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I. INTRODUCTION

In this postgenomic era, a key challenge is to interpret the information provided

by the knowledge of the proteome, the set of protein sequences found in a given

organism. Unfortunately, having a list of protein sequences in and of itself

provides little insight; the key question is, What is the function of all of the

proteins? Function covers many levels, ranging from molecular to cellular or

physiological to phenotypical. By employing sequence-based methods that

exploit evolutionary information, between 40% and 60% of the open reading

frames (ORFs) in a given genome can be assigned some aspect of function

ranging from physiological to biochemical function. Indeed, because of their

considerable success, sequence alignment methods such as PSI-BLAST [1,2]

and sequence motif (that is, local sequence descriptors) methods such as Prosite

[3], Blocks [4], Prints [5,6], and Emotif [7] set the standard against which all

132 jeffrey skolnick and andrzej kolinski



alternative approaches must be measured. However, sequence-based approaches

increasingly fail as the protein families become more diverse [8]. The remaining

unassigned ORFs, termed ORFans, represent an important challenge and

represent an area where structure-based approaches to function prediction can

play a significant role. One structure-based method combines one-dimensional

information about sequence and structure and has had some success [9]. An

alternative structure-based approach to function prediction that employs the

sequence–structure–function paradigm has recently been developed [8,10–15].

Here, low-resolution models predicted by threading or ab initio folding are

screened for matches to known active sites; if a match is found, then a functional

assignment is made. However, this method requires a predicted structure of

appropriate resolution. Structure prediction techniques will also play an

important role in probe selection in structural genomics, where the ultimate

goal is to experimentally determine the structure of all possible protein folds

such that any newly found sequence is within modeling distance of an already

solved structure. Thus, in this review, we examine the status of contemporary

structure prediction approaches and demonstrate that the resulting (quite often

low-resolution) models can be used both to identify the biochemical function of

the protein and to dock known ligands to the correct binding sites.

Presently, there exist three approaches to protein structure prediction:

homology modeling, threading, and ab initio folding. In homology modeling,

the probe and template sequences are clearly evolutionarily related, and the

structures of the probe and template are quite close to each other. The second

structure prediction method is threading, where one attempts to find the closest

matching structure in a library of already solved structures but where the

structures can be analogous; that is, the two proteins are not necessarily

evolutionarily related, but they adopt very similar structures. Ideally, threading

should extend sequence-based approaches. Threading and homology modeling

suffer from the fundamental disadvantage that an example of the fold of

the sequence of interest must already have been solved in order for the method

to be successful. Finally, there is ab initio folding where one attempts to fold a

protein from a random conformation; obviously this is the hardest of the three

methods of structure prediction, but it has the advantage that an example of the

fold need not have been seen before. As detailed in what follows, a number of

variants of ab initio folding use extensive information from threading. Such

information might include local secondary structure information, supersecond-

ary structure information, and/or predicted tertiary contacts. Indeed, the major

focus of this review is to describe a unified approach to protein structure

prediction that reduces to threading plus structure refinement when an example

of the probe sequence is found; but if not, it incorporates information from

weakly significant probe sequence–template structure matches and then does ab

initio folding with the structural information gleaned from such matches. It has
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the advantage that it can predict a novel fold even though some of the

information comes from threading on already solved structures.

II. OVERVIEW AND HISTORICAL PERSPECTIVE

A. Comparative Modeling Methods

Comparative modeling can be used to build the structure of those proteins whose

sequence identity is above 30% or so with a protein template structure [16]. This

usually consists of three steps: (1) Search for sequence similarity to a member of

a set of carefully selected sequences with known three-dimensional structure; (2)

use the detected structural template to build a molecular model; and (3) carefully

validate the resulting models. In the recent CASP3 prediction experiment [17],

encouraging results were reported by Bates and Sternberg [18], Blundell and co-

workers [19], Yang and Honig [20], Dunbrack [21], and Fischer [22]. While the

automated approach of Sali’s MODELLER [23,24] did not do as well as others, it

is nevertheless a widely used comparative modeling package. The results of

CASP3 suggest that the key to a good model is to generate the best possible

initial sequence alignment and to modify it as little as possible [25,26]. Thus, as

the sequence identity of the probe and template moves into the twilight zone,

sequence alignments degrade with a comparable degradation in the quality of the

model structures.

As an example of genome-scale comparative modeling using standard se-

quence alignment algorithms and MODELLER, Sanchez and Sali [27] recently

scanned a portion of the yeast genome, S. cerevisiae [28]. They found homolog-

ous proteins of known structure for about 17% of the proteins (1071 sequences),

and they built three-dimensional models for these yeast proteins. Only 40 of

these modeled proteins had a previously determined experimental structure, and

236 proteins were related to a protein of known structure for the first time.

An obvious limitation of the above approach is that it requires a homologous

protein whose structure is known. Depending on the genome, 15–25% of all

sequences now have a homologous protein of known structure [29]. This

percentage is slowly increasing as new structures are being solved at an

increasing rate. Interestingly, the majority of newly solved structures exhibit

an already known fold. At this point, it is still uncertain whether this indicates

that proteins can adopt a limited number of folds or if it simply indicates a bias

toward certain types of protein folds that crystallize relatively readily.

B. Threading

Threading is another means of predicting the tertiary structure of proteins. Here,

for the sequence of interest, one attempts to find the closest matching structure in

a library of known folds [30,31]. The paradigm of homology modeling is still
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followed with its three steps: (1) identifying the structural template, (2) creating

the alignment, and (3) building the model. Thus, threading has limitations that

are similar to classical homology modeling. First and foremost, an example of

the correct structure must exist in the structural database that is being screened. If

not, the method will fail. Second, the quality of the model is limited by the extent

of actual structural similarity between the template and the probe structure. Until

recently [32], one could not readjust the template structure to more correctly

accommodate the probe sequence. While the quality of alignments generated by

threading algorithms improved from CASP1 to CASP3 [17], it nevertheless

remains problematic. Another question is whether threading recognizes distant

homologies (i.e., a protein that is evolutionarily distant but still related to the

template protein) as opposed to pure fold recognition targets (where the two

proteins are evolutionarily unrelated, but have converged to the same fold). We

note that for sequences that are evolutionarily very distant, convergent versus

divergent evolution is very difficult to prove. Nevertheless, we still have the

problem of identifying two proteins as having the same fold, when only about

65% of their sequences share a common core, with the possibility that the

remainder of the fold differs significantly.

Next, we describe the features of existing threading algorithms that per-

formed well in CASP3 as well as in the intervening period prior to CASP4. In

the construction of a threading algorithm, one is faced with three choices: the

type of energy used to assess the probe sequence–template structure suitability,

the degree of detail used to describe interaction centers if multibody interactions

are included, and the conformational search scheme employed to find the

optimal sequence-structure alignment. In what follows, we address each of these

three features in turn.

The first step in constructing a threading algorithm involves the choice of the

potential used to describe the sequence-structure fitness and the potential for

scoring functions containing more than one term; weights must be established.

Among the kinds of energy terms that have been previously considered are the

burial status of residues, secondary structure propensities and/or predicted

secondary structure, additional penalty terms [33,34] (for example, those that

compensate for different protein lengths), and the inclusion of pair or higher-

order interactions between side chains. Contemporary algorithms often include

an evolutionary component related to the sequence similarity between the

template and the probe sequence [35]. Inclusion of such sequence-based terms

improves the ability of the algorithm to recognize the correct structural template

as well as the quality of the predicted alignment in the structural template [34,

36–39]. While such terms should not be needed in a structure-based approach,

in practice they are found to be quite important.

If pair interactions are included, then the interaction centers must be selected,

with common choices being the Cas [40,41], the Cbs [42,43], the side-chain
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centers of mass, specially defined interaction centers [30,44], or any side-chain

atom [45]. This defines the protein representation. Then, one must again choose

the form of the interaction. Contact potentials [45,46], continuous distance-

dependent potentials [42,47], and interaction environments [48] are the choices

that have been made for the functional form of the pair energy.

Third, given an energy function, the optimal alignment between the probe

sequence and each structural template must be found. Dynamic programming

[49] is the best choice when local interaction schemes are used (e.g., when the

energy consists of mutation matrices and secondary structure propensities). The

situation when a nonlocal scoring function is used (e.g., pair interactions) is not

as straightforward. Here, the problem is to update the interactions in the

template structure to include the actual partners present in the probe sequence.

To retain speed (a crucial feature if entire genomes are to be scanned), some

workers employ dynamic programming with the ‘‘frozen’’ approximation

(where the interaction partners or a set of local environmental preferences are

taken from the template protein in the first threading pass) [45,50]. Iterative

updating might follow this [45,48,51]. Still others employ double dynamic

programming, which updates a subset of interactions recognized as being the

most important in the first pass of the dynamic programming algorithm [42].

Other, more computationally intensive approaches evaluate the nonlocal scoring

function directly and search for the optimal probe–template alignment by Monte

Carlo [44] or branch-and-bound search strategies [30]. These have the advan-

tage that the correct energy is evaluated, but unfortunately they are very CPU-

intensive.

A problem with almost all threading search protocols is that they do not

allow the actual template structure to adjust to reflect the actual structural

modifications relative to the template structure that are actually present in the

native conformation of the probe. For example, Monte Carlo and branch-and-

bound strategies allow the partner from the probe sequence provided by the

current probe–template alignment to be used, but they do not allow the

template’s backbone structure to readjust to accommodate the probe sequence.

Such structural modifications should be quite important when the probe and

template structure are analogous. As a simple example, when the probe’s TYR

replaces a GLY in the template protein, then the contacts associated with the

amino acid at that position in the structure would be radically different. Yet, this

effect is not accounted for at all in threading. However, the potential ability to

recognize analogous structures is precisely the realm where threading should be

the most valuable as compared to pure sequence-based methods.

As indicated above, because threading uses structure, it should be superior to

sequence-based approaches that are one-dimensional and that assess the evolu-

tionary relationship between sequences and thereby, by inference, their struc-

tural relationship. In practice, however, many of the most successful
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fold-recognition approaches in CASP3 were pseudo one-dimensional and used

evolutionary information that contributed a significant fraction of the selectivity

[52] (typically implemented in the form of sequence profiles) plus predicted

secondary structure. In particular, the Jones [53] and the Koretke groups [39]

employed this type of approach, where secondary structure played an ancillary

role. The Nishikawa group [54] also employed a hierarchy of local scoring

functions to describe hydration, secondary structure, hydrogen bonding, and

side-chain packing.

There were other successful approaches in CASP3 where structure played a

more prominent role. For example, the Sippl group [55] employed burial energy

and the frozen approximation to evaluate pair interactions, but unlike many

others, they used a single sequence rather than sequence profiles or other

implementations of multiple sequence information. While the Sippl approach is

more structure-based, in order for dynamic programming to be used all inter-

actions were made pseudo one-dimensional. The Bryant group [56] was unique

in that they explicitly treated pair interactions within a structural core identified

from the evolutionary conservation of structure across each protein family. In

order for the core to be identified, a number of structures in the protein family

must be solved. While this approach embodies the original idea of threading,

they too employ a PSI-BLAST sequence-profile component. Indeed, they

conclude that the combination of both sequence profiles and contact potentials

improves the success rate relative to that when either of the terms is used alone.

Because the Bryant group employs a nonlocal scoring function that a priori

precludes dynamic programming, a Monte Carlo search procedure was used to

find the best sequence–structure fitness. Unfortunately, these calculations are

very CPU-intensive, thereby precluding the application of this approach on a

genomic scale unless there are very substantial computer resources.

The general consensus was that CASP3 saw some progress in threading, with

alignment quality improving from CASP2 [17,26,52], but, as pointed out by

Murzin [52], threading ‘‘performs better on distant homology recognition

targets than on ‘pure’ folding recognition targets. This bias probably resulted

from the implementation of ‘distant homology’ filters.’’ Thus, techniques that

extend the ability of threading techniques to address ‘‘pure’’ fold recognition

situations are still required. But, as Bryant and co-workers [35] have pointed

out, the best results are found when a sequence–profile term is combined with

threading potentials. These observations motivated the development of a new

threading algorithm, PROSPECTOR (PROtein Structure Predictor Employing

Combined Threading to Optimize Results) [57], where it was demonstrated that

pair interactions could significantly improve the sequence–structure specificity

over that when only sequence–profile terms are used. However, when multiple

scoring functions are combined, the resulting recognition ability is even larger.

In Section IV, we discuss the results of this new approach in some detail,
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because it is a key component of a recently developed unified approach to

protein structure prediction. But here we note that while considerable progress

has been made in threading by a number of workers, we will have to await the

results of CASP4 to assess the full extent of this progress as well as the

limitations of such approaches.

C. Ab Initio Protein Structure Prediction

Due to the time scale of the protein folding process, which takes from

milliseconds to minutes, at present, it is rather impractical to attempt protein

structure assembly using all-atom detailed models. Indeed, contemporary

computers allow classical molecular dynamics simulations of a protein

surrounded by an appropriate number of water molecules over a much shorter

period of time, corresponding to tens or hundreds of nanoseconds (depending on

protein size). This inability to routinely access longer time scales stimulated

numerous attempts to simplify the problem by reducing the number of explicitly

treated degrees of freedom of the polypeptide chain and by simplifying the model

of intra and intermolecular interactions. Such a reduction of the number of

degrees of freedom could be achieved by assuming a united-atom representation

of entire amino acid residues, by assuming a single-atom representation of the

main chain and a similar representation of the side groups. The internal degrees

of freedom of the side groups were frequently ignored in such models or were

treated in an approximate fashion. Such a simplified protein representation also

led to simplifications in the interaction scheme; for example, all reduced models

either ignored the effect of water or implicitly treated it.

The first attempts at the reduced modeling of protein folding were under-

taken about 25 years ago. In their classical work, Levitt and Warshel [58]

proposed a model that later inspired other analogous simplifications of protein

representation. They assumed two centers of interaction per residue, one

associated with the alpha carbon and the second with the center of mass of

the side group. There was a single degree of freedom per amino acid—the

rotation around the Ca–Ca virtual bond—while the planar angle for the Ca
trace was assumed to be constant [59]. A knowledge-based potential controlled

the short-range interactions, while the interactions between the side groups were

in the form of a Lennard-Jones potential (partially corrected for the hydrophobic

effect). The sampling was done by means of classical molecular dynamics.

Simulations of a small protein bovine pancreatic trypsin inhibitor sometimes

produced structures resembling the native fold. The best structures had a root-

mean-square-deviation (RMSD), from native in the range of 6.5 Å. Later, Kuntz

et al. [60,61], Hagler and Honig [62], and Wilson and Doniach [63] studied

somewhat similar continuous models. The results were of comparable quality;

some qualitative features of small protein folds were sometimes recovered in

their simulations.
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More recently, continuous-space models with more structural details were

proposed and investigated with respect to their ability to predict the native

conformation of a protein. Sun [64] examined models with an all-atom

representation of the main chain and a single united atom representation of

the side groups. Knowledge-based statistical potentials described the interac-

tions between the side groups. Interestingly, his study demonstrated that a

genetic algorithm could quite efficiently sample the conformational space of the

chain. For small peptides (mellitin, pancreatic polypeptide inhibitor, and

apamin), proper structures were predicted whose accuracy ranged from 1.66

Å to 4.5 Å, depending on peptide size. A similar model, but with two united

atoms per side chain (for the larger amino acids), was studied by Wallqvist and

Ullner [65]. Results for pancreatic polypeptide inhibitor were slightly more

accurate, probably due to the better packing of the model side chains. Such

reduced continuous models were explored not only as a means of protein

structure prediction but also as a tool for investigating the general aspects of

protein folding dynamics and thermodynamics [66,67].

