Single Image Super Resolution of Textures via CNNs

Andrew Palmer
What is Super Resolution (SR)?

Simple: Obtain one or more high-resolution images from one or more low-resolution ones
Low resolution image

High resolution image
8x Upscaling
Many, many applications

Biometric recognition, including resolution enhancement for faces fingerprints, and iris images

Medical diagnosis

Image compression

Text enhancement; preprocessing step for optical character recognition
SR has diverse challenges

Underspecified problem; many solutions

No solid theory for determining what is 'good' enhancement. If it looks good, it looks good.
Visualizing the problem for 2x upscaling

What colours look best here?
Nearest Neighbour Upscaling

1D nearest-neighbour
Nearest Neighbour Upscaling
Linear Upscaling
Linear Upscaling
Cubic Upscaling

Cubic
Cubic Upscaling
Classical interpolation; most seen in practice

Image resizing options in Photoshop
Other traditional methods

Gaussian Smoothing, Wiener, Median filters (good at denoising)

Sharpening by amplifying existing image details (need to ensure that noise isn’t amplified)
Texture Super Resolution

Results could use some improvement in texture quality
The Describable Textures Dataset (DTD): textural images in the wild, annotated with a series of human-centric attributes, inspired by the perceptual properties of textures

5640 images, split into 47 classes, e.g. blotchy, polka dot, grainy
Low res (LR) image synthesis: crop ground truth images into several sub-images
Setup: Generate a LR image from each patch

For each HR cropped image:
1. Apply a Gaussian convolution
2. Sub-sample by the upscaling factor (produces a smaller image)
3. Bicubic upscaling
Input data going into the CNN

Total number of generated patches: 2,436,258

A subset (500) of the original images was used:
 Training set: 127,744 patches
 Validation: 12,544 patches
Common Evaluation Metrics

Peak Signal to Noise (PSNR); >=30 dB for restoration = very good

Structural Similarity (SSIM)

Subjective perception

Time efficiency

\[
PSNR = 10 \cdot \log_{10} \left(\frac{MAX^2}{MSE} \right) = 20 \cdot \log_{10} \left(\frac{MAX}{\sqrt{MSE}} \right) = 20 \cdot \log_{10}(MAX) - 10 \cdot \log_{10}(MSE)
\]
Setup: Hyperparameters

Activations: ReLU, ELU, tanh (popular choice for SR)

Loss function: MSE (old, but most common for SR)

Optimizer: ADAM

Iterations: 20,000

Learning rate: 10^{-3}

https://xkcd.com/1838/
Setup: Misc.

Over the RGB colour space

Zero padded edges; each layer outputs same dimensions

No max pooling layers (might be bad for denoising and SR tasks
https://arxiv.org/abs/1511.04491)
The effectiveness of deeper structures for super resolution is found not as apparent as that shown in image classification.
CNN Architecture

Conv
Activation: Relu
Filter size: 9x9
Filters: 64
Padding: same
Dim (out): 32 x 32

Conv
Activation: Relu
Filter size: 3x3
Filters: 32
Padding: same
Dim (out): 32 x 32

Conv
Activation: Relu
Filter size: 5x5
Filters: 32
Padding: same
Dim (out): 32 x 32
Vanilla SRCNN (RELU)

Filter sizes: 9-1-5
Max PSNR: 25.77
Vanilla SRCNN (ELU)

Filter sizes: 9-1-5
Max PSNR: 24.52
Autoencoder

Source: https://goo.gl/R7itkL
Autoencoder with skip connections

- Symmetric Skip connections
 Helps on recovering clean images
 Converges much faster and attains a higher-quality local optimum.

All filter sizes: 3x3
Number of filters: 64 (except the last Conv layer)
Autoencoder

Autoencoder Convergence curve trained on DTD dataset

Max PSNR: 28.4
Other results

Tanh: Max PSNR: 24.68

Filter sizes: 9-3-5 max PSNR: 26.03

Todo: Denoising autoencoder (at the reconstruction phase)

Standard dataset using same configuration max PSNR: 30.49
Todo: GAN

From Twitter

PSNR values **worse** than bicubic interpolation

Perceptual quality is the best by far
Results for a sample cross-hatched texture
Fibrous texture; 2x upscaling
Interlaced texture; 2x upscaling
Striped texture; 2x upscaling
Porous texture; 2x upscaling
Todo

More in-depth metrics on the performance against standard datasets

Evaluate performance on larger scaling factors, i.e. 4x, 8x etc.

Fix the GAN

(Maybe) Try a different down-sampling technique (some argue against bicubic preprocessing)

(Probably) Load a pre-trained model e.g. ResNet
Conclusion and Future work

Standard, shallow CNNs work alright for single image texture super resolution

Shallow autoencoders work better than CNNs

Quantify the performance for each texture class

Evaluate how effective these models are for classification
References

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network -
https://arxiv.org/abs/1609.04802

Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections -
Questions, suggestions, ideas?