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Montréal, Québec, Canada; and Protein Engineering Network of Centers of

Excellence, Edmonton, Alberta, Canada

Martin Karplus, New Chemistry Laboratory University of Oxford, Oxford,

U.K.; Department of Chemistry and Chemical Biology, Harvard University,

Cambridge, MA, U.S.A.; and Laboratoire de Chimie Biophysique, Institut le
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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. Prigogine

Stuart A. Rice
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PREFACE

The first attempts to model proteins on the computer began almost 30 years ago.

Over the past three decades, our understanding of protein structure and dynamics

has dramatically increased as a result of rapid advances in both theory and

experiment. The Protein Data Bank (PDB) now contains more than 10,000 high-

resolution protein structures. The human genome project and related efforts

have generated an order of magnitude more protein sequences, for which we do

not yet know the structure. Spectroscopic measurement techniques continue to

increase in resolution and sensitivity, allowing a wealth of information to be

obtained with regard to the kinetics of protein folding and unfolding, comple-

menting the detailed structural picture of the folded state. In parallel to these

efforts, algorithms, software, and computational hardware have progressed to

the point where both structural and kinetic problems may be studied with a fair

degree of realism.

Despite these advances, many major challenges remain in understanding

protein folding at both a conceptual and practical level. There is still significant

debate about the role of various underlying physical forces in stabilizing a

unique native structure. Efforts to translate physical principles into practical

protein structure prediction algorithms are still at an early stage; most successful

prediction algorithms employ knowledge-based approaches that rely on

examples of existing protein structures in the PDB, as well as on techniques

of computer science and statistics. Theoretical modeling of the dynamics of

protein folding faces additional difficulties; there is a much smaller body of

experimental data, which is typically at relatively low resolution; carrying out

computations over long time scales requires either very large amounts of

computer time or the use of highly approximate models; and the use of

statistical methods to analyze the data is still in its infancy.

The importance of the protein folding problem—underscored by the recent

completion of the human genome sequence—has led to an explosion of

theoretical work in areas of both protein structure prediction and kinetic

modeling. An exceptionally wide variety of computational models and

techniques are being applied to the problem, due in part to the participation

of scientists from so many different disciplines: chemistry, physics, molecular

biology, computer science, and statistics, to name a few. This has made the field

very exciting for those of us working in it, but it also poses a challenge; how can

the key issues in state of the art research be communicated to different

audiences, given the interdisciplinary nature of the task at hand and the methods

being brought to bear on it?
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The objective of this volume of Advances in Chemical Physics is to discuss

recent advances in the computational modeling of protein folding for an audience

of physicists, chemists, and chemical physicists. Many of the contributors to this

volume have their roots in chemical physics but have committed a significant

fraction of their resources to studying biological systems. The chapters thus

address the target audience but incorporate approaches from other areas because

they are relevant to the methods that the various authors have developed in their

laboratories. While some of the chapters contain review sections, the principal

focus is on the authors’ own research and recent results.

When modeling protein folding the key questions are (a) the nature of the

physical model to be used and (b) the questions that the calculations are aimed

at answering. It is impossible in a single volume to cover all of the different

approaches that are currently being used in research on protein folding. Never-

theless, a reasonably broad spectrum of computational methods is represented

here, as is briefly described below. The volume is organized so as to group

together contributions in which similar approaches are adopted.

The simplest models of proteins involve representations of the amino acids as

beads on a chain (typically taken to be hydrophobic or hydrophilic, depending

upon the identity of the amino acid) embedded in a lattice. Primitive models of

this type employ a simple lattice such as a cubic lattice, and they use a single

center to represent each amino acid. These models are very fast computation-

ally, but lack a level of detail (both structurally and in their potential energy

function) to permit prediction of protein structure from the amino acid sequence.

On the other hand, they can be extremely valuable in providing conceptual

insight into the general thermodynamic and kinetic issues as to why and how

proteins fold into a unique native state; they can also be profitably used to model

folding kinetics, as well as to make testable predictions for such kinetics that

can be compared with experimental data. The contributions of Thirumulai et al.

and Dinner et al. discuss models of this type, presenting both conceptual

insights into the basis of protein folding and results for modeling of specific

protein folding events.

Reduced models of proteins (i.e., models not containing complete atomic

detail) can be used to make structural predictions, either by allowing assessment

of the fitness of a protein structure already in the PDB as a model for an

unknown sequence (‘‘threading’’) or by carrying out Monte Carlo simulations

using the model and a suitable potential energy function. The contribution by

Meller and Elber describes a classical threading approach in which the amino

acid sequence is ‘‘threaded’’ in an optimal fashion onto a set of candidate

template structures using dynamic programming techniques, and the suitability

of the template is evaluated by a potential energy function. These authors have

worked out new methods for optimizing such functions, which are discussed in

detail in their chapter.

x preface



If a reduced (or other) model is used to predict protein structure via

simulation, without direct reference to structures in the PDB, this is referred to

as ‘‘ab initio protein’’ structure prediction. Potential energy functions for ab

initio prediction can be derived either from physical chemical principles or from

a ‘‘knowledge-based’’ approach based on statistics from the PDB (e.g., the

probability of observing a residue–residue distance for a given pair of amino

acids). For reduced models, the use of knowledge-based potential of some sort

is mandated. The contributions of Eyrich et al., Skolnick and Kolinsiki, and

L’Heureux et al. derive originally from an ab initio approach using reduced

models. However, all of these groups have in the past several years increasingly

incorporated empirical elements from threading and other such approaches, so

that what is described in these contributions is more of an attempt to integrate

reduced model simulations with additional information and techniques that can

improve practical structure prediction results. Several of these research groups

have entered the CASP (Critical Assessment of Protein Structure Prediction)

blind test experiments, which allow a comparative evaluation of the prediction

accuracy of the different methods employed by the participants; results from

the most recent such experiment, CASP4 (not reported in this volume because

the results were available subsequent to submission of most of the chapters),

were encouraging with regard to the ability of these hybrid methods to provide

improvement in many cases over methods not incorporating simulations.

The use of models employing an atomic level of detail (e.g. a molecular

mechanics potential function) in addressing the protein folding problem

presents significant difficulties for two reasons: (1) A large expenditure of

computation time is required to evaluate the model energy at each configuration;

(2) the quality of the potential energy functions and solvation model are critical

in being able to accurate compare the stability of alternative structures. The

contribution by Klepeis et al. discusses both algorithms designed to reduce the

required computational effort by sampling phase space more efficiently and a

wide variety of applications of atomic level models using these more efficient

sampling techniques. The contribution from Wallqvist et al. is more narrowly

focused on a single problem: the use of detailed atomic potential functions in

conjunction with a continuum solvation model to distinguish native and

‘‘native-like’’ protein structures from ‘‘decoys’’—alternative structures gener-

ated by various means and intended to challenge the model’s accuracy. Both of

these contributions demonstrate that considerable progress is being made in the

application of atomic level models with regard to improving both accuracy and

efficiency.

In the end, a thorough description of all aspects of protein folding will

require the use of the full range of models and methods discussed in this

volume. In the simplest hierarchical picture, one can imagine using inexpensive

reduced models to generate low-resolution structures that can then be refined
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using more detailed (and computationally expensive) approaches. Although

progress will undoubtedly continue in the development of physical chemical

models, empirical information and phenomenological approaches will always

provide additional speed and reliability if practical results are desired. How to

best combine all of these elements represents one of the principal issues facing

those working in the field; it also exemplifies the need for new ideas and

approaches.

Columbia University Richard A. Friesner

New York, New York
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