Pedersen and Moult [68] proposed a very interesting approach to protein

structure prediction. They assumed an all-heavy atom representation of the

protein with knowledge-based potentials describing intraprotein interactions. As

a sampling method, they used a combination of Monte Carlo (MC) and genetic

algorithms. The MC runs produced a set of structures for the starting population

of the genetic algorithm (GA). The crossover points were selected in the regions

of the largest structural flexibility, as detected during the MC runs. MC

simulations were also performed between crossover events in the GA scheme.

Low- to moderate-resolution protein fragments and the approximate folds of

small proteins have been successfully predicted by this method. Unfortunately,

it appears that the applicability of this method is limited to rather small proteins.

Even reduced models of proteins have a large number of conformational

degrees of freedom, and an effective sampling of the long-time processes for

larger proteins in a continuous space could be very difficult if not impossible. To

further simplify the problem, discrete or lattice models were proposed and

examined. Early studies of the lattice proteins focused not on structure

prediction but rather on understanding the fundamentals of protein folding

thermodynamics and some aspects of the folding dynamics. These works were

pioneered by G�o et al. [69], and then followed by Krigbaum and Lin [70,71],

Skolnick and Kolinski [72–84], Sikorski and Skolnick [85–88], Chan and Dill

[89–92], Dill et al. [93–96], Sali et al. [97,98], Shakhnovich et al. [99–105], and

others [106–111]. Since the subject of this chapter is protein structure prediction

and due to the existence of excellent reviews on the subject, we refrain from a

more detailed review of these works.

Probably the first attempt to predict the native structure of a protein in an

ab initio fashion within the framework of a lattice representation is due to
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Dashevskii [112]. A diamond lattice chain was used to approximate the poly-

peptide conformations. A chain growth algorithm executed the sampling of

conformational space. Compact structures resembling native folds of small

polypeptides were generated and identified by a simple force field. Next, Covell

investigated a simple cubic lattice model of real proteins [113]. The behavior

was controlled by the force field that consisted entirely of long-range interac-

tions that included a pairwise, knowledge-based potential, a surface term, and a

potential that corrects the local packing of the model chain. The quality of crude

folds generated by this method were not worse than the quality of folds obtained

using early continuous models. Covell and Jernigan [114] studied five small

globular proteins by the enumeration of all possible compact conformations of a

body-centered cubic lattice chain. They found that the closest to native

conformation could always be found within the top 2% of the lowest-energy

structures, as assessed by a knowledge-based interaction scheme.

Hinds and Levitt [115] proposed an interesting lattice model of proteins. In a

diamond lattice chain, a single lattice vertex represents several residues of a real

protein. An elaborate statistical potential was employed to mimic the mean

interactions between such defined protein segments. Frequently, correct folds of

low resolution were generated among the compact structures enforced by the

sampling scheme.

Kolinski and Skolnick [75–84,116–120] developed a series of high-coordi-

nation lattice models of globular proteins. Lattices of various resolution were

employed to mimic the conformation of the Ca trace of real proteins, from

three-dimensional ‘‘chess-knight’’-type lattices to a high coordination lattice

with 90 lattice vectors to represent possible orientations of the Ca–Ca virtual

bonds. The models employed in the test structure predictions [118,121–123] had

additional interaction centers to represent the side groups. For each side chain, a

single-sphere, multiple rotamer representation was assumed. The force field of

each of these models contained several terms mimicking the short-range

interactions, explicitly cooperative hydrogen bonds, one body, and pairwise

and multibody long-range interactions with an implicit averaged effect of the

water molecules. It has been shown for several cases of small globular proteins

[118] and simple multimeric molecular assemblies [124–126] that such models

can generate correct low- to moderate-resolution (high-resolution in the case of

leucine zippers) folds during Monte Carlo simulated annealing computer

experiments.

Various recently developed methods for ab initio protein structure predic-

tions were tested during the CASP3 (Critical Assessment of Techniques for

Protein Structure Prediction) exercises, concluded in December 1998 in Asilo-

mar, California [127]. A number of new techniques have been developed before

that time, and a number of them constitute qualitative progress in ab initio

prediction with respect to the previous CASPs (held every two years).
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The ROSETTA method proposed by Baker and co-workers [128] is very

innovative. The method consists of several steps. First, a multiple sequence

alignment for a sequence of interest was prepared, and the secondary structure

prediction is made using the PHD server based on Rost and Sander’s [129–131]

secondary prediction technique. Secondary structure predictions and sequence

alignments were then used to extract the most plausible 3- to 9-residue

structural fragments (25 fragments for each segment of the query sequence)

from the structural database (according to the secondary structure prediction

and the sequence similarity). Then a Monte Carlo algorithm employing a

random insertion of fragments into the structure was used to build the three-

dimensional structure. The scoring function contained a hydrophobic burial

term, elements of electrostatics, a disulfide bond bias, and a sequence-indepen-

dent term that evaluates the packing of secondary structure elements. The top 25

(of 1200 generated) structures frequently contained the proper fold. The best

five structures exhibiting a single hydrophobic core were selected by ‘‘visual

inspection.’’ This could be considered to be a flaw of the method (at this stage of

development). It would be difficult to do a manual evaluation of the predictions

on a massive scale. Nevertheless, for 18 targets, four predictions were globally

correct (with an RMSD range of 4–6 Å for the native structure), and the

majority of their predictions contained significant fragments of structure that

were correct. It should be noted that a somewhat similar idea of protein structure

assembly using predefined fragments and the Monte Carlo method was also

pursued in the method developed by Jones [132] and tested during the CASP2

exercise.

A number of other groups made good predictions on a fraction of difficult ab

initio target proteins. Ortiz et al. [133] applied a high coordination lattice model

developed by Kolinski and Skolnick [122,123] to a number of small target

proteins. Monte Carlo simulated annealing calculations started from random

expanded conformations of the target proteins. The model assumed a 90-basis

vector representation of the alpha carbon trace that has a 1.2 Å resolution due to

the spacing of the underlying cubic lattice grid. Off-lattice single-sphere side

chains could assume multiple orientations with respect to the backbone, thereby

mimicking the distribution of rotamers for particular amino acids. The generic

force field of the model consisted of knowledge-based potentials (derived from

the statistics of the regularities seen in known protein structures) for short-range

interactions, one body burial, pairwise and multibody surface long-range

interactions, and terms simulating the regularity and cooperativity of the

main-chain hydrogen bond network. Additionally, a weak bias toward predicted

secondary structure (obtained from multiple sequence alignments þ secondary

structure prediction from PHD [129–131]) and weak theoretically predicted

long-range contact restraints from correlated mutation analysis were implemen-

ted in the interaction scheme [134–138]. Contact prediction was based on the
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analysis of correlated mutations in sequences detected by multiple sequence

alignments. For some targets, the globally correct fold or large fragments of the

structure were correctly predicted. The method was capable of assembling low-

resolution novel folds. The level of success during the CASP3 exercise was on

the same level as reported for test predictions made for a series of small globular

proteins prior to CASP3 [137].

A similar methodology, but one based on a completely different protein

representation [139,140] (that are discussed in Sections V and VI), was

employed by Kolinski and co-workers with a similar fraction of correctly

predicted structures [133]. An important advantage of this method was its

computational speed and nicer scaling of computational cost against protein

chain length. Thus, the prediction of structures of larger proteins via ab initio

folding became possible.

Osguthorpe [141] employed a continuous model and molecular dynamics

simulated annealing. In spite of the use of a quite detailed model (main chain

united atoms and up to three united atoms per residue), its very flexible chain

geometry enabled efficient sampling. The potentials were derived from the

statistics of known protein structures. The method enabled us to obtain correct

predictions of substantial fractions of the structure of the attempted targets, and

for one of the difficult targets, the prediction resulting from this method was the

most accurate.

A very interesting hierarchical procedure has been used by Samudrala et al.

[142]. First, as previously proposed by Hinds and Levitt [143], all compact

conformations of test proteins were enumerated using the diamond lattice model

with multiple residues per chain unit. The best (according to the force field of

the lattice model) structures were then selected for further consideration.

Subsequently, the all-atom structures were reconstructed by fitting the predicted

secondary structure fragments to the lattice models. These structures were

subject to energy minimization using an all-atom force field and spatial

restraints of the lattice models. The optimized structures were scored by a

combination of all-atom and residue-based knowledge-based potentials [144].

Then, distance geometry [145] was used to generate a number of possible

‘‘consensus’’ models. The local geometry of predicted secondary structure was

again fitted to the resulting models. Finally, the resulting all-atom models were

optimized and rank-ordered according to energy. A number of qualitatively

correct protein fragments of significant size were correctly predicted. The

method appears to be very robust and (as pointed out by the authors) it was

likely that it could be further improved. Probably the major weakness of the

method in its present form is in the small fraction of good structures in the

initial pool of lattice models.

The method developed by Scheraga and co-workers [146] and used in

CASP3 is based on the global optimization of the potential energy of a united
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atom model [147]. Due to the force-field design of the model, which is based on

basic physical principles, this method is very close to a purely thermodynamic

approach. In this respect, it qualitatively differs from the previously outlined

methods. This off-lattice protein model has a united atom representation of the

alpha carbons, side groups, and peptide bond group, with fixed bond lengths and

variable bond angles. The interaction potentials between united atoms describe

the mean free energy of interactions and account in an implicit way for the

average solvent effect and cooperativity of the hydrogen bonds [148]. The

optimization is performed by means of the Conformational Space Annealing

technique [147], which subsequently narrows the search regions and finally

finds distinct families of low-energy conformations. The lowest-energy, reduced

model conformations are subsequently converted into the all-atom models and

optimized by electrostatically driven Monte Carlo simulations [149]. For a

fraction of CASP3 targets, this method produced exceptionally good predic-

tions. The method seems to perform much better on helical proteins than on b or

a=b proteins.

D. Choice of Sampling Scheme

In the past, different methods of sampling of protein model conformational space

have been employed with various degrees of success. Traditional molecular

dynamics can be used only in the case of continuous models. Other sampling

schemes, including a variety of Monte Carlo methods, genetic algorithms, and

combinations of these methods, could be applied to continuous as well as to the

discrete (including lattice representation) models.

In general, the choice of the simulation/optimization algorithm depends on

the aim of the studies. Different procedures are needed for the study of protein

dynamics and folding pathways from those procedures that are just targeted to

find the lowest-energy conformations of model polypeptides.

Monte Carlo procedures for chain molecules [150] use a wide spectrum of

strategies for conformational updating. In some algorithms, the updates are

global, as in the chain growth algorithms, whereas other algorithms employ

pivot moves of a large part of the model chain. In other algorithms, the trial

modifications are local, involving only a small portion of the chain or a small

distance displacement of a larger part of the chain. Sometimes, the local and

global modifications were combined in the same algorithm.

What is the relationship between the molecular dynamics simulations of a

continuous model and an isothermal Monte Carlo trajectory of an otherwise

similar discretized (or lattice) model? When only local (and small distance)

moves are applied in a properly controlled random (or rather pseudorandom)

scheme, the discrete models mimic the coarse-grained Brownian dynamics of

the chain. The Monte Carlo trajectory could be then interpreted as the numerical

solution to a stochastic equation of motion. Of course, the short-time dynamics
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(the time scale of a single elementary move in the Monte Carlo scheme) of the

discrete model has no physical meaning. However, the long-time dynamics

should be qualitatively correct, albeit with possible distortions of the time scale

of various dynamic events. Such an equivalence of the molecular dynamics and

stochastic dynamics of equivalent off-lattice and lattice-simplified protein

models has been demonstrated in the past by Rey and Skolnick [151], and by

Skolnick and Kolinski [152]. Recent studies have shown that Monte Carlo

folding pathways observed for high-coordination lattice models reproduce the

qualitative picture of folding dynamics seen in experiments [153]. Thus, it could

be rather safely assumed that Monte Carlo lattice dynamics can be used in

meaningful studies of protein dynamics, folding pathways, the mechanism of

multimeric protein assembly and other aspects of biopolymer dynamics. The

validity of protein dynamics studies using discrete models depends more on

the assumed accuracy of the protein representation and its force field than on the

particular sampling scheme. However, some oversimplified discrete models may

face serious ergodicity problems. This aspect of Monte Carlo simulations

always needs to be carefully examined.

Isothermal simulations (molecular dynamics or Monte Carlo) provide charac-

teristics of the system’s properties at a single temperature. Numerous simu-

lations at various temperatures (above and below the folding transition

temperature) are needed to gain some insight into the thermodynamics of the

folding process. There is a very serious problem associated with the extremely

slow relaxation of protein models in the dense globular state. The local barriers

in the energy landscape near the folded state are high and the sampling becomes

ineffective. Thus the computer studies employing straightforward MD or

canonical MC algorithms became prohibitively expensive. Essentially, the

same applies to various simulated annealing strategies. In all cases, the design

of sampling details could be very important. For example, properly designed

local moves can ‘‘jump over’’ the high local energy barriers, thereby speeding

up the sampling of the entire conformational space.

Mulicanonical [154] (or entropy sampling Monte Carlo [108–110]) simul-

ations provide more complete data on folding thermodynamics [116,155–157].

Due to their differently defined transition probabilities in the sampling scheme,

energy barriers became much less important, but are substituted by entropic

barriers. From a single series of simulations, it is possible to obtain an estimation

of all thermodynamic functions (energy, free energy, and entropy) over a wide

range of temperatures. However, the cost of such computations grows rapidly

with the system size and its complexity.

A somewhat simpler, but by no means trivial, task is to find the lowest energy

state of the model polypeptide. Due to the thermodynamic hypothesis [158],

which postulates that native proteins are in the global minimum of the confor-

mational energy, the minimum energy state of a properly designed protein
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model should closely mimic the folded conformation. A variety of strategies

have been developed to solve this global minimum problem [159]. For a

relatively simple system, when the total energy could be expressed in the

analytical form, it is possible to solve the problem in a deterministic fashion

[160]. For more complex (i.e., realistic models of proteins) systems, existing

methods do not guarantee that the lowest energy conformation will be found.

The number of possible conformations and the rugged energy landscape make a

systematic search impractical.

Simulated annealing, ESMC [108,109,161], Monte Carlo with minimization

[162], genetic algorithms [64,163–165], and the combination of genetic algori-

thms with Monte Carlo sampling have been successfully used in the past to find

the near-native conformations of reduced models of small proteins [68].

Recently, a number of studies have focused on the comparison of various

Monte Carlo strategies for finding the global minimum of a protein model [166–

168]. Probably the most straightforward of these search strategies is simulated

annealing, where the system temperature is gradually lowered during the

simulations, starting from a relatively high temperature (above the folding

transition) and ending at a low temperature below the folding temperature

(usually well below due to thermal fluctuations). When on repeated runs starting

from different initial states, the same conformation is recovered; one may

assume that there is a good chance that the global minimum has indeed been

found. However, for difficult problems, simulated annealing runs (or at least a

substantial fraction of the runs) could be trapped in local energy minima. Some

of the local minima could be close to the model’s representation of the native

state, whereas others could correspond to conformations that are far away from

the properly folded state. There is no simple test of convergence in the

simulated annealing method. The efficiency of the simulated annealing method

could be considerably improved by a certain modification of transition accep-

tance criteria. For instance, one may perform local minimization before and

after the transition and then apply the Metropolis criterion to the locally lowest

energy pairs or conformations [16]. This way, the sampling procedure can avoid

visits to a large fraction of irrelevant local energy minima.

