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I. INTRODUCTION

In previous work [1–4], we have investigated the ability of simple potential

functions, derived from statistics in the Protein Data Bank (PDB [5,6]), to gen-

erate correct predictions of protein tertiary structure given the native secondary

structure as input. Most recently [2], we studied an unbiased sample of 95

proteins in the size range of 30–160 residues, and we were able to locate native-

like low energy structures in a significant number of cases. However, there were

also many examples of unsatisfactory performance; furthermore, the utilization

of native secondary structure derived from PDB coordinates is an obvious

limitation in terms of the utility of the method for protein structure prediction.

Thus, a significant improvement in the potential function, along with tests under

more realistic conditions, were required before one could consider applying the

methodology to problems of practical interest.

A principal reason for carrying out the studies described above was to

generate a large database of plausibly misfolded structures in the hope of

elucidating systematic flaws in the database potential function that we em-

ployed, a principal component of which is the pairwise potential of mean force

developed by Sippl and co-workers [7]. We have recently uncovered one

systematic error in the Sippl formulation of the statistical pair potential, and

we remedied this deficiency in a straightforward fashion: The potential function,

at least as applied to the problems discussed here, should be dependent upon the

size of the protein, a feature that has also been uncovered in other, more

theoretical work [8]. To this end, we developed a statistical potential that is

derived from proteins that are similar in size to the protein for which a

prediction is to be made. The result is a new type of statistical pair potential

with qualitatively improved predictive properties in tertiary folding simulations.

While the new potential function is still not rigorously predictive of the native

structure in all cases, application to actual protein structure prediction problems

is now a much more feasible goal.

Having achieved this advance in the potential function, we relaxed the

assumption of accurate knowledge of native secondary structure and examined

the capabilities of the methodology with more realistic types of input data. In

the present chapter, we approach this objective in two stages. First, we carry out

simulations using ideal, rather than crystallographic, representations of the
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secondary structure elements (while still deriving the location and length of the

various elements from the PDB). For a-helices, the use of ideal helices leads in

some (but not all) cases to a quantitative degradation of the quality of the results;

in general, however, qualitatively similar success is achieved. For all a- and

mixed a/b-proteins, there is an occasional substantial diminishment of the rank-

ing of the lowest energy low RMSD structure, when idealized strands are used.

Second, we carry out computational experiments using secondary structure

assignments derived from secondary structure prediction methods in conjunc-

tion with ideal secondary structural elements. This protocol constitutes an actual

attempt at ab initio protein structure prediction; no experimental data other than

sequence information is input into the calculations (other than, of course, the

input of PDB statistics to derive the tertiary folding potential and secondary

structure prediction algorithms). Because secondary structure prediction meth-

ods have not yet reached a high degree of robustness, we perform calculations

using several different predictions generated by a variety of alternative second-

ary structure prediction methods (which are conveniently available on Web-

based servers). While there are nontrivial cases where the native-like fold is

uniquely determined by the algorithm, our objective at present is not to

demonstrate successful ab initio prediction. Instead, we ask whether the

protocol is capable of generating a prediction with a good RMSD that is highly

ranked (e.g., within the top five predictions, a condition compatible with the

rules of the CASP3 prediction contest). For a significant number of cases, this

goal has been accomplished. Furthermore, in most cases where our algorithm

fails to generate a native-like fold in the top five predictions, we are able to

rationalize the results in terms of limitations of our model and propose

straightforward extensions to generalize and improve the model. These pro-

posed extensions are briefly discussed at the end of this chapter.

We have chosen in this chapter to focus our efforts on a-helical and mixed

a/b-proteins below 100 residues in size. In previous work [2] we showed that b-

strand proteins present more of a challenge to our prediction methodology than

a-helical or mixed a/b-proteins [9–12]; the modified size-dependent potential

function discussed above improves the results of earlier work on b-strand

containing proteins, but does not change the basic conclusion. For larger

systems, our results are quite promising but not yet at the stage of completeness

that we have been able to achieve for the smaller proteins. Consequently, we

defer discussion of these cases to a subsequent publication.

The chapter is organized as follows. Section II describes the new potential

function, discussing its novel qualitative features and presenting an algorithm

for optimization of parameters using a large training set derived from the PDB.

Section III briefly reviews the computational methodology used to carry out the

tertiary folding simulations (previously described in detail [2]) and then presents

simulation results using native secondary structure and ideal secondary
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structure. As a test set in this section, we employ a subset of the proteins studied

previously [2] so that comparisons can be made with the results reported in that

publication, and improvements in the potential functions quantified. In

Section IV, we utilize predicted secondary structure lengths and positions and

ideal secondary structure elements to carry out ab initio prediction experiments;

we focus in this chapter on helical proteins, and include, in addition to proteins

from the test set of Section IV, two targets from CASP3 [13]. Section V, the

conclusion, summarizes our efforts.

II. DEVELOPMENT OF A SIZE-DEPENDENT POTENTIAL
ENERGY FUNCTION

A. Identification of Systematic Errors in Previous
Tertiary Folding Simulations

Although the tertiary structure prediction protocol employed in our previous

work [2] was more or less able to consistently generate native-like structures for

a- and mixed a/b-proteins, the energetic rank of these structures was not always

satisfactory. An analysis of high-RMSD, low-energy structures obtained from

those simulations reveals a systematically incorrect behavior of the statistical

potential function of Sippl and co-workers [7] at large separations, most

prominently for pairs of hydrophilic residues. This feature of statistical potentials

has been uncovered in several other computational experiments [8,14].

The hydrophobicity term developed by Sippl was originally used only for

recognition (i.e., threading), so it is not surprising that some modifications

would be required for the asymptotic large-distance parts of the energy surface.

It remains to be seen whether or not the general type of systematic errors

uncovered in our tertiary structure predictions are present in the threading

studies of others using similar potentials. A complete derivation of the

coefficients by Sippl and co-workers can be found in Ref. 7. The two key

elements of interest in the derivation of the hydrophobicity function are the

inclusion of proteins of many sizes in the definition of a statistical ‘‘potential of

mean force’’ (PMF) and the asymptotic behavior of these potentials when they

are linearly extrapolated to large distances.

In Ref. 7 an individual PMF for residues i and j, separated by a distance d, is

defined as

Eij ¼ �kT ln
p1

ijðdÞ
p2ðdÞ

 !
ð1Þ

where p1
ijðdÞ is the normalized distribution of d for all i; j pairs in a training set

and p2ðdÞ is the normalized distribution of d of irrespective of residue pair. The
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training set Sippl used consisted of 88 proteins that ranged in length from 46 to

374 residues. Note also that Eq. (1), which is sometimes known as the ‘‘quasi-

chemical approximation,’’ applies only to residues separated in sequence by

more than 20 amino acids (at least in Ref. 7).

Equation (1) is only defined for distances that correspond to nonzero values

of both distribution functions. For this set of distances, Eij is well-approximated

by a linear function

E
hyd
ij ¼ ðHij þ H0Þd ð2Þ

where Hij is one of 400 ‘‘pairwise hydrophobicities’’ and H0 is an adjustable

‘‘average hydrophobicity,’’ for which Sippl suggest the value 0.36. (In our own

simulations, H0 was increased if local minimization starting from the native

structure yielded noncompact structures.)

The basic idea inherent in the development of the Sippl hydrophobicity

potential, that of extracting a potential of mean force using PDB statistics, is an

essential component of our empirical tertiary folding potential. However, based

on our analysis of the low-energy misfolded structures generated in our previous

experiments [2] described above, we propose to improve upon the detailed

methodology for construction of the PMF by implementing the following

modifications:

1. The derivation of an individual PMF for tertiary structure prediction of

protein P is to be based only on proteins of roughly the same size as P.

2. In the large and small distance limits, a functional form other than Eq. (1)

is to be used. The precise representation of the potential that we use to

accomplish this is described below.

The first of these objectives appears rather straightforward to implement.

However, a reduction in the number of proteins used to derive the distributions

means we will most likely reduce the signal to noise ratio in the PMF. We

addressed this problem in the following fashion. At short range, where no

systematic errors were observed, we generated the usual distance statistics for

each amino acid pair, averaging over proteins of various sizes. In addition to

considering amino acid type, we also took into account the secondary structure

type (a-helix, b-strand, loop/coil) of the residue pair for short-range statistics.

