

[1] K. Moilanen and S. Pulman, “Sentiment composition,” in Proceedings of RANLP, vol. 7, 2007, pp. 378–382.

[2] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment categorization with respect to
rating scales,” in Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, Association for Computational Linguistics, 2005, pp. 115–124.

[3] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics-Volume 1, Association for Computational Linguis-
tics, 2003, pp. 423–430.
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Introduction (Cont.)
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Introduction (Cont.)

Experiments
1 Fine-grained Sentiment For All Phrases
2 Full Sentence Binary Sentiment
3 Model Analysis: Contrastive Conjunction
4 Model Analysis: High Level Negation

• Negating Positive Sentences
• Negating Negative Sentences

5 Model Analysis: Most Positive and Negative Phrases
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Related Work

Semantic Vector Spaces. Distributed similarities of single
words. But often fail to distinguish antonyms.

• Co-occurence of a word and its context [ 4].
• How often a word appears in a certan syntactic context [ 5].

Compositionality in Vector Spaces. Most of them capture
two word compositions.

• Word vector addition, multiplication, etc. [ 6]
• Represent phrases as matrixes and define composition

method as matrix multiplication. [ 7]

[4] P. D. Turney, P. Pantel, et al., “From frequency to meaning: Vector space models of semantics,” Journal of
artificial intelligence research, vol. 37, no. 1, pp. 141–188, 2010.

[5] S. Padó and M. Lapata, “Dependency-based construction of semantic space models,” Computational Lin-
guistics, vol. 33, no. 2, pp. 161–199, 2007.

[6] J. Mitchell and M. Lapata, “Composition in distributional models of semantics,” Cognitive science, vol. 34,
no. 8, pp. 1388–1429, 2010.

[7] E. Grefenstette and M. Sadrzadeh, “Experimental support for a categorical compositional distributional model
of meaning,” in Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, 2011, pp. 1394–1404.
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Related Work (Cont.)

Sentiment Analysis.
• Bag-of-words representations [ 8].
• Extracting features or polarity shifting rules on syntactic

structures [ 9]
Recursive Neural Models Will be covered later.

[8] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and trends in information
retrieval, vol. 2, no. 1-2, pp. 1–135, 2008.

[9] L. Polanyi and A. Zaenen, “Contextual valence shifters,” in Computing attitude and affect in text:
Theory and applications, 2006, pp. 1–10.
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Stanford Sentiment Treebank

Data retrieval and processing:

• Get movie review excerpts from the rottentomatoes.com,
which includes 10,662 sentences, half positive, half
negative.

• Parse sentences using the Stanford Parser.
• Using Amazon Mechanical Turk to label the resulting

215,154 phrases.
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Statistics

Findings:
1 Most of the short n-grams are neural;
2 Longer n-grams are evenly distributed;
3 Extreme sentiment degrees rarely happen.
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Recursive Neural Models

Tri-gram example of bottom up fashion:

Initialization
• Initialize each word vector

using uniform distribution:
U(−r, r), where
r = 0.0001.

• Stack word vectors into
matrix L ∈ Rd×|V |, where d
is vector dimension, |V | is
vocabulary size.
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RNN: Recursive Neural Network[ 10]

where f = tanh,W ∈ Rd×2d

[10] R. Socher, J. Pennington, E. H. Huang, et al., “Semi-supervised recursive autoencoders for predicting senti-
ment distributions,” in Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, 2011, pp. 151–161.
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MV-RNN: Matrix-Vector RNN[ 11]

Main Idea: represent every node in the parse tree both as a
vector and a matrix.

where W,WM ∈ Rd×2d

[11] R. Socher, B. Huval, C. D. Manning, et al., “Semantic compositionality through recursive matrix-vector spaces,”
in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, Association for Computational Linguis-
tics, 2012, pp. 1201–1211.
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MV-RNN: Matrix-Vector RNN (Cont.)

Problem: size of parameters becomes very large and depends
on the size of the vocabulary.
Solution: use a simple powerful composition function with a
fixed number of parameters.
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RNTN: Recursive Neural Tensor Network

Main Idea: use the same, tensor-based compostition function
for all nodes.

Definition
• h ∈ Rd: output of the tensor

product
• V [1:d] ∈ R2d×2d×d: tensor that

defines multiple bilinear forms.
• V [i] ∈ R2d×2d: each slice of V [1:d].
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RNTN: Recursive Neural Tensor Network
(Cont.)

Intuitively, we can interpret each slice of the tensor as capturing
a specific type of composition.
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Tensor Backprop through Structure

Each node is assigned a label via:

ya = softmax(Wsa)

where Ws ∈ R5×d is the sentiment
classification matrix.
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Tensor Backprop through Structure (Cont.)

Goal: minimize the KL-divergence between the predicted
distribution yi ∈ RC×1 at node i and the target distribution
ti ∈ RC×1. The error function of a sentence is:

where θ = (V,W,Ws, L).
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Experiments

Two kinds of experiment:
• Large quantitative evaluations on the test set.
• Linguistic phenomena: contrastive conjunction and

negation.
Baselines:

• Bag-of-words features + Naive Bayes (NB)
• Bag-of-words features + SVM (SVM)
• Bag-of-bigram features + Naive Bayes (BiNB)
• Averages of neural word vectors (VecAvg)
• RNN
• MV-RNN
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Sentiment Classification

1 Exp. 1: Fine-grained Sentiment For All Phrases
2 Exp. 2: Full Sentence Binary Sentiment
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Accuracy

• Recursive models work better on shorter grams.
• RNTN upper bounds other models at most n-gram lengths.
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Exp. 3: Model Analysis: Contrastive
Conjunction

X but Y Structure : two phrases, X and Y, connect by “but”.

Experiment result: the test set includes 131 cases (subset of
the original test set), RNTN achieve a accuracy of 41%,
compared to MV-RNN (37), RNN (36) and biNB(27).
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Exp. 4: Model Analysis: High Level Negation

Set 1: Negating Positive Sentences
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Exp. 4: Model Analysis: High Level Negation
(Cont.)

Set 2: Negating Negative Sentences
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Exp. 4: Model Analysis: High Level Negation
(Cont.)
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Thank you!
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