In contrast to simulated annealing, sampling techniques within the multi-

canonical ensemble have some internal convergence tests. In a version of this

technique, called entropy sampling Monte Carlo [108–110], the estimation of

the system’s entropy is built by a sampling process that is controlled by the

density of states of particular discretized levels of conformational energy. When

converged, all energy levels, including the lowest energy, should be sampled

with the same frequency. The ESMC method is ‘‘quasi-deterministic’’: The data

from the preceding simulations could be used to improve the accuracy in the

successive runs. In principle, when converged, ESMC should find the lowest

energy state. In practice, the energy spectrum near the lowest energy state could
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be associated with large entropy barriers, and the lowest energy state could be

not detected in spite of the apparent convergence—that is a constant density of

visited states in the remaining low-energy portion of the energy spectrum. The

rate of convergence of the ESMC method into the low-energy portion of

the energy landscape could be accelerated by the artificial deformation of the

entropy curve (artificial increase of the density of states) in the less important,

high-energy range [156].

The replica exchange Monte Carlo method [169] addresses the problem of

local minima in a different way. A number of copies of the model system are

simulated by means of a standard Metropolis scheme at various temperatures.

The temperature range covers temperatures from a temperature well above the

folding temperature down to a temperature below the folding transition tem-

perature. Occasionally, the replicas are randomly swapped according to a criter-

ion that depends on temperature difference and the energy difference. Thus, the

low-energy conformations at a higher temperature have a chance to be moved to

a lower temperature. As a result, the copies of the system sample not only the

conformational space but also move between various temperatures. At high

temperatures, the energy barriers could be surmounted easily; at low tempera-

tures the vicinities of energy landscape ‘‘valleys’’ are efficiently sampled.

Comparison of the computational cost of finding the lowest energy state for a

simple protein-like copolymer model [168] shows that replica exchange Monte

Carlo (REMC) is much more efficient than simple Metropolis sampling with a

simulated annealing protocol in spite of the fact that multiple copies of the

system have to be simulated. The REMC method also finds the low-energy

conformations many times faster than the ESMC method. Thus, it appears that

the REMC method (or its variants) could be a method of choice for use in the ab

initio folding of reduced protein models, where finding the lowest energy state is

the main goal of computational experiment. Due to the very efficient sampling

by the REMC method, the samples at various temperatures could be used for the

‘‘umbrella’’-type estimation of the system entropy. That may extend the

applications of the REMC method into cost-efficient studies of protein folding

thermodynamics.

III. OVERVIEW OF THE UNIFIED FOLDING METHOD

When faced with the problem of predicting the tertiary structure of an unknown

sequence, one typically runs PSI-BLAST [170] over sequences from the

structures in the protein data bank [171]. Then, if this does not work, one runs

a threading program to see if it detects a significant probe–template match. Even

if either of these two cases is successful, for nontrivial cases often the alignments

of the probe sequence may be in error, and there may be gaps in the alignment of

the probe sequence to the template structure and/or sometimes there are long

unaligned regions. If both methods fail, then ab initio folding is the requisite
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structure prediction method. Thus, ideally one would like to have a unified

approach that automatically treats these possibilities. In what follows, we

describe one recently developed unified approach.

An overview of the idea is given in Fig. 1. First, one runs our threading

algorithm, PROSPECTOR [57], and establishes if there is a significant probe

sequence–template structure match. If so, the template is used as a soft bias in a

generalized comparative modeling approach that involves ab initio folding in

the vicinity of the template in a reduced protein model. Threading also provides

predicted secondary structure and tertiary contacts that are not restricted to the

template structure but can be extracted from other structures. This allows

the possibility of fold prediction in those regions absent in the alignment of

the probe sequence to the template structure. The advantage of this generalized

comparative modeling is that it can improve the initial alignment generated by

the threading algorithm and can provide a structure prediction for the unaligned

SEQUENCE

THREADING

PREDICTED CONTACTS &
SECONDARY STRUCTURE

PREDICTED CONTACTS &
SECONDARY STRUCTURE
STRUCTURAL TEMPLATE

AB INITIO FOLDING GENERALIZED
COMPARATIVE
MODELING

CLUSTERING

REFINEMENT

FINAL MODELS

Figure 1. Flow chart describing the unified approach to protein structure prediction. First,

threading is done. If a significant hit to a template is found, then generalized comparative modeling

in the vicinity of the template but supplemented by predicted secondary structure and contacts

possibly from other templates is done. If no significant probe sequence–template structure match is

found, then consensus contacts and sets of local distances in the top 20 scoring structures are

extracted and employed as restraints in an ab initio folding algorithm. Once a sufficient number of

simulations (typically 100) are done, the structures are clustered, full atomic models are built in the

refinement step; and then using a new, distant-dependent atomic pair potential [204], the top five

scoring structures are selected.
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regions of the probe sequence. On the other hand, if there is no significant match

to a template, then the predicted secondary structure and tertiary contacts

extracted from threading are passed to an ab initio folding algorithm that uses

the same reduced protein model. Then, for both generalized comparative

modeling and ab initio folding, the resulting structures are clustered, atomic

detail is added and the results are reported.

IV. THREADING RESULTS

A. First-Pass Threading

Recently, to build on the strengths and address the weaknesses of existing

threading approaches, we have developed a new threading algorithm called

PROSPECTOR (PROtein Structure Predictor Employing Combined Threading

to Optimize Results) [57], which runs sufficiently quickly so that entire genomes

can be scanned in the matter of several days on a standard workstation or PC.

During the course of the development of this program, we noticed that sequence

profiles generated from the BLOSUM 62 matrix [172] often generated

reasonable alignments between the probe and template sequences, even when

the alignment score was insignificant. This suggested that the first stage of a

hierarchical approach to threading should employ a sequence-profile [170,173,

174] (using a sequence profile plus a three-state secondary structure prediction

scheme gave worse results) to generate the initial probe sequence to template

structure alignment. We call this the ‘‘partly thawed’’ approximation. Then, the

resulting alignment of the probe sequence in the template structure is used to

calculate the partners for the evaluation of the pair interactions. Previously, in the

first iteration of the frozen approximation [45], the partners were taken from the

template structure. This worked well only when the environments in the probe

and template structures were similar, but more often than not the environments

were quite different. On successive iterations, in the so-called defrosted approxi-

mation [45] where the partners were taken from the previous alignment, there

were times when the resulting algorithm never converged. Here, after the first

initial alignment, quite good results were obtained.

The database for multiple sequence alignment (MSA) generation used in the

construction of the sequence profile combines Swissprot (http://www.expasy.ch/

sprot/) and the genome sequence database (ftp://kegg.genome.ad.jp/genomes/

genes). First, a profile for relatively closely related sequences, whose sequence

identity lies between 35% and 90%, is calculated. These sequences are selected

from the composite database by FASTA [175,176]. Then, pairwise sequence

alignments with the probe sequence are generated using CLUSTALW [177],

and a sequence profile is generated. We term this the ‘‘closely’’ related set of

alignments. To this set, we add additional sequences whose E value in FASTA is

less than 10, use CLUSTALW to generate pairwise alignments, and then generate
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a profile for distantly related sequences; these are termed the ‘‘distantly’’ related

set of alignments. The goal here is to have two sequence profiles: one that is

more sensitive to more closely related sequences and another that can some-

times detect more distantly related sequences.

The first step of the threading protocol is to independently scan the structural

database of interest using each of the sequence-profiles with a Needleman–

Wunsch type of global alignment program [49]. Each of the two sequence pro-

files generates an alignment of the sequence in each of the template structures.

Each alignment is used to identify the partners in the probe sequence to be used

in the calculation of the pair interactions. Here we use our previously developed

side-chain contact potential averaged over all homologs which includes a

contribution from contacting fragments that have weak sequence similarity to

each member of the close set of probe sequences [178]. Furthermore, we also

use a pseudo energy term that describes the preferences for consecutive types of

amino acids to adopt a given type of secondary structure. This secondary struc-

ture propensity term is also averaged over homologs, and thus it results in a

secondary structure propensity profile. For each scoring function, close

(distant) sequence profile, and close (distant) sequence plus pair interactions

plus the secondary structure propensity profile, we scan the structural database

and output the top five scoring structures. Thus, a total of 20 possible structures

are output, along with their alignments.

B. Application to the Fischer Database

As a test case, we have focused on the Fischer database [179] that is comprised of

301 template structures and 68 probe sequences. We tried a variety of approaches

on this database before deciding on the aforementioned combination of para-

meters. We just summarize the results of these studies here. For a given scoring

function, the Needleman–Wunsch global alignment algorithm recognized more

correct probe–template pairs than did the Smith–Waterman [180] local alignment

algorithm. We also tried using the secondary structure profiles as the initial step

in generating the probe–template alignment for pair evaluation. Secondary

structure profiles alone only correctly recognize 18 cases in the first position,

whereas secondary structure profiles plus pair profiles correctly assign 29 cases.

This clear improvement shows the utility of pair potentials in this approach;

nevertheless, even 29 recognized pairs is rather poor performance. The major

improvement in fold recognition comes, as others have observed, when sequence

profiles are used. Even if the sequence profile is turned off completely but is used

to generate the alignment, the number of correctly recognized pairs increases to

35 correct probe–template pairs in the top position. In all cases, inclusion of pair

interactions improves the yield of correct probe–template matches.

We summarize our results using PROSPECTOR1 in Table I (the first pass of

PROSPECTOR). One of the best alternative methods is that of Gonnet, which
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TABLE I

Summary of Threading Results on the Fischer Database for Different Scoring Functionsa

Number of Number of Fischer Number of Fischer

Fischer Pairs in the Pairs in the Top Pairs in the

Method First Position 5(4) Positions Top 10(8) Positions

PROSPECTOR1

‘‘Close’’ sequence profile 44 46(46) 49(47)

‘‘Close’’ sequence profile plus 45 55(53) 56(55)

secondary structure plus pair profile

‘‘Distant’’ sequence profile 46 53(51) 53(53)

‘‘Distant’’ sequence 52 56(56) 59(57)

profile plus secondary

structure plus pair profile

Hierarchy of four scoring methods 59 63(62) 65(63)

Hierarchy of three scoring 58 62 64

functions (as above but

without the ‘‘distant’’

sequence-profiles)

PROSPECTOR2

‘‘Close’’ PROSPECTOR2. 48 51(51) 58(58)

sequence profile plus protein

specific pair and secondary

structure potentials profile

‘‘Distant’’ sequence profile 51 59(59) 59(59)

plus protein specific pair

and secondary structure potentials

Hierarchy of four scoring methods 61 64(64) 65(65)

Hierarchy of three scoring functions 60 64 65

(as above but without the

‘‘Distant’’ sequence profiles)

Other Methods

Simple Blast1 27 — —

PSI-BLAST restricted to the 24 37(36) 40(39)

Fischer database [170,182]

PSI-BLAST using extensive 41 46(46)_ 47(46)

sequence database and PSSM

constructured using IMPALA [247]

Original GKS threading program [45] 22 30 34

Hybrid threading [181] 52 57 60

Best UCLA benchmark results as of 52 (56) (58)

2/4/00 which is prediction of secondary

structure plus mult-gonnet [34]

aResults are reported in both the top 5(4) and top 10(8) positions [181], with the number in paren-

thesis given by the UCLA benchmark website (http://www.doembi.ucla.edu/people/fischer/BENCH/

table1.html).
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recognizes 52 proteins in the top position, the same number as the distant profile

plus pair interactions recognizes, but if a hierarchical method is used, then ours

is clearly the best, because 59 proteins are recognized in the top position. It is

clearly superior to all our early efforts as well as to the alternative hybrid

method [181], BLAST [1], and PSI-BLAST [170,182]. It might be argued that

because we use four scoring functions while the hybrid method uses only three,

this is not a strictly fair comparison. If we eliminate those results obtained from

the ‘‘distant’’ sequence profiles, then we obtain 58, 62, and 64 cases in the top 1,

5, and 10 position as compared to 52, 57, and 60, respectively, of Gonnet.

We then applied the method to a second Fischer benchmark comprised of 29

probe–template pairs and scanned each probe sequence against the original

Fischer structural database plus an additional 19 template structures (http://

www.doembi.ucla.edu/people/fischer/BENCH/tablepairs2.html). We have only

been able to find 27 of the 29 probe sequences and have reported our results

accordingly. PROSPECTOR1 places 17 correct pairs in the top position, and it

also places 21 and 22 in the top four and eight positions, respectively. This is the

same as the best reported results of 17 correctly identified pairs. However, in our

case one probe, ‘‘stel,’’ which is supposed to be matched to 2azaA, selects 2pcy

in the top position, which has the same core as 2azaA. Then, we have 18, 19

(19), and 20 (20) correct matches in the top position and top five (four) and ten

(eight) positions, respectively. Thus, we have somewhat better results than

previous workers.

C. Iterative Threading

1. General Idea

Just as PSI-BLAST [170] can increase its specificity by iteration, so can

threading. In fact, the set of structures selected by PROSPECTOR contains

additional information even beyond providing for a structural match. If we look

at the set of 20 structures that are selected as being the best scoring sequence–

template structure pairs, it is possible to extract additional information by

looking for consensus predictions. By way of illustration, we consider the

prediction of tertiary contacts. We focus on all contacts between residues that

are at least five residues apart, and we count the predicted contacts generated by

the aligned regions of structure. If there is a consensus (i.e., at least three contacts

are consistently predicted), then we employ this information in two ways: (1) to

enhance the specificity of threading by constructing a protein-specific, threading-

based pair potential and (2) as described in Section IV.F, to predict tertiary

contacts.

Using a previously derived formalism to convert contacts into a pair potential

[178], we derive a set of protein-specific potentials, where the contacts are not

only extracted from fragments with weak sequence similarity, but rather are
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generated by consensus contacts in the threaded structures. We use the

arithmetic average of this potential and the previous iteration’s pair potential

in the next iteration of threading. This case is termed the ‘‘close’’ and ‘‘distant’’

protein-specific potentials, and we call the threading method that employs these

terms PROSPECTOR2.

2. Application of PROSPECTOR2 to the Fischer Database

The results from PROSPECTOR2 are also reported in Table I. The ‘‘close’’ case

now recognizes 48 proteins as compared to 45 in the top position. The ‘‘distant’’

case recognizes 51 as compared to 52 previously, but the composite of the four

scoring functions now recognizes 61, 64, and 65 proteins in the top position as

compared to 59, 63, and 65 in the top, top five, and top ten positions, respectively,

for PROSPECTOR2. In all cases, the method improves when pair potentials are

used as compared to that when the corresponding sequence profile alone is used.

Similarly for in the second Fischer database, a total of 17, 20, and 20 proteins are

recognized in the top, top five, and top ten positions, respectively.

D. Genome-Scale Iterative Threading

In tests on genome scale threading, we found that the optimum number of

correctly recognized folds was found on the third iteration, PROSPECTOR3.

However, because of the computational cost of constructing pair potentials that

used local sequence fragment similarity, in our preliminary study and in the

interest of computational tractability we employed the best quasi-chemical pair

scale [183]. We term this PROSPECTORQUASI1-3. Furthermore, to deal with

the problem of very large proteins that may contain more than one domain, in

addition to threading the entire sequence, we also threaded 150 residue

fragments, starting at the first residue and then shifting by 25 residues until

the final fragment of possibly shorter length is scanned. This allows for the

detection of domains. For genome-scale threading, our structure library consists

of 2466 sequences constructed so that no pair of proteins has greater than 35%

sequence identity between them.