At a pair separation larger than a cutoff distance R0 (a value of 15 Å was used in

all calculations), we grouped the amino acids together according to hydro-

phobicity. A total of four classes are defined (Table I). The statistics of residue

pair i; j were grouped together with those of pair j; i so the total number of pairs

was given by Nclass½Nclass � 1�=2 þ Nclass.

The reduction in the number of pairs from 210 to only 10 offsets the

reduction in the number of proteins well enough that we can obtain an adequate
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signal-to-noise ratio. The justification for this approach is that at large separa-

tion the probability distribution should not be sensitive to the specifics of the

amino acid pair (e.g., the size of the side chain) but only to the propensity to

reside on the surface of the protein as opposed to the interior. Support for this

idea comes from the work of Yue and Dill [15], who carried out tertiary folding

simulations with fixed secondary structure for a series of small proteins, many

of which were also studied by us using a Sippl-based potential. What is striking

is that, although Yue and Dill used only a two-letter code (hydrophobic and

hydrophilic), in many cases their results were qualitatively similar to the ones

we obtained using a much higher level of detail in the amino acid pair functions.

This suggests that the considerably less drastic simplification we are making

(including the retention of a fully detailed pair distribution for short distances,

allowing packing effects to be described more accurately) is plausible, although

this must of course be validated by the actual results.

The proteins are binned according to radius of gyration using the following

formula

size ¼ intð15Rg1=3 � 29Þ ð3Þ

where int(x) is the largest integer that is less than or equal to the real number x.

Once the long- and short-range pair statistics are accumulated, they can be

spliced together to generate a complete distribution for each amino acid pair. The

assumption is that in the region around R0, the individual pair distributions have

already converged toward the hydrophobicity class pair distributions. By

appropriately scaling the data, a potential valid over all distance ranges is

generated for each amino acid pair in each size class.

The second modification was implemented by setting the PMF to a constant

at distances outside of the observable range:

Eij ¼

�kT lnðe1Þ

�kT ln
p1

ijðdÞ
p2ðdÞ

h i
�kT lnðe2Þ

ðd < dminÞ
ðdmin < d < dmaxÞ
ðd > dmaxÞ

8>><
>>: ð4Þ

TABLE I

Hydrophobicity Classa

Class Amino Acids

Weakly hydrophobic Ala, Cys, His, Leu, Met, Phe, Tyr

Strongly hydrophobic Ile, Trp, Val

Weakly hydrophilic Asn, Gln, Gly, Pro, Ser, Thr

Strongly hydrophilic Arg, Asp, Glu, Lys

aThe definitions used to bin long-range distance statistics according

to hydrophobicity are listed.
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where dmin and dmax are the lower and upper bounds, respectively, on the distance

range over which we were able to collect good distance statistics (the distribution

function had to be greater than or equal to 0.001). The parameters E1and E2 were

also set to 0.001. In addition to the residue pair potential above, we included a

second long-range energy term that is somewhat analogous to the average

hydrophobicity H0 in the linear case, in that it ensures compactness. This term,

which we will refer to as the density profile, is given by

Eij ¼
�kT lnðp2ðdxÞÞ
�kT lnðp2ðdÞÞ
�kT lnðe2Þ

ðd < dxÞ
ðdx < d < dmaxÞ
ðd > dmaxÞ

8><
>: ð5Þ

where dx is the distance at which the residue independent distribution function

p2ðdÞ is a maximum. The final long-range energy is a linear combination of

Eqs. (4) and (5) (with weights 1 and 0.6, respectively). The optimization of the

density profile in the scoring function is a key ingredient in properly constraining

the potential in the large separation limit.

In Eqs. (1)–(5) inter-residue distances are defined in terms of a single side-

chain interaction point. This point, which we will refer to for simplicity as Cb,

is actually the projection of the average side-chain geometric center onto the

Ca–Cb bond vector.

The only function that depends on distances other than Cb–Cb is the excluded

volume potential, which depends on Ca–Ca, Ca–Cb, and Cb–Cb distances. The

functional form of the excluded volume term is the same as in previous work

[16]:

Eexvol
ij ¼ exp � dij

d0
ij

 !10
0
@

1
A

where the width of the excluded volume region d0 is derived from the distance of

closest approach for the residue pair in question in the training set.

Equations (4) and (5) are not evaluated explicitly in the minimization

program, but are fit using a combination of spline [17] methods, which provide

stability, the ability to filter noise easily, and the flexibility to describe an arbi-

trarily shaped potential curve. Moreover, the final functional form is inexpen-

sive to evaluate, making it amenable to global minimization. The initial step in

our methodology is to fit the statistical pair data for each amino acid and for the

density profile to Bezier splines [17]. In contrast to local representations such as

cubic splines, the Bezier spline imposes global as well as local smoothness and

hence effectively eliminates the random oscillatory behavior observed in our

data.
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While Bezier splines are an optimal approach for smoothing noisy data, they

cannot be rapidly evaluated using local interpolation methods. We therefore

next fit a cubic spline to the Bezier spline curve. Figure 1 compares the Bezier

spline and cubic spline curves for the same dataset; it can be seen that there is

no meaningful difference between the two. Cubic splines can be evaluated

rapidly at an arbitrary value of the residue pair separation using a standard

interpolation formula (see, e.g., Ref. 17 for details). The spline coefficients

needed for carrying out the interpolation are preprocessed and stored in fast

memory during the simulation; the computational effort required to evaluate the

spline potential is not much larger than that, for example, to determine the inter-

residue distance.

B. Further Improvement of the Potential Energy Function

As Eq. (5) shows, the original form of the PMF used by Sippl and co-workers (1)]

remains essentially intact in regions where good statistics are available, although

more weight is given to the density distribution. The validity of treating different

amino acid pairs as essentially independent, as in Eq. (1), has recently been

questioned by Thomas and Dill [18]. They proposed an improved approach

based on an iterative algorithm, the goal of which is to have the Boltzmann

distribution of distance pairs associated with the potential energy function agree

with the distribution derived from native structures. The following are the
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Figure 1. Data smoothing via Bezier and cubic splines. Bezier splines are shown as circular

data points which approximate a typical noisy density profile (black line). Cubic splines (dashed

line) are then fit to the Bezier data points (at a higher resolution than is shown here).
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components of the iterative cycle:

1. Initialize the potential to values obtained from the quasi-chemical

approximation.

2. Use this potential to generate structures; determine the relevant

distribution functions (in our case, residue pair separation probabilities)

from the simulated data.

3. If there are deviations between the two, the potential is corrected so as to

minimize them.

4. A simulation is carried out with the new potential, and a new set of

statistics is generated.

5. Steps 3 and 4 are repeated until the deviation between the statistics from

the simulated data and the experimental data have been reduced to an

acceptable level.

For tertiary folding, there are three major problems in implementing this

strategy. First, generation of simulated data is computationally expensive if a

large training set is to be used. Second, one has to define the ensemble of

simulated structures from which to extract statistics. For example, does one

keep, only the lowest-energy structure for each protein or keep an ensemble of

low-energy structures? Third, there is the question of how to update the potential

function. In what follows, we adopt a heuristic approach to these issues; the

protocols presented here represent preliminary explorations of this strategy and

no doubt can be improved upon. In the present work we have chosen to optimize

the potential function by comparing the distribution of locally minimized native

structures with that of the native structure itself. The idea is that if the mini-

mized native structure is as close to the native structure as possible, the basin of

attraction associated with the minimized native will yield acceptable low RMSD

predictions. From numerous computational experiments that we have carried

out, resemblance of the minimized native structure to the native structure is

clearly a necessary condition for obtaining useful predictive results; if the

minimized native structure has, for example, a high RMSD from the native, one

typically will fail to locate anything reasonable in a full-scale tertiary folding

simulation starting from an unfolded state. Whether this is a sufficient condition

for robust results in such simulations is one of the principal subjects of the

present chapter. We briefly summarize here the entire optimization cycle,

drawing on the results of the previous sections as well as on the basic idea

described above. The steps of the optimization cycle are outlined as follows:

1. Initialization:

a. The training set of native structures, with secondary structure assigned

by DSSP [19], is read into the optimization program.
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b. Proteins are sorted into size bins according to their radius of gyration

using Eq. (3).

c. The iteration counter is initialized to zero ðit ¼ 0Þ.
d. A potential energy function E0 is computed from distance distribution

functions based on the native structures.

2. All native proteins are locally minimized using Eit.

3. A potential energy function Emin is computed for each size bin based on

statistics derived from the minimized structures.

4. The difference between Emin and E0 is calculated:

Ediff ¼ E0 � Emin

5. The iteration counter is incremented and Eit is updated by adding a

correction that is proportional to Ediff :

it ¼ it þ 1

Eit ¼ Eit�1 þ kdiffEdiff

(A proportionality constant equal to 0.1 was chosen empirically so as to

damp oscillations in the optimization procedure.)

6. Steps 2–5 are repeated until substantive improvements are no longer

produced in the RMSDs of the minimized native structures.

In addition to the RMSD, the energy gap between the native and the minimized

native was monitored. The smaller this energy gap, the better in general we have

observed the performance of the potential to be in tertiary folding simulations. In

our initial efforts we utilized a more elaborate short-range potential function that,

in addition to the Cb–Cb term described in Section II A (above), included both

Cb–Ca and Ca–Ca terms. The additional terms involving Ca were included in the

iteration process described above. Subsequently, however, the extra terms in the

short-range potential were not used in the tertiary structure predictions, because

we did not see an overall improvement in the results when they were included.

Another important difference between the potential energy function used in the

above iterative procedure and the one used in actual tertiary structure predictions

involves the density profile function. In the iterative procedure, this function was

not flattened at d < dx [see Eq. (5)]. However, we found that we could improve

the ranking of native-like structures with this simple modification. Thus the

improvement of the potential energy function was ultimately achieved by a

combination of the iterative algorithm described above and manual inspection of

the individual terms after parameter optimization.

Because it is computationally expensive to carry out global minimizations on

a large test set, we are unable to objectively determine the amount of improve-

ment with respect to the zeroth-order potential (E0) realized by the optimization

232 volker a. eyrich, richard a. friesner, and daron m. standley



procedure outlined above. But given the fact that several proteins, which were

unstable in local minimizations starting from the native using E0, yield

acceptable RMSDs using the optimized potential, we believe that parameter

optimization can effectively remedy some of the deficiencies of reduced model

approaches. The issue of parameter optimization along the lines of the procedure

outlined above as well as other approaches in the literature (for a review see

Ref. 20) will be the subject of future work.

C. Resulting Potential Energy Function

Table II lists the proteins used in the training set, a subset of the PDB Select

database of nonhomologous proteins [21]. We avoided inclusion of proteins that

form dimers (or other oligomers) in solution because one would expect the

distributions in this case to be significantly altered due to the oligomerization

process. For each protein we list the PDB code, number of residues, radius of

gyration, and classification in our size bin scheme.

Figures 2–4 show the size dependence of three representative terms in Eq.

(4) (after being fit to splines, as described below) for the amino acid pairs

arginine–arginine, arginine–isoleucine, and isoleucine–isoleucine for the first

six size bins (the bins relevant to the prediction results discussed in this

chapter). Figure 5 shows the density profile [Eq. (5)] for the same size bins.

Note that because the total energy is a linear combination of Eqs. (4)–(6), the

oscillatory behavior at large distances (>15 Å) of the potentials in Figs. 2–4 is

effectively masked by the density profile; in the short-distance limit, the

excluded volume term serves a similar purpose. The energy plots in Figs. 2–4

show clearly that a linear function is a good approximation over the most

populated distance ranges (10–20 Å). Moreover, the slopes in these regions can

TABLE II

Training Seta

Size PDB Size PDB Size PDB

Bin Name Nres Rg Bin Name Nres Rg Bin Name Nres Rg

1 1chl 36 8.8 5 1svr 94 12.1 7 1bvh 153 14.5

1 1erd 35 8.4 5 1vcc 77 12.1 7 1c25 154 14.8

1 1ret 37 8.8 5 1wkt 88 12.1 7 1cdb 101 14.0

1 2erl 35 8.2 5 2abd 86 12.6 7 1cfe 135 14.0

1 3bbg 40 8.7 5 2bby 69 12.0 7 1chd 198 15.0

2 1bor 52 9.3 5 2ezh 65 11.9 7 1cur 150 14.2

2 1dec 39 9.7 5 2fow 76 11.8 7 1def 147 14.0

2 1gps 47 9.6 5 2hgf 97 12.5 7 1eal 127 14.3

2 1sco 38 8.9 5 2hp8 68 11.7 7 1hfc 157 14.6

2 1zwa 29 9.1 5 2rgf 93 12.5 7 1ido 184 14.9

2 2bds 43 9.3 5 2sxl 88 12.6 7 1jpc 108 14.1

3 1afp 51 9.8 6 1a1x 106 13.5 7 1lcl 141 14.3
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TABLE II (Continued)