1. M. genitalium

This genome consists of 480 ORFs [184]. The first pass of PROSPECTOR,

PROSPECTORQUASI1 assigns 153 proteins to a structure in the protein data-

bank. The second pass, PROSPECTORQUASI2, assigns 182, and the third pass,

PROSPECTORQUASI3, assigns 194. This constitutes an assignment of 40% of

the genome. All assignments are made using an automated protocol based on the

score significance. Of these 194 structural predictions, all but three are correct. In

contrast, several years ago Fischer and Eisenberg [185] assigned the folds of 103

out of a total of 468 proteins by their threading algorithm. Gerstein has reported

identification of 211 proteins using PSI-BLAST [186,187]. Genethreader assigns
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200 proteins, but for 15 of them the assignment appears to be incorrect [188] as

assessed by a consensus of Gerstein’s results (http://bioinfo.mbb.yale.edu/

genome/MG/) and PROSPECTORQUASI3.

2. E. coli

The E. coli genome contains 4289 ORFs [189], for which PROSPECTOR-

QUASI3 assigns 1716 ORFs to structures in the Protein Data Bank. This

constitutes about 40% of the genome. Interestingly, this is the same percentage of

structures as was assigned in M. genitalium. In contrast, without the use of active

site filters, a total of 1250 confident structure predictions have been made, using a

sequence profile-based method [190].

E. Extension of PROSPECTOR to Include an
Orientation-Dependent Pair Potential

To enhance specificity, we next replaced the pair potential by one that is

orientation dependent and again perform three iterations of modified PRO-

SPECTOR, PROSPECTORIEN1-3. In applications to the Fischer database, we

found that, on average, PROSPECTORIEN3 generates the most accurate probe–

template alignments. The resulting set of structures constitutes the initial model

that will be subjected to the generalized comparative modeling described in

Section V.

F. Threading-Based Prediction of Tertiary Contacts

For a given iteration, the set of 20 top-scoring structures can also be used to

predict the tertiary contacts in the probe protein. Again we demand that a given

pair of contacts occurs in at least 25% of the top-scoring structures. For each

interaction of PROSPECTOR1-3 and PROSPECTORIEN1-3, we collect the

predicted contacts. The sets of contacts are then pooled.

Next we report our results for the set of 18 small proteins that constituted part

of the validation set for the MONSSTER ab initio folding algorithm [191]. Of

course, in this 18-protein test set, care is taken to remove all homologous

proteins to the probe sequence from our structural database, and all proteins

whose global root-mean-square deviations (RMSD) from native that are less

than 8.5 Å are also excluded. On average, 28% of the contacts are correct, and

69% are correct within two residues. The correlated mutation analysis gives, on

average, 34% correct and 82% correct within �2 residues [191–193]. While the

threading-based method has somewhat lower accuracy, in contrast to the

correlated mutation analysis, it can be readily automated. Note that a contact-

prediction accuracy of about 70% correct within �2 residues is sufficient for the

successful assembly of the global fold using the MONSSTER ab initio structure

prediction program [191,193].

a unified approach to the prediction of protein structure 153



Turning to the results of CASP3, the correlated mutation analysis performed

considerably poorer, whereas threading-based contact prediction was better

[133]. In Table II, for four of these proteins, we show the predicted contact

results and compare them to correlated mutation analysis. Now, within �2

residues, 63% of the contacts are correct as predicted by the threading-based

method as compared to 43% from the correlated mutation analysis; this is a

qualitatively significant improvement. Within �3 residues, correlated mutation

analysis is slightly more accurate at 66% versus 62% from the threading-

based contact predictions. Here again, we excluded all analogous and homo-

logous proteins in the prediction of contacts from the analysis of consensus

contacts in the alignments generated by PROSPECTOR1-3 and PROSPEC-

TORORIEN1-3.

In Table III we present the set of predicted contact results for 28 proteins that

that will be subject to ab initio folding in Section VI. Again the requisite contact

prediction accuracy is achieved, with 31% of the contacts exactly predicted on

average and 73% correctly predicted on average within �2 residues. If we use

the threshold of 70% prediction accuracy as indicative that the folding simula-

tion will be successful, then, as shown in Section IV, 20 of these 28 proteins

should be foldable. The asterisk indicates those proteins that are foldable, as

assessed by the presence of a cluster of structures whose RMSD from native is

less than 6.5 Å. In practice, of the 28 proteins, 13 are foldable. In addition,

another two whose contact prediction accuracy is less than 70% correct within

�2 residues are also foldable. Of course, the presence of reasonably accurate

contacts in and of themselves do not guarantee that the native topology will be

found; but in all cases of accurate contacts, if there are a sufficient number of

such contacts, then rather low RMSD structures are found in the pool; see

Table VI. Thus, this is a reasonably effective method of predicting acceptably

accurate tertiary contacts.

TABLE II

Comparison of Contact Prediction Accuracy for CASP3 Targets for Threading and Correlated

Mutation Based Approachesa

Number of d ¼ 0 d ¼ 0 d ¼ 2 d ¼ 2 d ¼ 3 d ¼ 3

Name of Contacts From Mutation From Mutation From Mutation

Protein Predicted Threading Analysis Threading Analysis Threading Analysis

1jwe_ 16 0.19 0.14 0.5 0.44 0.5 0.65

1eh2_ 22 0.68 0.14 0.91 0.73 0.91 0.98

1bqv_ 19 0.05 0 0.53 0.13 0.53 0.5

1ck5B 22 0.14 0.02 0.59 0.4 0.55 0.51

Average 0.265 0.075 0.63 0.43 0.62 0.66

a% of contacts correct with d ¼ 1m1 residues of a correctly predicted contact.
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V. GENERALIZED COMPARATIVE MODELING

Quality sequence-to-structure alignments generated by the threading procedure

depend on the level of sequence identity of the target and the template proteins.

In the cases of high sequence similarity, the protein folds are very similar, and

classical methods of comparative modeling [194,195] led to good-quality

models, frequently to models of similar quality to those obtained from the

refinement of the X-ray data or good NMR data. When the sequence similarity

TABLE III

Predicted Contact Accuracy from Threading for 28 Proteins Used in an Ab Initio Folding Testa

Number of Contacts

Name of Protein Predicted d ¼ 0 d ¼ 1 d ¼ 2b d ¼ 3

1stfI 25 0.28 0.48 0.8* 0.88

1poh_ 37 0.3 0.54 0.7* 0.7

1pou_ 30 0.33 0.47 0.73* 0.9

1ife_ 56 0.18 0.39 0.54 0.79

2azaA 47 0.38 0.53 0.79* 0.85

256bA 1 0 0 1.* 1

1tlk_ 53 0.81 0.94 1.* 1

2pcy_ 45 0.4 0.51 0.91* 0.91

1tfi_ 52 0.19 0.35 0.60 0.79

2sarA 29 0.21 0.55 0.76 0.86

5fd1_ 23 0 0.17 0.30 0.52

1cewI 7 0.57 0.86 0.86 0.86

1ctf_ 46 0.11 0.3 0.50 0.7

1mba_ 12 0.58 0.67 0.67 0.75

1shaA 41 0.34 0.66 0.85* 0.88

1thx_ 53 0.23 0.55 0.72* 0.83

1shg_ 42 0.19 0.57 0.76 0.86

1ubi_ 23 0.61 0.65 0.78 0.83

6pti_ 54 0.26 0.56 0.61 0.8

1cis_ 19 0.21 0.58 0.95 0.95

1fas_ 22 0.27 0.59 0.77 0.86

1ftz_ 18 0.5 0.72 0.78* 0.89

1c5a_ 20 0.1 0.3 0.4* 0.5

1fc2C 18 0.44 0.78 0.83* 1

1gpt_ 19 0.37 0.53 0.79 0.89

1hmdA 33 0.18 0.36 0.52* 0.73

1ixa_ 14 0.43 0.64 0.79* 0.86

1lea_ 23 0.3 0.52 0.74* 0.96

Average 0.31 0.53 0.73 0.83

ad ¼ m is the number of contacts predicted within �m residues of a correctly predicted contact.

Correlated mutation analysis is from the CASP3 predictions of Ortiz et. al. [133].
bAn asterisk indicates that this protein is foldable by ab initio (see Section VI).
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becomes low or nondetectable by sequence comparison methods, the template

proteins could be weakly homologous or just analogous—that is having similar

folds without any obvious evolutionary relations. As a consequence, the resulting

alignments are usually incomplete, with a substantial number of gaps and

insertions. A fraction of residues of the probe protein, which is sometimes

substantial, are not aligned to the template. Moreover, in the aligned parts of the

structure, the true structure of the probe protein may differ in many important

details from the structure resulting from the alignment to the template. Also, an

optimal structural alignment of the two structures could be quite far from the

threading-based alignment. Due to low sequence similarity, the threading

alignment might not be the optimal one.

Is it possible to build a good-quality model based on poor alignments?

Usually, it is not possible by means of contemporary procedures for comparative

modeling. When the template structure differs substantially from the probe

structure, the resulting models are typically much closer to the template

structure than to the true structure of the probe protein [196]. The models do

not move (in conformational space) in the direction of the probe structure, but

instead wander around the template structure. Moreover, in the cases of large

gaps in the alignment, the filled-in pieces of structure are sometimes completely

nonphysical (non-protein-like).

A recently proposed method is described in the next sections that attempt to

address this problem. The idea is to perform a kind of ab initio folding in the

vicinity of the template structure, with the model force field controlling details

of the folding. The template is used only to reduce the searchable portion of

conformational space and loosely defines the general topology of the probe

protein fold. The lattice model employed in these procedures has a limited

resolution and accuracy. Consequently, the obtained models, in general, cannot

achieve the accuracy of the experimental structures. As a result, it is rather

pointless to apply the proposed methodology to those cases when the alignments

are very good and complete. In such cases, the obtained structures would be

slightly worse than structures built by classical comparative modeling tools.

Such situations could be easily detected. In the remaining cases of low

homology (or just analogy of the folds), the method is robust in the sense

that it does not do any ‘‘harm’’ to the initial threading-based models and, for a

substantial fraction of cases, leads to a qualitative improvement of the models.

The resulting structures move toward the true probe structure. Because this

approach bears some similarity to the comparative modeling, we call this

method of homology/analogy-based structure prediction generalized compara-

tive modeling (GeneComp, GC). The applied methodology is essentially the

same for the template-restrained folding as for purely ab initio folding, the

crossover is smooth, and there is no sharp boundary between threading-based

and ab initio approaches.
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A. Description of the Method

The method of generalized comparative modeling consists of several steps,

which sequentially transform the threading alignment into a full-atom model of

the probe protein. They are the following:

1. Build the threading alignment by a method described in the previous

sections.

2. Construct the starting lattice model using the partial template from the

threading as a structural scaffold.

3. Fold/optimize the lattice model using the threading alignment as a loosely

defined structural template.

4. Cluster the lattice folding results [197] and/or calculate a mean structure

by means of distance geometry (DG).

5. Refine the averaged model by Monte Carlo simulated annealing of an

intermediate resolution off-lattice continuous model.

6. Reconstruct atomic details.

B. The Lattice Model and Its Force Field

Before describing the particular steps of the comparative modeling methodology,

we outline the lattice model employed in all coarse-grained simulations (res-

trained or ab initio). Due to assumed reduced representation, we have named this

protein model the side-chain-only (SICHO) model [139,198]. Technical details

of the model design and its force field could be found elsewhere [199]. Here, an

outline is provided for the reader’s convenience. Most of the reduced models of

proteins assume a more or less explicitly reduced (all-complete) representation

of the main-chain backbone [200]. Frequently the alpha-carbon trace is used to

represent the main-chain conformations, and the side chains are neglected or

represented on various levels of simplification. When designing the present

model, two partially contradictory goals were taken into consideration. First, for

computational simplicity, there should just be a single degree of conformational

freedom per residue. Second, the model should enable straightforward imple-

mentation of as accurate and selective a force field as possible. Thus, we assumed

a single center of interactions that corresponds to the center of mass of the side

group and the alpha carbon atoms.

This side-chain representation has several advantages over the alpha-carbon

reduced representation. It is known that the sequence-specific interactions in

proteins are due to different character of the side chains. The interactions of the

main chain are rather generic. Then, having the coordinates of the side chains, it

is very easy to reconstruct the main chain-coordinates [200]. In contrast, the

reconstruction of the side-chain positions from the positions of the main chain is

not trivial [201] and requires extensive optimization. Additionally, the side
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chains are bigger and their size varies between amino acids. Thus, this side-

chain representation provides for better and more protein-like packing, with a

well-defined first coordination shell.

The model chain is restricted to an underlying simple cubic lattice with the

lattice spacing 1.45 Å. The set of possible virtual bonds between consecutive

side chains is defined by a set of 646 lattice vectors. The shortest are of the

vector type |�3,0,0| and |�2,�2,�1| while the longest are of the type

|�5,�2,�1|, expressed in lattice units. The distribution of the length of the

chain bond covers the majority (except for the wings) of the distribution seen

in proteins. The main excluded volume is simulated by a cluster of the 19

closest (to the center of the model side chain) points on the underlying cubic

lattice. This hard core of the chain is supplemented by soft-core repulsion

spheres for the larger amino acids. The size of these spheres is adjusted in such a

way that the folded model chains mimic average packing density of globular

proteins.

The force field of the model consists of three types of potentials. First are the

generic contributions that are independent of sequence and enforce the protein-

like chain stiffness and internal packing. Potentials of the second type are amino

acid-dependent and are used to reproduce the short-range interactions describ-

ing secondary structure propensities and orientation-dependent pair interactions.

The potentials of the third type (short-range potentials identical in form to that

described above and pairwise potentials [202]) are protein-dependent. Their

derivation involves multiple sequence alignments of the sequence of interest,

and the strength of interactions depends on the sequence similarity of protein

fragments.

C. Construction of the Starting Lattice Chain

The threading alignment was used as a template to construct the initial lattice

models. First, the aligned parts of the probe sequence were fitted to the template,

and pieces of the lattice chain were built by taking into consideration the

excluded volume of the model chain and the necessity of ‘‘stretching’’ the chain

between the gaps in the template. Then, starting from the shortest loop, the loops

and nonaligned chain ends were randomly inserted, again taking into account the

excluded volume. The proper geometry of the model chain (avoiding

nonphysical distances between side groups close along the chain) was preserved

during the chain-building procedure. For good alignments, this procedure

produces good models that need very little refinement. For extremely bad

alignments, it may fail; in these (very rare) cases a less restrictive algorithm that

allows for a larger deviation from the template could be used.

D. Restrained Lattice Folding: Optimization of the Initial Model

As discussed in Section II. D, the replica exchange Monte Carlo method appears

to be an efficient tool for searching the conformational space of reduced protein
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models. This technique was therefore used for the restrained folding (or

refinement) of the probe proteins using the threading alignments as loosely

defined structural templates. In the beginning of the procedure, a number of

copies of the initial model are created and placed at various temperatures,

according to the REMC scheme. Two subsequent runs were performed. In the

first run, the range of temperatures is wider and shifted toward higher tem-

peratures to allow for the fast equilibration of all replicas. In the subsequent

longer run, the temperature range was smaller so that approximately half of the

replicas run below the folding temperature and half above. About 20 replicas

were usually simulated. This number of copies guarantees very fast and efficient

swapping of conformations between the various temperature levels (the

temperature increment between replicas has been assumed to be temperature-

independent—a linear temperature set). A somewhat larger number of replicas

may be required for fast convergence of larger proteins—250 residues or more.

The conformations seen at the lowest temperature of the REMC scheme rapidly

find the global energy minimum.

Three types of restraints are used to keep the sampling process in a broad

conformational neighborhood of the template conformation.

The first is the most straightforward. The aligned portion of the template

structure is placed at the center of the Monte Carlo working box. Then, at the

beginning of the simulation, the starting chains are superimposed on the

template. During the simulations, there are weak and somewhat ambiguous

attractions (linear with distance) between aligned (according to the threading

results) residues of the template and the moving probe chain. Thus during the

simulation, the initial alignments have the chance to be corrected or even

overridden by the model force field.

The set of tertiary contacts predicted by threading comprise the second set of

restraints. Because only about one-third are correct and a much larger fraction

are ‘‘almost’’ correct (i.e., they are shifted by �1 or �2 residues), the energy of

attraction between the two residues of the probe predicted to be in contact grows

linearly with the closest distance between the �2 segments of the model chain.

For very good alignments, the predicted contacts are, to a large extent, consistent

with the template structure, and this set of restraints is essentially redundant to

the restraints of the first type. For poorer alignments, a number of other locally

similar proteins may contribute to the contact prediction. Consequently, the

predicted contacts may significantly modify the resulting structures of the probe

with respect to the template; that is, an averaged effect of other weak

‘‘templates’’ is introduced.

The third set of restraints contains the probe distances predicted from the

fragment threading procedure. The distance restraints are limited to the pairs of

residues that are no farther away than the length of the largest secondary

structure element in the protein, which is equivalent to the estimated diameter

(from the number of residues) of the probe protein.
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E. Building the Average Models

For each probe protein, several independent simulations (10–20) were executed.

From each simulation in the second pass, 200 conformations were stored in a

constant interval of simulation time. The collected structures were averaged using

a two-step distance geometry (DG), procedure. After the first pass, those struc-

tures far away from the average were rejected, and the final DG conformation

was constructed from the remaining set of structures. Interestingly, DG averaging

always led to a lower RMSD from the native than the average RMSD for the

original set of conformations from the lattice simulations. Sometimes the

structures from DG were close to the best structures seen in the folding

simulations. Alternatively, our recently developed clustering procedure [197]

could be used to identify clusters of the lowest energy conformations. The

centroid of this cluster can then be treated as an averaged model. In the case of

generalized comparative modeling, the two approaches are essentially equiva-

lent. However, for ab initio folding, the clustering procedure is more powerful in

identifying the most plausible fold from the sometimes-diverse results of ab initio

lattice-folding simulations.

F. Reconstruction of Detailed Atomic Models

A very fast procedure was designed for reconstruction of the atomic details from

the known positions of the alpha carbons and the side chains. The only

constraints are the positions of the side-chain centers of mass. The initial local

alpha-carbon trace geometry that is approximately reconstructed from the

SICHO center-of-mass positions is not perfect. Therefore, the positions of alpha

carbons are optimized in the first step. This is done by a gradient-optimization

procedure using a very simple force field to improve the local geometry. At the

next stage, positions of backbone atoms are reconstructed according to the local

Ca trace conformation. In this step, the vector normal to the plane defined by

three consecutive alpha carbons is calculated. This vector is almost parallel to a

peptide bond plane. Thus, the remaining atoms of the peptide bond can be

positioned quite accurately. Next, positions of side chain atoms are rebuilt. The

conformations of the side chains are chosen from a representative database of

rotamers. For rigid amino acids (e.g., phenylalanine), there is a single

conformation in the database. There are up to 20 conformations for large,

flexible side chains (e.g., lysine). The conformation of the rotamer depends on (a)

the distance between the Ca atom and the center of mass of the side chain and (b)

local chain conformation (i.e., Ca–Ca–Ca angle). Next, as a final stage of the

reconstruction procedure, the side chains are rotated around a virtual Ca—

center-of-mass bond—to avoid excluded volume conflicts. This procedure

produces reasonable structures; however, the packing of side chains after all-

atom reconstruction is not optimized. This can be done by one of the standard
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procedures of molecular mechanics. For the data reported in this work, this step

was omitted.

G. Summary of Results on Fischer Database and Comparison with an
Earlier Version of Generalized Comparative Modeling

Fischer’s database of protein sequences and structures [34] is a standard

benchmark set for validation of threading approaches. As mentioned previously,

PROSPECTOR recognizes a majority of the related sequences correctly. Here,

we would like to test our generalized comparative modeling approach on the

same test set. Probably, Fischer’s database [34] provides a very good test for the

method. It contains closely related pairs of proteins (typical of homology

modeling cases), pairs of weakly related proteins, and some pairs of very weakly

similar ones. As suggested above, one may expect that for very closely

homologous pairs of proteins, our method is not recommended. Indeed, the

geometrical fidelity of the lattice model is in the range of 1 Å, and the model

accuracy (due to deficiencies of the force field and to other factors associated

with the reduced character of the model) is probably significantly lower and

could be estimated to be about 2–3 Å. Also, for very weakly analogous proteins,

where the template structure is far away from the probe structure and when the

alignment is sparse or when alignment covers only a small fraction of the probe

sequence, the method applied here will not provide good models: The restraints

from the template prohibit the requisite large-scale rearrangements of the

modeled structure. In most intermediate cases, one may expect a qualitative

improvement of the model with respect to the quality of the initial threading-

based models.

The above expectations are based on an earlier version of the generalized

homology modeling with lattice folding in the neighborhood of the template

structure [199]. The test results of the earlier approach are summarized in

Table IV where an automated modeling by Modeller [203] (using the threading

templates as starting points) is compared with lattice modeling refined by

Modeller. While the number of cases given in this table is small, one may

conclude that in a fraction of cases the improvement of the threading models is

of a qualitative nature. Also, as expected, already-good models (see the example

of 1aba_) do not improve. The threading procedure [181] used to generate the

initial alignments for these 12 pairs produced worse alignments on average than

the PROSPECTOR threading algorithm employed for the more massive test

involving Fischer’s database. To make the comparison more complete, for the

few pairs that were not properly detected by PROSPECTOR, the match (and

resulting alignments) was enforced, that is, the highest-scoring structural match

was not taken as a template, but rather the correct structural template was used.

The results for the proteins from Fischer’s database are compiled in Table V.
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Similar to the earlier version [199] of the comparative homology modeling,

there are essentially three possibilities. First, when the threading model is very

good the lattice modeling does not improve the overall quality of the molecular

model; however, ‘‘no harm’’ to the quality of the model by application of the

entire methodology could be assumed. Then, there are cases of topologically

correct templates with moderate overall distance from the true probe structure.

Here, in most cases a qualitative improvement of the model quality could be

observed. Finally, for very bad initial models the final models are still not

satisfactory; the accuracy is too low to be sure that the overall fold has been

properly recovered. Some of these models can even contain topological errors.

A number of very interesting observations can be extracted from analysis of

the data compiled in Table V. The first is that the lowest energy criterion for

selection of the final model is not the best one. On the contrary, the distance

geometry averaging or clustering procedures almost always provide models of

better accuracy. The two methods (DG and clustering) lead to essentially the

same (on average) quality of molecular models and are quite consistent. At the

same time, it should be pointed out that the structure selection is not perfect.

Usually the structures generated by clustering or DG are worse than the best

structures observed in simulations. Definitely, better methods of selection (for

example, based on all-atom structures) of the best structures from the lattice

folding trajectories need to be developed.

TABLE IV

a-Carbon RMSD from Native for Models Built from the Initial Threading Alignments and Refined

by Lattice Simulationsa

Probe/Template Proteins Threading þ Modeller SICHO þ Modeller

1aba_/1ego_ 4.43 4.86

1bbhA/2ccy_ 6.77 6.82

1cewI/1molA 14.96 14.38

1hom_/1lfb_ 7.82 3.70

1stfI/1molA 6.40 5.95

1tlk_/2rhe_ 7.23 4.17

256bA/1bbh_ 6.09 4.36

2azaA/1paz_ 21.95 10.77

2pcy_/2azaA 6.56 4.41

2sarA/9rnt_ 10.28 7.83

3cd4_/2rhe_ 6.74 6.39

5fd1_/2fxd_ 25.67 12.40

aThe first column gives the PDB codes of the probe and template proteins detected by the threading

algorithm. The second column gives the results of automated comparative modeling using the

threading alignments as a template definition. The RMSD is given for the alpha-carbon trace. The

right column contains the results of SICHO modeling followed by a refinement using the Modeller

program. In the refinement stage the lattice models were used as a ‘‘template’’ for Modeller. Original

alignments are the same for both approaches compared in the table.
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TABLE V

Compliation of Results of Generalized Comparative Modeling on Proteins from the Fischer

Databasea

Alignment Aligned Best Lowest First

Target Template Coverage Part RMSD Energy DG Cluster

1aaj_ 1paz_ 82.86 6.74 6.15 9.26 9.37 9.00

1aba_ 1ego_ 90.81 6.52 3.55 5.90 4.75 3.95

1aep_ 256bA 64.05 18.36 18.31 18.36 21.45 22.38

1arb_ 4ptp_ 80.99 16.32 15.78 17.47 17.46 17.69

1atnA 1atr_ 75.27 12.42 12.00 13.25 13.16 13.04

1bbhA 2ccyA 93.89 2.74 2.71 3.65 3.07 2.99

1bbt1 2plv1 93.59 12.55 9.57 10.81 10.70 10.80

1bgeB 1gmfA 66.67 7.89 4.93 6.27 5.45 5.71

1c2rA 1ycc_ 85.35 4.35 4.31 5.75 5.34 5.30

1cauB 1cauA 89.63 5.18 4.04 5.69 5.45 5.41

1cewI 1molA 70.37 4.85 4.10 8.00 7.79 7.83

1chrA 2mnr_ 92.97 3.50 3.77 5.35 4.90 4.78

1cid_ 2rhe_ 55.93 19.76 14.05 18.88 18.44 16.97

1cpcL 1colA 81.40 15.71 12.30 13.43 13.58 13.17

1crl_ 1ede_ 47.75 20.01 21.35 24.21 24.09 24.93

1dsbA 2trxA 51.65 12.46 11.58 15.94 16.47 15.30

1dxtB 1hbg_ 92.52 2.74 2.91 3.54 3.01 3.08

1eaf_ 4cla_ 78.13 13.25 9.27 10.09 10.32 10.10

1fc1A 2fb4H 96.62 12.99 2.63 3.21 13.12 2.74

1fxiA 1ubq_ 61.46 10.94 8.53 10.28 10.18 10.14

1gal_ 3cox_ 74.01 15.03 14.03 17.74 17.80 17.38

1gky_ 3adk_ 85.48 6.68 6.13 8.75 6.36 8.87

1gp1A 2trxA 54.89 11.48 9.08 14.75 13.74 15.06

1hip_ 2hipA 80.00 3.55 3.92 4.86 4.26 4.13

1hom_ 1lfb_ 97.73 1.62 1.50 2.30 1.57 1.70

1hrhA 1rnh_ 91.30 7.15 4.90 5.50 5.07 5.07

1isuA 2hipA 95.16 6.06 3.20 4.35 5.07 4.08

1lgaA 2cyp_ 77.60 12.45 12.44 17.14 15.59 16.53

1ltsD 1bovA 59.00 9.99 8.11 12.16 10.21 9.47

1mdc_ 1ifc_ 96.97 2.62 2.55 3.12 2.66 2.65

1mioC 1minB 88.38 14.48 14.05 15.19 14.71 14.94

1mup_ 1rbp_ 93.63 5.56 4.14 4.89 4.38 4.51

1npx_ 3grs_ 92.17 14.56 13.61 14.15 14.12 14.09

1onc_ 7rsa_ 98.08 3.81 3.08 3.53 3.51 3.29

1osa_ 4cpv_ 70.27 16.84 16.56 18.02 17.90 17.81

1pfc_ 3hlaB 89.22 3.84 3.81 4.69 4.28 4.46

1rcb_ 1gmfA 71.32 6.28 3.91 5.51 6.09 4.25

1sacA 1ayh_ 76.47 18.13 16.89 18.52 18.81 18.93

1stfI 1molA 69.47 8.46 4.97 7.38 7.07 8.11

1tahA 1tca_ 56.92 19.00 18.90 21.60 21.51 20.96

1ten_ 3hhrB 93.33 5.60 3.14 3.98 3.62 3.45

1tie_ 4fgf_ 66.87 7.88 7.88 8.80 8.60 8.94

1tlk_ 2rhe_ 95.83 4.61 2.35 3.49 3.42 3.03

2afnA 1aozA 95.83 25.27 22.60 23.68 25.05 23.50
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H. Comparison to Modeller

Recently, several tools were developed for the fast building of all-atom models of

proteins by various means of comparative modeling. Probably, the most efficient

is Modeller, developed by Sali and Blundel [195]. Modeller allows for the high-

throughput modeling of protein structures on a genomic scale. The method

TABLE V (Continued)

Alignment Aligned Best Lowest First

Target Template Coverage Part RMSD Energy DG Cluster

2ak3A 1gky_ 78.26 15.63 14.65 15.51 15.46 15.27

2azaA 1paz_ 62.79 7.60 6.33 8.40 7.87 7.30

2cmd_ 6ldh_ 95.83 5.02 4.22 4.74 4.44 4.49

2fbjL 8fabB 94.37 10.30 7.04 7.72 8.78 8.37

2gbp_ 2liv_ 80.94 10.72 9.50 10.66 10.07 10.35

2hhmA 1fbpA 71.69 15.26 15.99 18.30 17.57 17.83

2hpdA 2cpp_ 85.33 6.44 5.41 6.75 5.83 5.81

2mnr_ 4enl_ 95.52 14.92 13.55 14.07 14.28 14.27

2mtaC 1ycc_ 65.31 14.35 14.04 16.01 16.49 16.51

2omf_ 2por_ 82.06 23.61 21.82 23.51 23.45 24.17

2pia_ 1fnr_ 79.44 15.72 15.64 17.29 16.77 18.24

2pna_ 1shaA 46.55 10.69 7.27 11.31 8.92 10.89

2sarA 9rnt_ 91.67 6.36 4.88 6.11 5.76 5.84

2sas_ 2scpA 86.49 6.45 5.51 6.42 6.11 5.95

2sga_ 4ptp_ 98.82 17.74 9.78 11.87 10.49 11.94

2sim_ 1nsbA 66.14 14.34 16.52 19.79 18.57 17.47

2snv_ 4ptp_ 84.11 14.28 12.78 14.07 13.84 13.31

3cd4_ 2rhe_ 92.78 7.02 5.98 7.40 7.15 7.05

3chy_ 4fxn_ 86.72 6.07 3.58 4.91 4.36 4.59

3hlaB 2rhe_ 83.15 10.30 4.72 9.76 8.63 8.62

3rubL 6xia_ 74.13 20.91 22.26 24.19 24.15 23.71

4sbvA 2tbvA 97.49 18.68 17.73 18.47 18.53 18.97

5fd1_ 2fxb_ 55.66 10.95 10.70 12.13 11.99 11.61

8i1b_ 4fgf_ 73.97 11.31 10.77 12.58 12.88 12.65

aThe first two columns contain the PDB codes of the target and template proteins, respectively. The

percentage of a target sequence aligned to a template is given in column 3. The fourth column

provides RMSD (all values for alpha-carbon traces) for the aligned part of the template from ‘‘true’’

structure of the target—a measure of the alignment quality. The fifth column gives the best RMSD

for the model chains observed in a set of sparely written trajectories (a few hundred photographs).