Size PDB Size PDB Size PDB

Bin Name Nres Rg Bin Name Nres Rg Bin Name Nres Rg

3 1afp 51 9.8 6 1a1x 106 13.5 7 1lcl 141 14.3

3 1apf 49 9.7 6 1a2p.A 108 13.6 7 1mak 113 14.0

3 1ark 56 9.9 6 1acz 108 13.8 7 1mup 157 14.7

3 1awo 57 10.4 6 1bea 116 13.6 7 1mut 129 14.6

3 1brf 53 10.1 6 1bfg 126 13.0 7 1poa 118 14.3

3 1cka.A 57 10.1 6 1bkf 107 13.3 7 1rcf 169 14.5

3 1tih 53 10.6 6 1btn 106 13.1 7 1svp.A 155 14.8

3 1zaq 44 9.9 6 1buz 116 13.2 7 1vhh 157 14.5

3 2brz 53 10.5 6 1bw3 125 13.7 7 2a0b 118 14.7

3 5pti 55 10.6 6 1c52 131 13.5 7 2ezl 99 14.7

4 1ab7 89 11.6 6 1exg 110 13.6 7 2hbg 147 14.7

4 1ah9 66 10.9 6 1fna 91 13.4 7 2hfh 93 13.9

4 1c5a 65 11.2 6 1hcd 118 13.4 7 2i1b 153 14.7

4 1ehs 48 11.6 6 1irs.A 108 13.4 7 2sns 136 14.4

4 1hoe 74 11.4 6 1jer 110 13.5 7 2vil 126 14.0

4 1kbs 60 11.3 6 1krt 110 13.6 7 3cyr 102 14.2

4 1leb 72 11.3 6 1ksr 100 13.8 7 5p21 166 14.8

4 1msi 66 10.7 6 1kte 105 13.2 8 1amx 150 15.4

4 1nkl 78 11.3 6 1kuh 132 13.6 8 1aqb 175 15.8

4 1opd 85 11.6 6 1lit 131 13.4 8 1atl.A 200 15.9

4 1pih 73 10.9 6 1lou 97 13.2 8 1ble 161 15.1

4 1pou 71 11.2 6 1mai 119 13.7 8 1cex 197 15.2

4 1tpn 45 11.0 6 1pne 139 13.8 8 1cto 109 15.1

4 1ubi 71 10.9 6 1rie 123 13.6 8 1kid 189 16.2

4 1uxd 59 11.5 6 1sfp 111 13.4 8 1knb 186 16.1

4 1vif 60 10.9 6 1tit 89 12.9 8 1np4 184 15.5

4 1vig 67 11.2 6 1tul 102 13.5 8 1pkp 145 15.1

4 2ech 49 11.1 6 1whi 122 13.6 8 1ra9 159 15.5

4 2hqi 72 10.7 6 1wiu 93 13.0 8 1rlw 126 15.3

4 2igd 57 10.7 6 2bb8 71 12.9 8 1sfe 165 15.7

4 2sn3 65 10.8 6 2mcm 112 13.4 8 1std 162 16.0

5 1aba 87 12.5 6 2phy 125 13.3 8 1vhr.A 178 15.5

5 1ag4 103 12.5 6 2pld.A 101 13.7 8 1xnb 185 15.2

5 1aoy 74 12.0 6 2tbd 128 13.3 8 1yua 122 15.2

5 1awd 94 11.7 6 3chy 128 13.3 8 2gdm 149 15.1

5 1awj 77 11.7 6 3nll 138 13.6 8 2pth 193 15.4

5 1bdo 80 11.9 7 153l 185 14.9 8 2rn2 155 15.3

5 1bxa 105 12.6 7 1ahk 129 14.8 8 2sak 121 15.4

5 1cyo 88 12.6 7 1ax3 156 14.3 9 119l 162 16.5

5 1mb1 98 12.3 7 1ayo.A 125 14.9 9 1asx 152 16.6

5 1mzm 86 11.9 7 1b10 104 13.9 9 1gky 186 16.4

5 1put 106 12.2 7 1bc4 110 14.5 9 1pbw.B 195 17.3

5 1spy 85 12.2 7 1be1 137 13.9 9 2ucz 164 16.5

aThe training set listed was used to derive the size-dependent potential. Size bins are defined in terms

of radius of gyration (Rg) rather than number of residues (Nres).
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Figure 2. Size dependence of three representative terms in Eq. (4) for the amino acid pair

arginine–arginine–arginine. Data for the first six size bins are shown.
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Figure 3. Size dependence of three representative terms in Eq. (4) for the amino acid pair

arginine–isoleucine. Data for the first six size bins are shown.
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Figure 5. Density profiles for the first six size bins.
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be easily rationalized: The arginine–arginine residues are pushed apart, while

the isoleucine–isoleucine interaction is attractive. The arginine–isoleucine term

is repulsive is well, but the minimum values occur at shorter distances than in

the corresponding arginine–arginine plots, consistent with our intuitive picture of

a spheroid with hydrophilic residues residing primarily on the surface. Not

surprisingly, the basic effect of the density profile is to restrict the interresidue

separation as a function of protein size. Note also that the density profile is the

most sensitive to protein size (although the isoleucine–isoleucine pair potential

clearly decreases with size).

Figure 6 illustrates the effect of adding the excluded volume and density

profile to the arginine–arginine, arginine–isoleucine, and isoleucine-isoleucine

potentials, respectively, for size bin 6. We see here that the linear portions of the

potential are now restricted to a small range in distance (about 6–12 Å), outside

of which the density profile and excluded volume become the dominant terms.

The energies of each of the three residue pairs at large separation (e.g., 25 Å)

relative to their minimum values increase in the expected order (EIle-Ile >
EArg-Ile > EArg-Arg).
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Figure 6. Total energy for three representative residue pairs: arginine–arginine, arginine–

isoleucine, and isoleucine–isoleucine. The data corresponds to size bin 6.
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III. TERTIARY FOLDING SIMULATIONS: PDB DERIVED
AND IDEAL SECONDARY STRUCTURES

A. Physical Model

The physical model of the polypeptide chain we use has been described

previously [2]; a few minor modifications are introduced as noted below. All

bond angles and bond lengths are fixed at ideal values. The variables in the

optimization are the torsional angles f and c of the peptide backbone. Each

residue is represented by a Ca atom and a Cb-like atom. The Cb atom position is

given by the average projection of the side-chain center of mass onto the Ca–Cb

bond vector.

We employ three different methods to describe the location and three-

dimensional structure of secondary structure elements (i.e., a-helices and

b-strands). The first is to take both the sequence location and backbone angles

(which are frozen during the simulation) directly from the PDB entry. This is

obviously not a realistic data set in a predictive situation, but is an essential

computational experiment in that it indicates what level of accuracy is possible

with ‘‘perfect’’ secondary structure information. The second is the replacement

of PDB backbone angles with ideal backbone angles; this separates the effects

of distortion of secondary structural elements from ideal geometries from errors

in location in the sequence or in length. For these two types of calculations the

correct size-dependent potential is selected by evaluating the radius of the

gyration of the corresponding native structure. The third is to employ predicted,

rather than PDB, secondary structure (along with the use of ideal geometries for

the predicted elements) and to select the correct potential by predicting

the radius of gyration from the number of residues of the target [22]. We have

carried out an extensive investigation in this regard, using secondary structure

prediction from various secondary structure prediction servers that are available

over the Internet. These results are then combined to produce genuine ab initio

structural prediction. The results, while far from a robust ab initio methodology

over all protein types, yield important insights into the key obstacles to ab initio

prediction and are in many cases surprisingly accurate. Predictions from the

CASP3 contest are also included so that comparisons can be made with the

work of others. While we are not generating these predictions as a blind test, it

is the case that our CASP3 calculations were carried out using our software in a

completely automated fashion, with no readjustment of parameters after

obtaining results for the CASP3 targets.

B. Simulation Methodology

Our simulation methodology is identical to that presented in previous

publications [2], so we will describe it only briefly here. The algorithm is based
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on the Monte Carlo plus minimization (MCM) strategy proposed by Li and

Scheraga [23]. This approach has proven to be extraordinarily efficacious in our

previous work, and the present results reinforce our conclusions concerning its

robustness and efficiency in enumerating the low-energy basins of attraction for

low-resolution models such as those employed here. As in previous work [2], we

have incorporated several key modifications of the algorithm, the most important

of which is that the number of minimization steps is annealed as a function of the

simulation temperature (i.e., more steps are taken later in the simulation), which

yields a factor of 5–10 times reduction in computational effort. Finally,

calculations are performed using a parallelized version of the code (an MPI

implementation) on a network of PCs using Intel microprocessors and also on a

large SGI Origin at the National Center for Supercomputing Applications.

The MCM procedure produces a large number of low-energy structures. The

structurally unique predictions are extracted from the raw simulation data by a

clustering algorithm. Figure 7 illustrates this process for the protein 1ACP. The

raw simulation data (red dots) are combined into structurally similar clusters

using a procedure discussed in Ref. 24. The criterion for separating structures

into clusters is that the average RMSD between clusters (calculated over all

structures in a particular cluster) be at least 5 Å. Clusters are represented by

their lowest energy structure (black circles), which means that energies and

RMSDs reported for clusters are based on their lowest-energy structure. The
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Figure 7. (See also color insert.) Comparison of raw data and clustered results (red dots: raw

simulation data, black circles: cluster representatives, green square: locally minimized native

structure).
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RMSD between resulting representative structures is usually at least 5 Å, but

this is not guaranteed by the clustering algorithm because we use the average

RMSD as the clustering criterion. For the 10 representative structures lowest in

energy we list energy, RMSD with respect to the native and number of

structures combined into a cluster in Table III, and the RMSD between the

representative structures themselves in Table IV. Derivation of the ranks of

structures (discussed below) is straightforward given the data in Table III.

The lowest-energy structure obtained from the simulations is generally

highly refined, meaning that its energy cannot be lowered significantly by

performing more extensive searches. Refinement of higher-energy structures,

structures that do not rank first, is possible though and in some of the cases,

TABLE III

RMSD with Respect to the Native of the ten Lowest Energy Clusters (Represented by Their Lowest

Energy Member) for the Protein 1acpa

Cluster # RMSD Energy N

1 6.65 5415.43 43

2 5.72 5417.83 58

3 8.64 5420.17 23

4 7.54 5420.80 25

5 11.08 5422.82 31

6 9.65 5424.04 34

7 4.79 5427.21 22

8 5.91 5431.10 16

9 8.27 5431.23 12

10 12.10 5432.68 19

aN gives the number of structures combined into a cluster.

TABLE IV

RMSD Between the Representative Structures from the Ten Lowest-Energy Clusters for the

Protein 1acp

Cluster # 1 2 3 4 5 6 7 8 9 10

1 0.00 2.23 8.73 2.31 9.91 5.01 7.18 9.35 8.20 12.23

2 0.00 8.70 3.41 9.94 6.04 6.08 8.35 8.16 11.93

3 0.00 8.85 11.86 8.63 8.46 8.24 3.04 8.63

4 0.00 9.70 4.08 7.97 9.91 8.53 12.14

5 0.00 8.69 11.31 11.02 11.77 8.40

6 0.00 10.54 11.91 8.45 11.75

7 0.00 3.01 8.27 10.81

8 0.00 8.46 9.91

9 0.00 9.04

10 0.00
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especially the larger proteins, actually results in improved ranks. We have not

yet developed the optimal refinement strategy though and therefore do not

report results for this approach.

C. Comparison of the Size-Dependent Potential with Previous Results
Using PDB-Derived Secondary Structure

As a test set, we employed the subset of the 95 proteins used in Ref. 2 which are

less than 100 residues and are not all b-strand. There is some overlap with the

training set; but in tertiary folding, this is less of a concern than in secondary

structure prediction because the three-dimensional phase space of the protein is

so large that as long as an adequate number of proteins are used to generate the

pair potential statistics, systematic bias of the results coming from the training

set is unlikely to be large. In fact, we see little difference in performance for

proteins depending upon whether they were included in the training set or not (or

for the CASP3 targets we examined). By retaining the test set used in the

previous chapter, we are able to directly compare our new potential with the

older potential lacking size dependence, and thus assess the degree of

progress that has been made by incorporating size dependence into the potential

function.

As discussed above, after the tertiary folding simulations are completed, we

group the resulting structures into clusters (without any reference to the native

structure, which is presumed to be unknown during clustering) and report

the highest-ranking clusters with RMSD from the native below 4 Å , 5 Å, 6 Å,

and 7 Å, respectively.

In Table V, we compare these results for our test set with those obtained in

Ref. 2. Note that Ref. 2 also included postsimulation screening algorithms; we

have not developed such methods for the new potentials because some of the

ideas have been incorporated directly into the energy function. Consequently we

compare only with results taken directly from the simulations in Table V.

However, we note that the overall quality of the results from the new potential is

substantially better than those from the old, even when screening is employed in

the latter. Table VI summarizes performance for various types of proteins and

size classes.

The performance of the new potential function is particularly striking for

proteins in the 50–100 residue size. For a-helical proteins in this category, the

average rank of the best structure less than 7 Å is 3.6; furthermore, in the

overwhelming majority of cases, the rank is 5 or better. This is a sufficient

reduction in the number of possible structures that discrimination among the

resulting structures via more expensive calculations at an atomic level of detail

[25] becomes feasible. The reliability of the results demonstrates that the basic

physics of the low-resolution model have been qualitatively improved as

compared to previous efforts.
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TABLE V

Comparison to Previous Resultsa

‘‘Old’’ Potential Size-dependent Potential

——————— ————————————————————————

PDB—X-RAY PDB—X-RAY PDB—IDEAL

——————— ———————————— ———————————

Nres Na Nb <5 Å <6 Å <7 Å <4 Å <5 Å <6 Å <7 Å LER <4 Å <5 Å <6 Å <7 Å LER

Alpha Proteins (Nres <50)

1ajj 17 6 0 — 1 1 — 1 1 1 4.0 — 1 1 1 4.9

1bgk 27 18 0 4 2 1 2 2 2 1 6.5 2 2 2 1 6.2

1erd 29 25 0 1 1 1 1 1 1 1 3.8 1 1 1 1 3.3

2erl 35 29 0 2 2 2 — 1 1 1 4.9 1 1 1 1 2.8

1res 35 27 0 3 1 1 1 1 1 1 3.5 1 1 1 1 3.8

1roo 17 14 0 1 1 1 1 1 1 1 3.7 1 1 1 1 3.7

1uxd 43 31 0 1 1 1 4 4 4 1 6.0 — 4 4 1 6.4

Mixed Alpha/Beta Proteins (Nres <50)

1aho 31 10 10 5 3 1 7 5 2 1 6.8 3 3 2 2 7.5

1ayj 46 11 15 33 1 1 — — 2 2 7.7 — 3 3 2 8.6

1cmr 26 8 10 3 1 1 3 2 2 1 6.6 4 4 3 1 6.8

1gpt 47 13 19 23 2 2 13 13 12 3 8.1 — — 2 2 8.9

1hev 25 7 11 1 1 1 3 1 1 1 5.0 — 3 2 2 7.1

2ktx 34 11 14 1 1 1 1 1 1 1 3.6 — 1 1 1 4.2

1pce 30 12 10 2 2 2 1 1 1 1 2.8 — — 1 1 5.1

1ptq 43 6 8 732 21 18 — — 20 11 8.6 — — 16 1 6.8

2sn3 48 8 15 94 21 7 — 29 2 2 8.5 — 13 3 3 8.9

2vgh 34 6 12 126 61 21 — — — 4 7.1 — — — 3 8.2

1vtx 36 7 10 — 78 2 — — 34 3 7.8 — — 9 1 7.0

5znf 25 12 11 1 1 1 1 1 1 1 2.6 — — 1 1 6.0

Alpha Proteins (50 Nres< 100)

1acp 73 45 0 256 115 30 — 7 2 1 6.7 — — 11 11 11.3

1ail 67 60 0 5 5 2 1 1 1 1 3.0 1 1 1 1 3.9

1aj3 95 86 0 2 2 2 2 2 2 2 9.3 2 1 1 1 4.6

1am3 57 45 0 — 8 8 — 6 6 2 10.7 — 24 5 1 6.1

1c5a 62 49 0 1 1 1 — 3 3 2 8.2 10 3 3 3 8.0

1cc5 76 41 0 — 78 21 — 6 6 2 8.5 — 18 6 3 7.2

1ddf 87 66 0 — 7 7 — 63 3 2 12.7 — 58 8 8 7.1

2ezh 59 45 0 16 5 2 1 1 1 1 3.8 3 3 3 2 9.7

2ezk 76 64 0 28 8 1 — — 1 1 5.7 — — 1 1 5.9

2hp8 56 44 0 — 4 2 — 2 2 2 9.7 — 2 2 2 7.1

1hsn 62 46 0 88 88 67 — — 19 19 11.4 — — 98 17 8.3

1jvr 74 59 0 5 5 5 31 31 1 1 5.3 — 10 9 7 10.4

1Ifb 69 48 0 — 94 94 — — 5 5 10.4 — 15 11 11 10.6

1mzm 71 54 0 — 8 8 — 5 4 4 10.7 — 3 2 2 11.0

1nkl 70 56 0 — — 2 1 1 1 1 3.9 2 2 2 2 9.6

1nre 66 55 0 22 22 22 22 1 1 1 4.9 19 1 1 1 4.6

2pac 77 26 0 — — 136 — — 53 1 6.4 — — 76 5 11.2

1pou 70 57 0 — 6 6 1 1 1 1 2.3 4 4 4 4 11.2

1r69 61 41 0 46 9 8 — 6 6 3 11.3 — 23 12 5 10.7
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For mixed a/b-proteins, the absolute quality of the results is somewhat

diminished, but the improvement as compared to previous work is even larger.

There are two cases, 1ag2 and 1svq, where the rank obtained for the best low

RMSD structure is above 10, with the 1ag2 result being particularly proble-

matic. We have investigated this case further and show improved results for

1ag2 below. On the other hand, there is a significant number of cases for which

no reasonable structures were recovered previously which now rank in the top 10.