The sixth column gives the RMSD for the lowest energy (according to the SICHO force field)

conformation observed in the trajectories. The RMSD values in the two last columns correspond to

the average structures obtained via distance geometry and clustering algorithm. The two methods of

averaging are almost equivalent, with slightly better performance of the DG approach. In number of

cases, the final models for the entire structure are better (as measured by RMSD from the

crystallographic structure) than the initial threading models—that is the aligned part.
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proposed here is more complex and more computationally demanding; however,

it is still feasible in large-scale applications. The key question is, Are the results

worth the increased computational cost? To answer this question, we compared

various models for the Fischer database proteins [34] in Table VI, where the

results of generalized comparative modeling described in this contribution are

compared with models generated by Modeller. Both procedures started from

exactly the same templates and the same alignments generated by PROSPEC-

TOR. If we consider all models, then GeneComp performs better than Modeller

in 53 cases, worse in 13, and the same in two cases. If only templates whose

RMSD is less than 10 Å are considered, then GeneComp performs better in 29

cases, Modeller performs better in five cases, and they perform the same in one

case. However, in the latter, the two structures differ by a small amount. In many

cases of very good (or good) templates, the two methods generate models of

similar quality. The situation changes when the homology becomes weaker and

when, consequently, the threading models become more distant from the probe

structure. In these cases, the models generated by GeneComp are almost always

of noticeably better accuracy. We can most likely ignore the cases when both

methods lead to very bad models. It is safe to say that there is usually no

difference between models 12 and 14 Å from the true probe structure. The utility

of such models for structural genomics is at least problematic (of course, it

depends somewhat on protein size—a very large protein may still be of a correct

overall topology with this high RMSD). However, there is quite a difference

between a model that is 4 Å from the true structure and a 6 Å model (or even

more between a 6 Å model and 10 Å model). As can easily be seen from the data

compiled in Table VI, in the range of 4–8 Å, the GeneComp models are in most

cases significantly more accurate than the models generated by Modeller. The

typical difference is 1–2 Å; however, in a few cases it is as much as 4–5 Å.

Interestingly, the models generated by GeneComp frequently have a lower

RMSD for the entire structure than the RMSD of the original aligned fragments.

These are the cases when a qualitative improvement with respect to simple

comparative modeling was observed. The lattice simulations improve entire

structures. Thus, on average the proposed method leads to qualitatively better

molecular models with pronounced consequences for structure-based protein

function prediction and other aspects of proteomics.

VI. AB INITIO FOLDING

A. Description of the Method

The method for ab initio folding of small globular proteins employs the same

modeling tools as in generalized comparative modeling. There are, how-

ever, some differences. Of course, now there is no template to restrict the
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TABLE VI

Comparison of Generalized Comparative Modeling with Automated Modeling via Modellera

Target GeneCompþDG Modeller GeneCompþDGþModeller

1aaj_ 9.37 10.13 9.30

1aba_ 4.75 6.66 4.73

1aep_ 21.45 21.56 21.32

1arb_ 17.46 18.56 17.35

1atnA 13.16 15.61 13.15

1bbhA 3.07 3.02 3.03

1bbt1 10.70 10.21 10.68

1bgeB 5.45 10.34 5.42

1c2rA 5.34 5.84 5.30

1cauB 5.45 5.93 5.93

1cewI 7.79 8.47 7.76

1chrA 4.90 4.57 4.91

1cid_ 18.44 20.19 18.44

1cpcL 13.58 15.62 13.52

1crl_ 24.09 25.89 23.98

1dsbA 16.47 16.37 16.45

1dxtB 3.01 3.05 3.00

1eaf_ 10.32 10.82 10.18

1fc1A 13.12 15.02 12.48

1fxiA 10.18 11.27 10.11

1gal_ 17.80 18.86 17.66

1gky_ 6.36 11.82 6.45

1gp1A 13.74 15.22 13.66

1hip_ 4.26 4.06 4.09

1hom_ 1.57 1.73 1.57

1hrhA 5.07 6.95 5.05

1isuA 5.07 5.84 5.20

1lgaA 15.59 14.72 15.68

1ltsD 10.21 10.88 10.22

1mdc_ 2.66 2.66 2.71

1mioC 14.71 16.78 14.68

1mup_ 4.38 4.93 4.40

1npx_ 14.12 14.48 14.05

1onc_ 3.51 5.14 3.50

1osa_ 17.90 16.89 17.91

1pfc_ 4.28 4.39 4.49

aThe same alignments (see Table V) were used as starting templates for GeneComp (RMSD for the

DG averaged models) and Modeller. The last column provides RMSD for the models generated by

Modeller starting from the complete models obtained by GeneComp. In almost all cases the models

generated by GeneComp are more accurate than the models generated by Modeller, and in 15–20

cases the improvement is of a qualitative nature (see the text for explanation). Refinement of the

GeneComp models by Modeller (compare columns 2 and 4) leads to marginal changes of the

molecular models, indicating the consistency of the GeneComp models, with local atomic details of

the PDB structures.
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conformational search. The generic and protein-independent components of the

force field for the lattice models are the same, and the protein-specific potentials

have a similar form [202]. The difference is that in ab initio folding they are less

specific. For the test purposes, all homologous (and analogous) proteins have

been excised from the structural database used to derive the potentials. As a

result, the number and accuracy of the predicted contacts are lower, as is the

accuracy of the short-range terms. As before, a conservative prediction of

the regular elements of secondary structure was used to bias the short-range

interactions. Thus the requirements for the folding simulations are much higher.

A much larger number of independent simulations were executed to check the

reproducibility of the results and to provide a representative sample for the

clustering procedure and final fold selection.

The selection of the initial conformations for the REMC simulations requires

some comment. In principle, random expanded conformations could be used.

However, this slows down the convergence of the process. For this reason, a

different strategy was adopted. Having a prediction of secondary structure,

gapless threading of structures of comparable size is performed using the

matching fractions of the predicted secondary structure to the actual secondary

structure of the templates as a scoring function. Of course, all homologous and

analogous proteins were removed from the pool. Fifty lattice chains were built

using the 50 best scoring structures as templates. While these starting structures

are different from the probe fold, they may have the proper element(s) of

secondary structure that may serve as a fast nucleation site for the folding

process. In the preliminary simulation runs, 50 replicas were used. The second

iterations used the top 20 (20 lowest-energy replicas) as the input pool. The

simulation results from the last iteration of the lattice-folding algorithm were

subject to a clustering procedure [197] that was also used to make the final fold

selection.

B. Results of Ab Initio Folding on 28 Test Proteins

Sequences of 28 globular proteins were selected as the test set for the ab initio

folding protocol. The set is representative of single-domain small proteins. It

contains alpha proteins with a=b-; aþ b-, and b-type folds. In about 50% of the

cases, low-resolution folds of correct topology were obtained as one of a number

of clusters. The results are compiled in Table VII that also contains the RMSD

for the best structures observed during simulations at the lowest temperature

replica of the system as well as the RMSD of all structures that cluster [197]. It is

clear that simulations generate a small subset of very good structures for the

majority (22 of 28) of the tested proteins. Unfortunately, the fold selection

procedure rarely selects structures close to the very best ones. The discrepancy is

more drastic than in the case of template-restricted folding. It could be proven

rigorously that to obtain a 3 Å structure by random in a set of trajectories
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containing a few thousand photographs is practically impossible. Thus, the

model force field and the sampling scheme do a reasonably good job in sampling

protein-like regions of conformational space, including the neighborhood of the

native state. At the same time, the force field lacks a sufficient discriminatory

ability to select the closest-to-native fold generated from a large number of

competing protein-like structures. These competing structures have elements of

native topology with misfolded fragments of structure; sometimes they are

mirror images of native-like folds.

Overall, though, if one defines a successful simulation as one with a native

topology whose backbone RMSD is less than 6.5 Å, then in 15/28 cases (i.e.,

TABLE VII

Summary of Ab Initio Folding Results

Protein Best Lowest-Energy RMSD of Centroid

Namea RMSD RMSD of Each Cluster

1c5a_ 4.86 10.87 11.20 11.63 5.70 8.75

1cewI 6.71 10.08 8.77 13.84 15.29 12.00 11.66

1cis_ 4.98 11.52 10.41 10.34 9.36 9.67 10.43 6.81 7.25

1ctf_ 7.10 11.06 10.72 11.40 11.54

1fas_ 5.30 8.55 9.30 7.47 11.68 10.15 11.89 6.36 12.87

1fc2C 2.91 7.34 7.21 7.61 3.35

1ftz_ 2.65 8.79 8.78 6.52 3.05 7.11 6.50 8.18

1gpt_ 4.92 7.45 7.58 8.66 9.70 9.59

1hmdA 5.02 10.57 10.36 12.95 14.20 12.52 5.51

1ife_ 6.53 9.23 11.57 9.24 13.64 11.71 12.12 11.41

1ixa_ 4.02 6.62 6.36 6.92 9.28 10.65 10.53

1lea_ 3.23 11.85 10.93 9.95 8.32 8.44 5.82

1mba_ 9.61 12.72 12.63 15.28 12.01 15.44 13.51

1poh_ 2.90 12.63 12.76 11.91 3.87

1pou_ 2.70 4.98 3.95 9.88 9.93 10.93 11.61

1shaA 3.94 13.07 13.82 12.08 12.75 9.00 10.49 6.00

1shg_ 4.40 9.00 8.99 9.06

1stfI 5.47 10.19 8.06 12.86 11.17 13.68 11.99 16.74

1tfi_ 7.62 9.48 10.15 8.88 10.56 10.20

1thx_ 2.97 12.72 12.83 11.27 3.89 13.04 14.40

1tlk_ 3.13 7.38 11.02 6.35

1ubi_ 3.05 10.98 10.71 10.51 11.57 12.07 8.13 10.54

256bA 3.09 3.73 3.52 8.38 14.88 10.01 14.91 12.13

2azaA 3.83 7.20 5.75 12.86 13.01 14.00 13.30 13.30

2pcy_ 3.72 7.75 5.56 7.12 11.39 13.46 13.19

2sarA 8.45 13.11 10.71 11.92 12.18 12.71 14.10 13.93 14.10 13.79

5fd1_ 8.67 12.53 12.20 10.84 12.48 10.94 14.35 14.26

6pti_ 5.36 7.36 6.68 10.81 10.99 10.14 9.14

aBold indicates that this protein is foldable; that is, one of the clusters has an average RMSD from

native less than 6.5 Å.
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about 54% of the cases) the simulations are successful. Again, a different, more

efficient fold selection method needs to be developed; such efforts are currently

underway. An alternative recently being explored is the method of inserting

atomic detail and then scoring the structures using a recently developed

distance-dependent potential of mean force [204]. If this is done, then 1stfI is

not foldable, but 1fas_,1gpt_,1mba_ are foldable, giving a total of 17 (i.e., 61%)

of the test set proteins successfully folded.

VII. COMPATIBILITY OF REDUCED AND ATOMIC MODELS

A. Reproducibility of Structural Details

Reduced models have a long history. Some reproduce just the overall fold of

globular proteins, whereas other (more complex) models maintain some details

of protein structure. The SICHO model, based on just a single center of

interaction per residue, appears at first glance to be a drastic simplification.

However, due to its flexibility, the model is more accurate than it may appear at

first. First of all, the mesh size of the underlying cubic lattice is equal to 1.45 Å,

which means that a simple fit of the lattice model to a detailed PDB [171]

structure has an average accuracy of 0.7–0.8 Å with respect to the side-chain

centers of mass. Due to the coarse-grained character of the potentials, correctly

folded (say, by a pure ab initio approach) structures are of somewhat lower

accuracy. Very small proteins or peptides could be folded to 1.5 Å to 2.0 Å from

the native structure. The accuracy of larger proteins decreases due to an

accumulation of errors across the structure. For 100-residue proteins, properly

folded structures have an RMSD in the range of 3.5–6.5 Å from native. When

looking for elements of secondary structure as helices and b-hairpins, the

accuracy is of the same range as for very small proteins or slightly better and

ranges between 1.0 and 2.0 Å. The above numbers are given for the side-chain

centers of mass. Our model employs a very crude and simple reconstruction of

the a-carbon coordinates as a simple combination (with the coefficients extracted

from a statistical analysis of the structural database) of the positions of three

consecutive side-chain centers. This estimation is contaminated by a small

systematic error (there is no correction from deviation of the a-carbon from the

plane defined by three corresponding side-chain united atoms) and by some

statistical error related to errors in the side-chain positions. Compensating for

this is a statistical reduction of the absolute error of Cas because the main-chain

units are ‘‘inside’’ the secondary structure elements defined by the side-chain

centers of mass. Consequently, errors in the side-chain positions translate into a

slightly smaller error in the positions of the a-carbons. As a result, the accuracy

of the crude a-carbon trace is the same or slightly better than the accuracy of the

explicit virtual chain of the side groups.
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The level of local (and global) accuracy of the model is sufficient to allow for

quite accurate reproductions of the most important structural details. First, the

contact maps of the side chains extracted from the model are very similar to

the contact maps calculated from the crystallographic structures, assuming a

4.5 Å cutoff for contacts between heavy atoms of the side chains (side groups

are considered to be in contact when any pair of their heavy atoms are at a

distance smaller than the above cutoff). The overlap with native for properly

folded structures is 85–90%. There are some excess contacts in the lattice

models, and some contacts are missed due to the spherical shape of the model

side chains and the statistical character of the cutoff distances for the model

residues. More interestingly, the model hydrogen bond network (properly

calculated from the estimated coordinates of alpha carbons) of the main chain

coincides with similar (85–90%) accuracy with the main-chain hydrogen bonds

assigned by the DSSP procedure [205] to the corresponding native structures.

Bifurcated hydrogen bonds (the weaker ones) are ignored in this comparison,

because the model does not allow for H-bond bifurcation. As in real proteins,

the model structures have very regular networks of hydrogen bonds. Helices,

except for their ends, exhibit a regular pattern of two hydrogen bonds per

residue. The same is observed for internal b-strands in b-sheets. The edge

strands usually have a single model H-bond per residue. Sometimes, even

patterns characteristic of b-bulges are reproduced with high fidelity. The model

network of H-bonds is explicitly cooperative. This leads to protein-like

cooperative folding. Interestingly, misfolded structures also look very protein-

like unless they violate some ‘‘rules’’ of protein folding—for example, the

handedness of the b–a–b connections [206].

The protein-like geometry of such a simple model is enforced by the proper

design of the force field that has two distinct types of components: sequence-

dependent (or even protein-specific), which drive folding toward a specific fold,

and generic, which strongly bias the model chain toward the average protein-

like local conformational stiffness. The force field also has packing preferences.

This way a vast majority of the irrelevant portion of the conformational space of

the high coordination lattice (containing 646 possible side-chain–side-chain

virtual bonds) model is efficiently avoided during the sampling process.