The energies of structures located by the global optimization algorithm are

lower than the native and locally minimized native structures in all cases, a

TABLE V (Continued)

‘‘Old’’ Potential Size-dependent Potential

——————— ————————————————————————

PDB—X-RAY PDB—X-RAY PDB—IDEAL

——————— ———————————— ———————————

Nres Na Nb <5 Å <6 Å <7 Å <4 Å <5 Å <6 Å <7 Å LER <4 Å <5 Å <6 Å <7 Å LER

1utg 62 53 0 4 2 1 — 21 1 1 5.6 — 14 1 1 5.3

5icb 72 52 0 — — — 8 8 2 1 6.1 — — 8 1 6.2

Mixed Alpha/Beta Protein (50 <Nres <100)

1aa3 56 31 8 — — — 19 19 6 3 8.4 7 7 7 5 9.4

2acy 92 24 41 — — 16 — — 5 5 12.0 — — — — 13.0

1ag2 97 58 8 — — 349 — — — 87 10.9 — — — 187 12.3

1bor 52 9 14 187 22 8 — — 17 6 7.2 — — 40 12 8.3

1btb 89 45 19 — 274 24 1 1 1 1 3.8 — — 31 28 8.1

1ctf 67 38 19 15 12 4 1 1 1 1 3.0 — — 4 4 11.1

2fdn 53 8 6 123 4 4 — — 38 6 8.1 — — — 30 10.3

2fow 66 29 8 181 56 8 — — 23 8 10.6 — — 69 4 7.9

1fwp 66 22 17 484 2 2 — 3 3 3 10.3 — 42 10 10 10.3

1gb1 54 13 16 1 1 1 — — 15 1 6.5 — — 2 1 6.5

1pgx 57 15 33 4 4 4 2 2 2 2 9.5 — 35 28 11 8.1

1leb 63 36 6 142 27 4 — 3 3 3 10.9 — 6 6 6 8.7

1orc 56 25 17 2 2 1 8 6 6 6 7.1 46 2 2 1 6.2

5pti 55 16 14 109 16 16 — — 14 4 10.1 — — 47 14 7.1

2ptl 60 15 34 1 1 1 1 1 1 1 3.4 — 35 4 4 8.2

1ris 92 25 42 — 180 11 9 9 9 9 11.1 — — 129 11 11.7

1svq 90 22 34 — — — — 119 117 32 12.5 — — 462 43 9.0

aFollowing global energy minimization, structures are clustered without reference to the native; the

energetic ranks of clusters that have an RMSD close to the native (for old results, three RMSD

cutoffs—5 Å, 6 Å, and 7 Å—were used; for new results, four RMSD cutoffs—4 Å, 5 Å, 6 Å, and

7 Å—were used). Energetic rank was defined so that the lowest-energy structure ranks 1, the second-

lowest ranks 2, and so on. LER refers to the RMSD of the lowest-energy structure. The column

‘‘PDB—X-Ray’’ list’s results of runs using location and configuration of secondary structure derived

from the PDB entry. Column ‘‘PDB-Ideal’’ lists results for calculations where the location of

secondary structure was derived from the PDB, but configuration of secondary structural elements

was assumed to be ideal.
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feature that other groups using similar approaches have also observed [25]. A

very important aspect of the results though, not apparent in the data presented

here, is that for all simulations discussed above, the energy gap between the

lowest-energy misfolded structures and low-energy native-like structures is

quite small, on the order of 5–30 energy units where the energy scale is

TABLE VI

Summary of Ranks Listed in Table Va

(a)

RMSD <4 Å RMSD <5 Å RMSD <6 Å RMSD <7 Å

—————————— ————————— ————————— ————————

Ave Max Ave Max Ave Max Ave Max

Class Nprot Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank

Small a 7 — — — 6 2 4 7 1 2 7 1 2

Small a/b 12 — — — 11 93 732 12 16 78 12 5 21

Medium a 21 — — — 11 43 256 18 26 115 20 21 136

Medium a/b 17 — — — 11 114 484 13 46 274 15 30 349

(b)

RMSD <4 Å RMSD <5 Å RMSD <6 Å RMSD <7 Å

—————————— ————————— ————————— ————————

Ave Max Ave Max Ave Max Ave Max

Class Nprot Nconv Rank Rank Nprot Rank Rank Nconv Rank Rank Nprot Rank Rank

Small a 7 5 2 4 7 2 4 7 2 4 7 1 1

Small a/b 12 7 4 13 8 7 29 11 7 34 12 3 11

Medium a 21 8 8 31 17 10 63 21 6 53 21 3 19

Medium a/b 17 7 6 19 10 16 119 16 16 117 17 10 87

(c)

RMSD <4 Å RMSD <5 Å RMSD <6 Å RMSD <7 Å

——————————— ————————— ————————— ————————

Ave Max Ave Max Ave Max Ave Max

Class Nprot Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank

Small a 7 5 1 2 7 2 4 7 2 4 7 1 1

Small a/b 12 2 4 4 6 5 13 11 4 16 12 2 3

Medium a 21 7 6 19 16 11 58 21 13 98 21 4 17

Medium a/b 17 2 26 46 6 21 42 14 60 462 16 23 187

aPart a lists old results; part b lists results using the size-dependent potential and X-ray-derived

secondary structure; part c lists results using the size-dependent potential and ideal secondary

structure. The number of proteins Nprot is listed in column 2; the number of cases that converged

within a specified RMSD from the native (<4 Å, <5 Å, <6 Å, or <7 Å) Nconv is listed in columns

3, 6, 9, and 12. (Note that the rank <4 Å was not calculated for the old results, so a ‘‘—’’ is shown).

Also listed are the average and maximum rank of converged clusters within each RMSD range.
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typically thousands of energy units. This is in sharp contrast to the results

obtained with our previous tertiary folding potential, which routinely generated

energy gaps between misfolded and native-like structures that were 5–10 times

larger than those seen here.

D. Effects of Secondary Structure Definition
and Truncation of Terminal Loops

The results presented above employ PDB-defined secondary structure and in

some cases involve truncation of terminal loops, primarily carried out here to

facilitate direct comparisons with the results of Ref. 2. However, the process of

defining secondary structure even with X-ray crystallographic or NMR coor-

dinates in hand is not entirely unambiguous, and the effects of terminal loops

could be favorable or unfavorable. To examine these issues, we selected several

proteins in Table V for which the results with the new potential appeared less

accurate than would have been expected given the difficulty of the case being

considered. Table VII presents results for these selected cases, listing the protein

and identifying what experiments were carried out. Most of the cases examined

are mixed a/b because these displayed the most significant problems. It can be

seen that in some cases the use of a different secondary structure definition (e.g.,

DSSP rather than PDB) and the inclusion or deletion of a terminal loop has a

substantial effect on the ranking of low RMSD structures. Clearly, more work

needs to be done in understanding these effects.

E. Effects of Using Ideal Rather than PDB-Derived Three-Dimensional
Topologies for Secondary Structure Elements

Having established that our new size-dependent potential is quite effective for

generating low-resolution structures of proteins below 100 residues using

secondary structure derived from PDB coordinates, we next ask what the effect is

of using ideal torsional angles for helices and strands as opposed to PDB-derived

TABLE VII

Comparison of Rankings for PDB Secondary Structure and DSSP Secondary Structure for Several

Cases from the Test Set

Protein <4 Å <5 Å <6 Å <7 Å Comments

1ag2 — — — 87 PDB secondary structure, terminal loops deleted

1ag2 — — — 11 DSSP secondary structure, terminal loops included

1hsn — — 19 19 PDB secondary structure, terminal loops deleted

1hsn — — 23 10 DSSP secondary structure, terminal loops deleted

1orc 8 6 6 6 PDB secondary structure, terminal loops deleted

1orc 1 1 1 1 DSSP secondary structure, terminal loops included

1ris 9 9 9 9 PDB secondary structure, terminal loops deleted

1ris — — 3 3 DSSP secondary structure, terminal loops included
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torsion angles. Tables V and VIc summarize results for the entire test set of

proteins utilizing ideal secondary structure elements. The results are surprisingly

good; while there are certainly cases in which quantitative degradation of the

rank of the best low-RMSD structure occurs (particularly with a/b-proteins—for

example, the proteins 2fdn, 1fwp, and 5pti), in general the simulations are able to

find such structures successfully and to rank them reasonably well in terms of

total energy. Even in the case of 5pti, where there is severe distortion of the b-

strands in the native structure, the use of ideal strands produces reasonable

results. While incorporation of strand distortion is possible in our methodology

[4], the reasonable predictive capability using ideal elements is likely to save

considerable computational effort because one can carry out such simulations

initially and then use the results as a starting point from which to incorporate

distortions and other detailed effects.