B. Reconstruction of Atomic Details

The lattice SICHO model exhibits good compatibility with detailed all-atom

models. Projection of the all-atom structures onto the lattice model is trivial, and

the accuracy of the projection is about 0.8 Å RMSD for the side-chain centers of

mass or for the coarse reconstruction of all the a-carbon positions. More

interesting, and certainly more challenging, is the reconstruction of the atomic

details from the lattice models. A couple of similar procedures have recently

been developed for this purpose [200]. In one, the crude estimated coordinates of
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the a-carbons are refined using the distance restraints typical for proteins and

simple potentials for optimization of the backbone geometry. In the next stage,

the remaining atoms of the main chain are reconstructed using a library of

backbone fragments. Finally, a library of side-chain rotamers is employed to

build the side-group conformations that are the most consistent with the lattice

model. The side-group geometry and packing can be optimized relatively easily

because the gross overlaps are by definition excluded by placing the rotamers as

close as possible to the lattice chain (which itself exhibits a reasonable

approximation of the packing in a protein). When starting from the lattice fit

to the crystallographic structure, this reconstruction process returns a full atom

structure that differs on average by about 1 Å RMSD from the original one.

Further minimization by the CHARMM force field [207] leads to a small

improvement of the model. The same accuracy of all-atom reconstruction is

expected for all conformations generated during the lattice simulations.

A somewhat different procedure that has an advantage of computational

speed leads to structures that are about 1.5 Å from the original all-atom model.

Thus, there is the possibility of multiscale simulations of protein systems. The

computational speed of the SICHO model enables simulations that correspond

to the time-scales characteristic of real protein folding. At specific interesting

points of MC trajectory, one can perform all-atom reconstruction, followed by

detailed MD simulations. Another possibility that is now being explored is to

use the all-atom models (derived from lattice structures) as a means of selecting

the ‘‘best,’’ possibly closest to native, structures generated in lattice folding

simulations by the SICHO model.

C. Feasibility of Structural Refinement

As discussed in other parts of this chapter (see Sections VIII and IX), low-

resolution models could be successfully employed in the functional annotation of

new proteins and even for docking ligands. Of course, the more accurate the

model, the wider its applications. The SICHO model is of limited resolution.

Typical, well-folded structures have an RMSD that is 2 to 6.5 Å from native. Is it

possible to improve such models using more a detailed representation and a more

exact force field? Is it possible to include the solvent successfully in an explicit

way at this stage? It appears that at least for moderately small proteins with a

reasonable starting lattice structure, sometimes the models can be refined to

a resolution close to that of experimental structures. Successful refinement of a

small protein, CMTI, from a low-resolution MONSSTER folding algorithm [137]

to a structure close to the experimental one was recently done by Simmerling

et al. [208]. Earlier, for similar low-resolution lattice models, several structures

of leucine zippers were also successfully refined to experimental resolution

[124,125]. These studies were subsequently extended using ESMC to provide a

treatment of the GCN4 leucine zipper folding thermodynamics as well as the
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prediction of the native state [209], and it was subsequently shown that the

CHARMM force field, when supplemented by a generalized Born/surface area

treatment, is highly correlated with the lattice-based force field [210]. These

studies are extremely encouraging, although it is now unclear how soon the gap

between low-resolution lattice folds and high-resolution all-atom structures for

larger proteins will be closed.

VIII. FROM STRUCTURE TO BIOCHEMICAL FUNCTION

A. Does Knowledge of Protein Structure Alone Imply Protein Function?

Because proteins can have similar folds but different functions [211,212], deter-

mining the structure of a protein does not necessarily reveal its function. The

most well-studied example is the (a/b)8 barrel enzymes, of which triose

phosphate isomerase (TIM) is the archetypal representative. Members of this

family have similar overall structures but different functions, including differing

active sites, substrate specificities, and cofactor requirements [213,214]. An

analysis of the 1997 SCOP database [211] shows that the five largest fold families

are the ferredoxin-like, the (a/b) barrels, the knottins, the immunoglobulin-like,

and the flavodoxin-like fold families with 22, 18, 13, 9, and 9 subfamilies, respec-

tively. In fact, 57 of the SCOP fold families consist of multiple superfamilies

[15]. These data only show the tip of the iceberg: Each superfamily is further

composed of protein families, and each individual family can have radically

different functions. For example, the ferredoxin-like superfamily contains

families identified as Fe–S ferredoxins, ribosomal proteins, DNA-binding

proteins, and phosphatases, among others. More recently, a much more detailed

analysis of the SCOP database has been published [215], which finds broad

function–structure correlation for some structural classes, but also finds a number

of ubiquitous functions and structures that occur across a number of families.

The article provides a useful analysis of the confidence with which structure and

function can be correlated [215]. For a number of functional classes, knowledge

of protein structure alone is insufficient information to assign the specific details

of protein function.

B. Active Site Identification

It has been suggested that the active sites in proteins are better conserved than the

overall fold [27]. If so, then one should be able to identify not only distant

ancestors with the same global fold and same biochemical activity, but also

proteins with similar functions but different global folds. Nussinov and co-

workers empirically demonstrated that the active sites of eukaryotic serine

proteases, subtilisins, and sulfhydryl proteases exhibit similar structural motifs

[216]. Furthermore, in a recent modeling study of S. cerevisiae proteins, active
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sites were found to be more conserved than other regions [27]; this was also seen

in the study of the catalytic triad of the a/b hydrolases [11]. Kasuya and Thornton

[217] have created structural analogs of a number of Prosite sequence motifs and

showed, for the 20 most frequent Prosite patterns, that the associated local

structure is rather distinct [3]. These results provide clear evidence that enzyme

active sites are structurally more highly conserved than other regions of a protein.

C. Identification of Active Sites in Experimental Structures

Several groups have identified functional sites in proteins with the goal of

engineering or inserting functional sites into new locations, and success has been

achieved for several metal-binding sites [218–226]. However, because highly

accurate site descriptors of backbone and side-chain atoms were used, this fueled

the idea that significant atomic detail is required if protein structure is to be used

to identify protein function. Similarly, detailed side-chain active site descriptors

of serine proteases and related proteins were employed to identify functional

sites [227], while more automated methods for finding spatial motifs in protein

structures have been developed [37,216,228–233].

Unfortunately, such methods require the exact placement of atoms within

protein side chains and are inapplicable to the inexact, low-resolution predicted

structures generated by the state-of-the-art ab initio folding and threading

algorithms (see Sections IV–VI). These methods are required when the

sequence identity of the sequence of interest to solved structures is too low to

use comparative modeling. To address this need, Skolnick and Fetrow have

recently developed ‘‘fuzzy,’’ inexact descriptors of protein functional sites [8].

They are applicable to both high-resolution, experimental structures and low-

resolution (backbone RMSD 4–6 Å from native) structures. These descriptors

are a-carbon-based, ‘‘fuzzy functional forms’’ (FFFs). Initially, they created

FFFs for the disulfide oxidoreductase [8,10] and a/b-hydrolase catalytic active

sites [11] (an additional 198 have now been built, with comparable results

[234]).

The disulfide oxidoreductase FFF was originally applied to screen 364 high-

resolution structures from the Brookhaven protein database [235]. For the true

positives, the proteins used to create the FFF have different structures and low

sequence identity to those proteins used to build the FFF, but the active sites are

quite similar [8]. Here, the FFF accurately identified all disulfide oxidoreduc-

tases [8]. In a larger dataset of 1501 proteins, the FFF again accurately identified

all of the disulfide oxidoreductases, but it also selected another protein, 1fjm, a

serine-threonine phosphatase. Initially this was a discouraging result, but

subsequent examination of the sequence alignments combined with an analysis

of the subfamily clustering strongly suggested that this putative active site might

indeed be a site of redox regulation in the serine-threonine phosphatase-1 family

[12]. If experimentally verified, this would highlight the advantages of using
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structural descriptors to analyze multiple functional sites in proteins. In

particular, function prediction would not be restricted to the ‘‘primordial’’

function that characterizes the sequence family, but could also include addi-

tional functions gained during the course of evolution.

D. Requirements of Sequence–Structure–Function Prediction Methods

Any sequence–structure–function method that does function prediction by

analogy relies on three key features. First, the function of the template protein

must be known. Second, the active site residues must be identified and associated

with the function of the protein. Third, a crystal structure of a protein that

contains the active site must be solved so one can excise the active site for

constructing the corresponding three-dimensional active site motif. Evolutionary

approaches to function prediction often just require that the first criterion be

satisfied, but for more distant homologs the second should be checked as well,

because functions can be modified during evolution. The third requirement is

unique to structure-based approaches to function prediction. Based on studies to

date [8,10–12,14,15], identification of an enzyme’s active site requires a model

whose backbone RMSD from native near the active sites is about 4–6 Å for

structures generated by ab initio folding. This predicted structure quality is due

to the fact that the errors in the active site geometry found in the predicted

structure tend to be systematic rather than random. However, threading does not

suffer from this problem because, in the predicted structure, if the alignment does

not include the active site residues, no functional prediction is made. If it does,

the local geometry is the same as in the template’s native structure. Threading

can have alignment problems, but locally—at least in the vicinity of the active

site—these can often be overcome if the threading score includes a sequence

similarity component or if Generalized Comparative Modeling is done. Never-

theless, in practice, for both ab initio and threading models, the quality of the

predicted structures is better in the core of the molecule than in the loops, so

prediction of the function of a protein whose active site is in loops may be

problematic. Currently, the method has only been applied to identify enzyme

active sites. Recent work described in Section VIII suggests that at least in some

situations, low-resolution structures can also be used to at least partially address

the problem of substrate and ligand binding. But in general, techniques that will

further refine inexact protein models will be necessary to extend the approach.

E. Use of Predicted Structures from Ab Initio Folding

As noted above, the recent CASP3 results suggest that for small proteins, current

tertiary structure prediction schemes can often (but far from always) create

inexact protein models of the global fold. Are these structures useful for

identifying functional sites in proteins? To explore this issue, using the ab initio

structure prediction program MONSSTER [191,193], the tertiary structure of the
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glutaredoxin, lego, was predicted whose backbone RMSD from the crystal

structure was 5.7 Å. To determine if this inexact model could be used for function

identification, the set of correctly folded structures and a set of 55 incorrectly

folded structures were screened with the FFF for disulfide oxidoreductase

activity [8,10]. The FFF uniquely identified the active site in the correctly folded

structure but not in a library of incorrectly folded ones [15]. This is a proof-of-

principle demonstration that inexact models produced by the ab initio prediction

of structure from sequence can be used for the prediction of biochemical

function.

F. Use of Threaded Structures to Predict Biochemical Function

In a very important paper, Lathrop demonstrated that use of functionally

conserved residues could filter threading predictions to correctly identify globins

even when the threading score was insignificant [30]. While suggestive, the key

question was whether or not this result could be generalized on a genomic scale.

Over the past few years, we have been exploring this issue in great detail [8,10–

15], and, as discussed below, we demonstrate that the use of the sequence–

structure–function paradigm, when appropriately employed, allows one to

predict biochemical function with a much smaller false-positive rate than

BLOCKS [236,237], the best competing sequence-based approach. Indeed, we

have developed a very promising approach to the problem of genome-scale

function annotation.

The methodology is as follows: We use PROSPECTOR1 [57] (although, any

threading algorithm could, in principle, be used) to identify the set of 20

structures that are the best scoring matches between the probe sequence and the

template structure (four scoring functions times five best scoring structures for

each function). Then, each structure was searched for matches to the active site

residues and geometry of the FFF. If a match to the FFF is found, then for those

sequences for which homologous sequences are available, a sequence-conserva-

tion profile was constructed [11]. If the putative active site residues are not

conserved in the sequence subfamily to which the protein belongs, that

sequence is eliminated as having the predicted function; otherwise the sequence

is predicted to have the function. Using this sequence–structure–function

method, 99% of the proteins in the eight genomes that have known disulfide

oxidoreductase activity were found [15]; 10% to 30% more correct functional

predictions are made than in alternative sequence-based approaches [15];

similar results are seen for the a/b-hydrolases [11].

In Fig. 2, we show the distribution of scores (blue) for the E. coli genome

[238] when any of the 11 disulfide oxidoreductases in our structural database

was selected as being in the top five scoring structures using the ‘‘close’’

sequence plus secondary structure plus pair profile scoring function. Similarly,

those proteins identified on application of the disulfide oxidoreductase FFF to
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these threading models (all are known true positives) are indicated in red.

Clearly, the use of the FFF allows one to extract proteins (e.g., those to the

immediate right of the maximum) when their raw threading score would require

one to also include a significant (in this case overwhelming) number of false

positives. We note that full use of PROSPECTOR1-3 identifies all the known

disulfide oxidoreductases in the E. coli and M. genitalium genomes. Note that,

in general, structures whose Z-score is greater than 1 can be successfully

searched for a match to a known active site.

Importantly, using structural information, the false-positive rate is much less

than that found using sequence-based approaches. This conclusion arises from a

detailed comparison of the FFF structural approach and the Blocks sequence-

motif approach [15]. Here, the sequences in eight genomes, including B. subtilis

[239], were analyzed for disulfide oxidoreductase function using the disulfide

oxidoreductase FFF, the blocks thioredoxin block 00194 [236], and the blocks

glutaredoxin block 00195 [236]. In Fig. 3 we plot the distribution of scores

when the B. subtilis genome is threading through these two blocks. By way of

example, if we assume that those sequences identified by both the FFF and

Blocks [236] are ‘‘true positives,’’ we find 13 such sequences in the B. subtilis
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Figure 2. For the E. coli genome, the distribution of threading scores for the ‘‘close’’ sequence

plus secondary structure/pair profile scoring function is shown in dark gray and those proteins

identified by use of the disulfide oxidoreductase FFF are shown in light gray.
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genome. (Recognize that the experimental evidence validating all of these ‘‘true

positives’’ is lacking; thus, they are more accurately termed ‘‘consensus

positives.’’) To find these 13 ‘‘consensus positive’’ sequences, the FFF hits 7

false positives. In contrast, Blocks hits 23 false positives. It was previously

suggested that the use of a functional requirement adds information to threading

and reduces the number of false positives [30]. These data validate this claim on

a genome-wide basis. Similarly, using active site descriptors as a filter, one can

identify the true positives even when the threading score is barely significant (as

in Fig. 2) and where selection of the structure based on the threading score alone
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Figure 3. For the B. subtilis genome, the distribution of Blocks scores [236, 237] for the

thioredoxin block and glutaredoxin blocks are presented. FFF indicates that the threaded structure

satisfies the disulfide oxidoreductase active site descriptor, CP indicates that the sequence identified

by threading and FFF satisfies the conservation profile, and ? indicates that there is just one sequence

so that a CP analysis cannot be done.
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would yield a significant number of false positives. Thus, what we require is a

method that places such structures where their score is sufficiently significant

that on subsequent filtration by a functional descriptor, they can be reliably

identified. This is the origin of use of multiple scoring functions in PROSPEC-

TOR1, which, in combination, selects 59 of 68 Fischer pairs in the top scoring

position.

Surprisingly, despite the fact that threading algorithms have problems

generating good sequence–structure alignments, we have found that active sites

are often accurately aligned, even for very distant matches. This observation

would agree with the above-mentioned experimental results that active sites are

well-conserved in protein structures. Of course, because no genome has the

function of all its proteins experimentally annotated, it is impossible to know

how many proteins with the specified biochemical function are missed, nor is

there yet experimental characterization of most of these predictions.

IX. USE OF LOW-RESOLUTION STRUCTURES
FOR LIGAND IDENTIFICATION

One of the important elements of protein function is the ability of a protein to

interact with and bind various ligands. This ability is closely related to the three-

dimensional structure of the protein. Because the quality of theoretical structure

prediction methods has recently improved considerably, we are developing a

docking procedure that will utilize these relatively low-quality models of

proteins for the prediction of plausible conformations of receptor-small ligand

complexes as well as for the prediction of interactions between particular

subunits of a protein in the quaternary structures.