IV. USE OF PREDICTED RATHER THAN PDB-DERIVED
SECONDARY STRUCTURE ELEMENTS

A. Overview

Secondary structure prediction methods, while they have improved significantly

over the past decade (principally via the use of multiple sequence analysis), still

have nontrivial error rates. The best method at present appears to be the

PSIPRED approach developed by Jones [26], which is claimed to achieve an

accuracy between 76% and 78% on a reasonably large training set (it also

outperformed other methods in the CASP3 contest). This level of reliability

appears to be sufficient for low-resolution ab initio structure prediction and

suggested to us that it was now worth experimenting with tertiary folding

calculations based entirely on predicted, rather than PDB-derived, secondary

structure [27–32]. Using servers set up on the World Wide Web, we are able to

obtain predictions from PSIPRED and other secondary structure prediction

algorithms for proteins in our test set. We have obtained results from a variety of

servers to see what happens in cases where their predictions disagree; it is likely

that ab initio prediction will involve trying a number of secondary structures,

because in some cases the tertiary fold will be critical in selecting among

plausible secondary structures predicted exclusively from sequence data.

Our calculations in this section endeavor to answer the following questions:

1. Can we for some percentage of cases make a successful ab initio predic-

tion? We explore two different approaches below.

2. What are the effects of small errors in secondary structure—for example,

elimination or addition of small elements, incorrect lengths of major

elements and so on?
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3. What is the impact of a major error—for example, replacing a long helix

by a similar strand or missing an important loop?

In the present chapter, we have chosen to focus our ab initio prediction

efforts primarily on a-helical proteins, although one mixed a/b-protein is also

examined. The ab initio prediction calculations presented below are consider-

ably more computationally intensive than those using PDB-derived secondary

structure, because we have investigated a substantial number of secondary

structure predictions for each protein. By studying helical systems intensively,

we are able to draw conclusions concerning the necessary and sufficient

conditions for success for such systems from a significant database of results.

In addition to the a-helical proteins in the 50- to 100-residue range from the data

set above, we also include two helical proteins from the CASP3 prediction

contest. Our results for the CASP3 test cases are similar to those from the PDB-

derived test suite.

B. Secondary Structure Prediction Methods

We use the following secondary structure prediction methods in our ab initio

predictions:

* PSIPRED [26]: A two-stage neural network that predicts protein secon-

dary structure based on the position specific scoring matrices generated by

PSI-BLAST (available at http: //insulin:brunel:ac:uk/psipred/Þ. Average

three-state prediction accuracy is between 76.5% and 78.3%. Currently

the most accurate method.

* PhD [33,34]: Secondary structure is predicted by a system of neural

networks (available at http: //cubic:bioc:columbia:edu/pp/Þ. Overall three-

state prediction accuracy is 72.1%. The default secondary structure

prediction settings were used in all predictions.

* JPRED [35,36]: A methodology that combines a total of six secondary

structure predictions into one consensus prediction (available at http://

jura.ebi.ac.uk:8888/ at the time of this writing). Average ‘‘real world’’

accuracy is 72.9%. Note that the PhD predictions generated by JPRED

differ from the original PhD predictions (denoted: orig_phd) mentioned

above. In addition to using the consensus prediction, we also report results

for the six individual prediction methods included in the JPRED server.

By default, secondary structure prediction accuracies reported here are

determined with DSSP as the reference (for details see Ref. 26). The secondary

structure assignments used in the actual calculation differ from the original

predictions in that helices and strands of less than three residues are eliminated.

N- and C-terminal loops are deleted.
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C. Simulation Protocols

The amino acid sequence of the target represents the only input data for our

methodology. We do not carry out explicit database searches (i.e., threading) of

any sort. Secondary structure predictions from the sources listed above are

parsed and used directly in the structure predictions. In the case of JPRED we

examine individually the results of all predictions that contribute to the

consensus prediction (DSC [37], PhD [33,34], PREDATOR [38,39], NNSSP

[40], Mulpred, and Zpred [41]). Because we do not assume any knowledge of

approximate radius of gyration of the target, which is important for the selection

of the correct potential energy parameters, we predict the radius of gyration via a

simple formula [22] and use this prediction to assign the size bin for the tertiary

folding simulation.

The first stage of our prediction algorithm applies the MCM-based approach

described above to each of the nine secondary structure predictions for each

target. Simulations are usually carried out on two to four nodes of a multi-

processor machine and take between 12 and 24 hours depending on protein size.

To extract the structurally unique predictions, we apply the clustering algorithm

discussed above. Table VIII shows the results of this procedure for the three

targets discussed in more detail below. We list results for every secondary

structure prediction (unless predictions consist only of loop or coil, in which

case we did not believe it worthwhile to carry out the simulation).

Because it is quite possible that simulations utilizing different secondary

structure predictions results in very similar representative low energy structures,

we apply a second level of filtering which basically tries to eliminate structu-

rally similar predictions and ranks the resulting ‘‘unique’’ predictions on a

absolute energy scale. The first step in this process is the determination of the

subset of residues common to all predictions (regardless of whether they belong

to helices or strands). Secondary structure predictions for which the number of

residues included in the simulation is substantially smaller than the average (due

TABLE VIII

Individual Clustering Results for the ab initio prediction Targets Discussed in More Detail in the

Text (Stage 1 of the Composite Prediction Method)a

Protein SSP Q3 Nres <4 Å <5 Å <6 Å <7 Å

1aj3 cons 94.90 93 — — — —

1aj3 dsc 87.76 93 — — — —

1aj3 mul 86.73 92 — — — —

1aj3 nnssp 95.92 98 — — 2 2

1aj3 orig_phd 89.80 89 — — 3 2

1aj3 phd 88.78 88 — — — —

1aj3 pred 88.78 92 — — — —
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TABLE VIII (Continued)

Protein SSP Q3 Nres <4 Å <5 Å <6 Å <7 Å

1aj3 psipred 93.88 94 — — 1 1

1aj3 zpred 93.88 98 — — 2 2

1am3 cons 92.86 58 — — 24 3

1am3 dsc 88.57 57 — — 11 2

1am3 mul 77.14 59 — — 11 11

1am3 nnssp 88.57 60 — 8 8 8

1am3 orig_phd 92.86 58 — 22 8 6

1am3 phd 94.29 58 — 4 4 2

1am3 pred 72.86 57 — — — —

1am3 psipred 88.57 57 — 35 1 1

1am3 zpred 67.14 68 — — — —

1mzm cons 44.09 44 — — 2 2

1mzm dsc 66.67 67 — — 26 3

1mzm mul 37.63 68 — — 243 4

1mzm nnssp 38.71 93 — — — —

1mzm orig_phd 59.14 74 — — 50 3

1mzm phd 38.71 49 — — 9 1

1mzm pred 55.91 44 — — 18 6

1mzm psipred 78.49 78 — 1 1 1

1mzm zpred 34.41 82 — — — —

1eh2 cons 87.37 68 — 12 5 5

1eh2 dsc 80.01 73 — — — —

1eh2 mul 74.74 43 — 3 3 3

1eh2 nnssp 86.32 67 — 6 3 1

1eh2 orig_phd 86.32 68 — 15 1 1

1eh2 phd 85.26 67 15 4 4 4

1eh2 pred 88.42 68 — 1 1 1

1eh2 psipred 95.79 72 — 3 2 1

1eh2 zpred 66.32 72 — — 32 13

1bg8.A cons 57.89 57 — — 11 3

1bg8.A dsc 42.11 55 — — 64 6

1bg8.A mul 51.32 67 — — — 24

1bg8.A nnssp 63.16 67 — — 31 9

1bg8.A orig_phd 57.89 57 — — 52 5

1bg8.A phd 57.89 57 — — 34 8

1bg8.A pred 38.16 56 — — 321 3

1bg8.A psipred 50.01 52 — 92 17 5

1bg8.A zpred 46.05 68 — — — —

aHere Nres refers to the number of residues actually considered for every prediction. (cons: JPRED

consensus prediction; dsc: DSC; mul: MULPRED; nnssp: NNSSP; orig_phd: PhD in its most current

implementation; phd: PhD as run by JPRED; pred: PREDATOR; psipred: PSIPRED; zpred:

ZPRED). Q3 refers to the three-state accuracy of a given prediction.
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to deletion of terminal loops) are not considered at this stage. This set of

residues is then extracted from the 50 clusters lowest in energy for every

secondary structure prediction, and the energies of the resulting substructures

are evaluated. After a second round of clustering, we obtain the final set of

clusters (Table IX). At this point the RMSDs with respect to the native structures

are reevaluated over the subset of common residues to allow a fair comparison

of the tertiary folding results obtained from different secondary structure

predictions. We refer to this method below as the composite energy prediction

method.