Our approach to the problem of low-resolution docking focuses on the steric

and quasi-chemical complementarity between the ligand and the receptor

molecules. Because the predicted structures that result from theoretical predic-

tions usually resemble very low-resolution experimental structures, in our

method we use only approximate models of both the ligand and its receptor.

Vakser et al. [240] have demonstrated that by averaging the structural details of

interacting molecules it is possible to drive the docking procedure toward the

real binding site, thus avoiding, in many cases, the local minima problem. It also

turns out in our case that this averaging procedure allows for the compensation

of the numerous structural inaccuracies that result from the theoretical predic-

tions of the receptor structure.

In the first stage of our docking procedure, structures of both molecules, the

receptor and the ligand, are projected onto a uniform cubic lattice, thus giving

two clusters of adjacent cubes. These two clusters approximate the shapes of

both molecules with the accuracy of the grid size. Some of the receptor cubes

(‘‘surface’’ cubes) can be penetrated by the ligand, leading to favorable
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interactions when overlapped with the ligand, whereas others (interior cubes)

contribute to the repulsive contacts. As elegantly demonstrated by Vakser et al.

[240], when such a procedure is correctly implemented, this simple steric matching

protocol is often quite successful in rebuilding correctly docked complexes.

While the steric method described above is very efficient, in many cases,

geometric criteria alone are insufficient to correctly dock the two molecules.

This is especially true when the structure of the receptor is of poor quality or a

ligand molecule is relatively small so that shape complementarity is insufficient

to specify the correct conformation. To overcome this problem, we decided to

build a statistical potential that could be used for additional evaluation of the

quality of the match. In order to build the potential, we defined 20 general atom

types and built the contact statistics on the basis of the structures of known

complexes available in the PDB [171]. After projection of the two molecules

onto the grid, every cube is additionally labeled with the properties defined by

the atom types that were projected onto it. Once the approximate representation

of the system is ready, the best match of these two cube-clusters is determined

by exhaustive scanning over the six-dimensional conformational space of the

three relative translations and the three rotations. Calculating the value of the

correlation function between these two sets of cubes and the value of the potential

function, the quality of the particular ligand-receptor orientation is scored.

We applied this algorithm to predict (actually postdict) the structures of

several complexes available in the protein data bank. These complexes include

members of the Fischer database that had co-crystallized ligands that were

generated by the procedure that was described in Section V. In most cases, not

only is the location of the binding site on the receptor surface correctly

identified, but the proper orientation of the bound ligand was reasonably well

recovered as well, within the level of accuracy of the modeled receptor itself. In

many cases, even structures of receptors as far as 5–6 Å away from native

turned out to be accurate enough for the docking procedure to succeed.

Table VIII below shows five examples of the homology-modeled structures

that were used in our docking calculations. The quality of the modeled receptor

TABLE VIII

Results of Docking Ligands to Low-resolution Predicted Structuresa

RMSD of the Receptor Relative Shift of the

Structure Name from Native Ligand from Native

2sarA 5.99 3.1

2cmd_ 5.57 1.3

1bbhA 3.16 1.6

1mdc_ 4.92 2.6

1c2rA 4.94 3.3

aAll dimensions are in angstroms.
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(in RMSD) and shift of the docked ligand relative to its position in the

superimposed native complex are also shown.

Two examples of docked ligands to the generalized homology modeled

receptors are shown in Fig. 4. The red is the native orientation of the ligand, and

the yellow is the best scoring match. As is immediately evident, the algorithm

does a reasonably good job in docking the ligand to the correct binding site in

the correct orientation. While our method is still under active development, it

has already revealed its usefulness in the successful docking calculations of

even small ligands to the theoretically modeled receptors. When complete, this

methodology could hopefully be used for the large-scale screening of the

potential ligands for the receptors predicted from genomic sequences.

X. OUTLOOK FOR THE FUTURE

A. Possible Improvements of the Structure Prediction Methodology

The methodology for protein structure prediction outlined in this contribution,

while partially successful, needs further improvement. First of all, some elements

of the force field of the lattice model are not yet satisfactory. The threading

algorithm PROSPECTOR, which forms the core of this approach, needs im-

provement. For example, it currently uses a very simple sequence profile, and

more powerful techniques for generating more sensitive sequence profiles [241]

need to be exploited. PROSPECTOR also generates high-scoring local sequence

fragments that are often, but not always, quite accurate. This information needs

to be incorporated into subsequent threading iterations as well as into partial seed

structures in ab initio folding, akin to ROSETTA [242,243]. Better means of

assessing the quality of the alignments also need to be developed.

The most promising way to improve generalized homology modeling is to

couple the strength of template restraints to the quality of the template. Now, for

all tested cases, the template-related restraints are of the same strength. Much

better results may be possible if, for the templates that are close to the probe’s

structure, the restraints were very strong. For templates that are far from the

probe’s structure, the restraints should be very weak. The template should be

used only for a loose definition of the fold topology. This requires an up-front

estimation of the template quality in a semiquantitative fashion. Better scoring of

the threading results and comparison with related cases (size of protein, perce-

ntage of alignment, comparison of the template alignments to other related pro-

teins, etc.) might provide necessary data for the case-dependent scaling of the

template-related restraints in the generalized homology modeling procedures.

Turning to issues associated with ab initio folding and, to a lesser extent,

generalized comparative modeling, some elements of the force field of the

lattice model are not yet satisfactory. The scaling of various contributions to the
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Figure 4. (See also color insert.) For the predicted protein structure of 2sarA (2cmd_)

generated by GeneComp using a template provided by the Fischer Database [34], the red-colored

ligand represents the superposition of the ligand bound to the native receptor. The highest-scored

match is colored in yellow.
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interaction scheme is now to a large extent arbitrary and adjusted essentially by

a trial-and-error method. A more precise scaling will be attempted by an

automated procedure targeted to generating strong (as strong as possible)

correlations between RMSD from correct folds and energy. A large set of

decoys (lattice structures at various distances from native) will be used for this

purpose. The weakest elements of the force field will be reexamined. Probably

the largest improvement of the model could be achieved via introduction of

approximate electrostatics into the interaction scheme. This should include

more implicit treatment of the solvent and other than intra-main-chain hydrogen

bonds.

For ab initio folding, a better means of the fold selection is needed. As

mentioned above, for the majority of small proteins, the SICHO simulations

produce a fraction of very good low-to-moderate resolution structures. Un-

fortunately, the model force field is capable of selecting these good folds in only

a fraction of cases. Perhaps the folding simulations and the fold selection

procedures should be separated in a more radical way. It appears to make sense

that different force fields may be more efficient for folding simulations than

those used for the fold selection. Indeed, folding requires an interaction scheme

that discriminates not only against the wrong folds but also against a huge part

of model-chain conformational space that does not correspond to any protein

structures. The fold selection stage needs potentials that essentially discriminate

between various protein-like conformations. Fortunately, fold selection involves

a few hundred structures. Thus, more detailed, including all-atom, interaction

schemes could be employed.

B. In Combination with Experiment

A variety of fragmentary experimental data could be used to increase the

accuracy and to extend the range of applicability of the described methodology

for protein structure prediction. The ab initio folding procedure employs

predicted secondary structure (in a three-letter code) and predicted contacts

between side groups. None of these predictions are exact; this has a consequence

for the overall performance of the method. Knowledge of the exact protein

secondary structure or some elements of secondary structure significantly

increases the precision and accuracy of the three-dimensional structure

predictions. Also, the exact knowledge of a few side-chain contacts increases

the applicability of the method. As demonstrated recently [139] for an older

version of the SICHO model, knowledge of secondary structure and as few as

N=7 to N=5 side-chain contacts (where N is the number of residues in the protein)

enable reproducible structure assembly for proteins up to 240 residues. The

larger the number of known contacts, the better the accuracy of the predicted

structures. Such fragmentary structural data could be extracted from NMR

experiments. When more extensive data are difficult (or impossible) to obtain,
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the lattice folding provides a low-to-moderate resolution molecular model of the

protein of interest. In those cases where a lot of NMR-based restraints are

collected, the possibility of obtaining of an approximate model from just a few

identified long-range contacts may aid with assignment processes for the other

signals. Such a procedure can be iterated. Alternately, such constraints could be

implemented in PROSPECTOR as a potential to help improve the quality of fold

selection as well as the quality of alignments. Structural restraints for the ab

initio folding can originate not only from NMR data but also from electron

microscopy. Fluorescence data or crosslinking experiments could also provide

some information about the side-chain contacts. Sometimes, mutation experi-

ments can identify residues that are involved with ligand binding. Information

about the spatial arrangement of these residues could be easily incorporated into

the folding algorithm. Another type of possible connection with experiment is

probably worth mentioning. Sometimes, as a result of ab initio folding

simulations, not one but a few plausible folds are generated. When compared

with experiments required for structure determination from scratch, a much

simpler experiment could be designed and executed for the selection between a

few possible structures.

C. Improvement of Structure-Based Biochemical Function Prediction

A key component of the ability to predict the biochemical function of a protein

using a structure-based approach is the availability of an extensive active site

library. Once this is available, then the assignment of biochemical function can

be done with a far smaller false-positive rate than alternative sequence-based

approaches [15,244]. While active site FFFs can be built by hand, such a process

is very time consuming, and automated approaches to active site identification

must be developed. One such approach used PDB descriptors to assign active site

residues [14], but more recent work using conservation profile analysis of these

site descriptors indicates a significant false-positive rate [245]. However, if the

identified active site residues are conserved, then one can tentatively build a

functional descriptor on this basis. Alternatively, one could use BLOCKS [236]

to identify conserved positions and attempt to build a three-dimensional

descriptor on a unique subset of highly conserved residues [246]. We are

currently undertaking such an approach.

To date, no large-scale refinement of the alignments generated by threading

has been undertaken. If the alignment is in error and active site residues are not

correctly aligned, then a false negative will result. Thus, we plan to apply

GeneComp to demonstrate the stability of correct alignments (i.e., to show that

true positives do not become false negatives). Next we plan to test the method

on the weakly significant alignments (Z score > 1) first for M. genitalium and

then for E. coli. If our results on the Fischer database are a guide, not only will

this provide a set of better models for a significant fraction of both genomes, but
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perhaps, using a more complete active site library, additional ORFans can be

assigned.

D. Improvement of Low-to-Moderate Resolution Docking of Ligands

Thus far we have demonstrated that in roughly 50% of the cases, the binding

conformation of a known ligand can be identified using a low-resolution

(backbone RMSD from native up to about 6 Å) predicted structure. While these

results are encouraging, much more must be done. The energetic description

describing the interaction of ligand and receptor must be improved so that the

accuracy of the method is enhanced, and systematic clustering of the results

using our clustering algorithm [197] must be done. Moreover, it remains to be

demonstrated that unknown ligands can be identified using such an approach.

Even if it turns out that in a library of several hundred thousand to millions of

compounds, one could only place true ligands in the 500th position or so (a

realistic goal for a low-resolution model), this would be quite valuable. Future

work is proceeding along these lines.

The low-resolution description could also be used to dock macromolecular

complexes. We have had very encouraging preliminary results on correctly

docking the dimer in the tobacco mosaic virus, but clearly much more thorough

benchmarking is required. One might imagine predicting the tertiary structure of

two molecules and then docking them, but such studies are in the very

preliminary stage.

E. Summary

In this review, we have described a number of approaches to the prediction of

protein structure and biochemical function. A key theme of this review is that

low-to-moderate resolution structures by state-of-the-art techniques are quite

valuable. If the structure has a backbone RMSD from native in the range of

4–6 Å, it can be used to identify the biochemical function of a protein, and known

ligands can be docked to identify the binding site as well as a low-resolution

prediction of the location of the ligand in the receptor. The question then is, What

are contemporary techniques for low-resolution protein structure prediction?

After having reviewed the state of the field, which includes a number of

promising ab initio studies [128,133,141,142,146] and threading algorithms [39,

53–56], we then introduced a unified approach to protein structure prediction.

This methodology involves the use of a newly developed, iterative threading

algorithm, PROSPECTOR [57], where one threads first (see Fig. 1). If there is no

significant match to a template structure, the consensus contacts and secondary

structure in the top 20 scoring structures are used as restraints in an ab initio

folding algorithm. On average, this contact prediction predicts about one-third of

the contacts correctly and predicts above 70% correctly within two residues.

Application of this methodology to a representative test set of 28 structures
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results in the native state (of low-resolution structures up to 6.5 Å) being in one

of the well-defined clusters in 15 cases. If fold selection is done not in the

reduced model but in an atomic model, then 17 cases are foldable. Conversely, if

PROSPECTOR identifies a global template, then we perform generalized

comparative modeling, GeneComp, to refine the structures. This procedure uses

the template alignment, as well as predicted contacts and secondary structure

(not necessarily from the template structure), as restraints. In practice, when

applied to representative probe proteins in the Fischer database [34,179],

GeneComp tends to perform better on average than Modeller [23,27]. Moreover,

it does no harm, that is, the quality of the model is either left the same or

improves. Thus, it can be used with impunity. As in ab initio folding, the

resulting structures are clustered and representative folds selected.

PROSPECTOR itself has been used to predict the tertiary structures of the

proteins in two genomes, M. genitalium and E. coli, and successfully matches

about 40% of the sequences to a known fold. Application of the three-

dimensional active site descriptors designed for low-resolution structures,

FFFs [8,10], allows one to select all known true positives, even when the Z

score is close to 1. Furthermore, threading followed by application of the FFF

has a far smaller false-positive rate than alternative sequence-based approaches

such as BLOCKS [236,246]. Such approaches need to be generalized from

treating enzymes to more generalized binding and macromolecular recognition.

This review describes one such way to use low-resolution structures to

identify the binding site and conformation when one has a known ligand. The

methodology was applied to those probe structures in the Fischer database that

co-crystallized with ligands. As shown in Table VIII, it is possible to identify

the binding conformation with moderate accuracy, even when the backbone

RMSD from native is 6 Å. This opens up the possibility of genome scale

screening of low resolution predicted structures for ligand binding.

While considerable progress has been made, there are significant challenges

remaining. The generalized comparative modeling approach, GeneComp, needs

to be extended so that it can treat highly homologous as well as analogous

structures. Furthermore, given that ab initio folding algorithms quite often

generate native-like structures, as also seen in generalized comparative model-

ing, development of better protein representations and energy functions that can

select native folds from misfolded states is more crucial than ever. Clustering

helps to reduce the problem by selecting representative folds, but routine

unequivocal selection of native-like structures is not yet possible. It seems

that the most promising approach is to convert the reduced models to full-atom

models and then use either physics or knowledge-based energy functions to

select the native structure. Use of active site descriptors can also help in this

regard, because they act like a filter. Because of their utility in biochemical

function assignment, better techniques for the construction of functionally
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relevant active sites is a must. Finally, while considerable progress has been

made in the docking of known small-molecule ligands to low-resolution

structures, methods must be developed that can identify such ligands, at the

least by enriching the yield of true positives. Work in this direction is underway.

In conclusion, while techniques for the prediction of low-resolution struc-

tures have improved, they still have a way to go before structure prediction

becomes routine. Nevertheless, this is a very laudable goal because low-

resolution structures are of considerable utility both in the identification of

biochemical function and in ligand docking. Such efforts will have to be applied

on a genomic scale if structure-based approaches to function prediction are to

play a role in the post genomic era. A number of such efforts are underway, and

doubtless there will be more in the future.
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