D. Final Rankings of Structures for Fully Ab Initio Predictions

We examine the use of two different approaches for producing fully ab initio

predictions for the 22 proteins studied in this section. One approach is simply to

use the secondary structure prediction with the highest calibrated prediction—

accuracy—in this case, PSIPRED. Results for this approach are summarized in

TABLE IX

Final Clustering Results for the Subset of Common Residues for All Ab Initio Prediction Targets

(Stage 2 of the Composite Energy Prediction Method)a

Protein Nres <4 Å <5 Å <6 Å <7 Å

1acp 70 — — 10 5

1aj3 88 — 89 89 89

1am3 56 — 17 17 2

1bg8.A 52 — — 92 1

1c5a 57 — — 4 4

1cc5 68 — 22 12 2

1ddf 85 — — — 7

1eh2 65 — 4 4 3

1hsn 61 — — — 46

1jvr 66 39 12 12 2

1lfb 55 — 114 22 4

1mzm 66 — — 65 4

1nkl 63 — — 31 1

1nre 65 — 89 50 50

1pgx 53 — — — 35

1pou 64 30 3 3 1

1r69 57 — 5 5 1

1utg 56 — — 4 3

2ezh 57 — — 7 4

2ezk 67 — — — —

2hp8 49 — 58 8 7

2pac 53 — 25 7 3

aHere Nres refers to the number of residues for which RMSD and energy are evaluated. We omitted

predictions that were too short as compared to all others and the length of the sequence (1eh2: mul;

1jvr: psipred; 1mzm: cons, phd, pred; 1r69: mul, orig_phd, pred; 2ezh: orig_phd).

250 volker a. eyrich, richard a. friesner, and daron m. standley



Table X. As above we list the rank of structures below a certain RMSD cutoff.

The second is the composite energy prediction method discussed above. We

summarize statistics for the success rate of each of these two approaches on the

entire test set and CASP3 prediction targets below.

E. Results

1. Summary and Overall Success of Fully Ab Initio Prediction

We begin by summarizing the results for all of the secondary structure prediction

methods (including the composite energy prediction method described above)

and all of the target proteins. As in previous sections of this chapter, the ranks of

the lowest-energy cluster with RMSDs from the native structure of 4 Å, 5 Å, 6 Å,

and 7 Å are reported for both approaches. The first, and most striking, observation

is that both approaches provide a surprisingly good success rate for ab initio

prediction based on criteria used in CASP3. We have observed that for proteins

in the 50–100 residue range, an RMSD below 7 Å typically provides a

TABLE X

Individual Clustering Results for All Ab Initio Prediction Targets Using the PSIPRED Secondary

Structure Predictionsa

Protein Q3 Nres <4 Å <5 Å <6 Å <7 Å

1acp 83.12 72 — — 17 5

1aj3 93.88 94 — — 1 1

1am3 88.57 57 — 35 1 1

1bg8.A 50.01 52 — 92 17 5

1c5a 93.94 63 4 1 1 1

1cc5 74.7 75 — 6 4 4

1ddf 81.1 86 — — 43 9

1eh2 95.79 72 — 3 2 1

1hsn 87.34 62 — — — 20

1jvr 72.26 3 — — — —

1lfb 58.97 59 — — — 34

1mzm 78.49 78 — 1 1 1

1nkl 94.87 71 — — 4 1

1nre 60.49 65 — — — 380

1pgx 77.14 60 — — — —

1pou 73.24 67 7 5 5 5

1r69 84.13 59 — 6 6 3

1utg 85.71 62 — 32 1 1

2ezh 81.54 57 — 15 1 1

2ezk 51.61 77 — — — —

2hp8 64.71 53 — 6 2 1

2pac 70.73 77 — 19 2 2

aHere Nres refers to the number of residues actually considered for every prediction.
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qualitatively reasonable folding topology at low resolution. Similar conclusions

have been reached by Skolnick and co-workers [42] and by Cohen and Sternberg

[43], whose estimates show that the probability of achieving a structure below 6

Å RMSD by chance is vanishingly small. Note also that for a significant fraction

of proteins, structures below 6 Å are found; at this level, the correspondence with

the native structure is quite satisfactory in agreement with the chapters cited

above.

Both proposed fully ab initio prediction methods (composite energy method

and exclusive use of PSIPRED predictions) yield a number of cases in which a

low RMSD structure is ranked first; this would count as a successful prediction

under any criterion. Using the assessment criteria of CASP3—that is, a

maximum of five predictions—the composite energy method would achieve

an RMSD of less than 7 Å in 68% of the cases; there are also four cases where

the RMSD is less than 6 Å. Reliance entirely on PSIPRED would lead to an

RMSD under 7 Å in 64% of the cases; however, 11 of those would have an

RMSD under 6 Å. Thus, the use of the composite energy method appears to

succeed slightly more often, however, the use of PSIPRED exclusively gen-

erates highly accurate predictions in significantly more cases.

We have employed the protocol described above in a completely automated

fashion; but only in an actual blind test can one be sure that the results suffer

from no unconscious bias. If these results hold up under truly blind test

conditions, this would represent a significant advance in ab initio prediction

methodology as judged by other ab initio efforts in CASP3.

While our new potential energy function certainly represents a step forward,

there are also obviously areas where more work needs to be done. Primarily, the

causes of failure to routinely achieve a low-RMSD structure in the top five

predictions in some cases must be analyzed and understood. These failures are

thus more interesting at this point than the successes because they point the way

to development of an improved methodology. We therefore analyze a number of

these cases in detail below so as to reveal the underlying difficulties and

directions in which solutions must be developed.

2. Detailed Analysis of Specific Cases

Figure 8 presents the detailed secondary structure predictions for each of the

cases that we analyze below. In conjunction with the tertiary folding results

summarized in Table VIII, as well as the results using PDB-derived secondary

structure presented above, we can extract insight into how various types of errors

in secondary structure prediction affect tertiary folding accuracy. Due to the large

amount of data, we have selected a subset of interesting examples to analyze in

detail, however, the conclusions, summarized in the discussion following

consideration of individual examples, reflect an examination of the results for

all 22 of the proteins studied.
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1aj3: This is a case for which the average three-state prediction accuracy of

all of the secondary structure prediction methods is quite good, typically in

excess of 85%. However, only four of the secondary structure predictions

yield reasonable tertiary folding results (NNSSP, original PhD, PSIPRED, and

ZPRED). The reason in this case is quite obvious; the successful methods

correctly predict that the region between residues 29 and 67 is a single long

helix, whereas the remaining predictions insert a short loop in the middle of this

part of the sequence. The short loop allows the two helical pieces surrounding it

to fold, producing a very different shape than is enforced by the single long helix.

As we shall see below, in many cases the composite energy scoring method is

capable of selecting the better tertiary architecture where there are qualitative

differences between predictions. In the present example, however, the simple

algorithm that we use to combine the predictions does not work well, for a

completely understandable reason. By introducing a loop into the long helix, the

protein is given greater flexibility. Because we have not explicitly included any

sort of scoring function for secondary structure [44], the only discriminant is the

energy of the tertiary fold, which in this case must favor the more flexible

structure. In the present system, the non-native structures have energies far

below the native-like and native structures.

The problem observed here will be potentially significant whenever the

correct secondary structure is a long helix, and prediction methods have trouble

distinguishing this from a pair of helices with a short loop in the middle—a very

common motif in secondary structure prediction codes. In order to rectify this

problem, it will probably be necessary to combine local energies, which

determine secondary structures, with long-range energy terms. One approach

is to replace fixed secondary structures by torsion angle energy wells, the depth

and breadth of which are functions of the secondary structure prediction

confidences. It may be possible to optimize the balance of torsion and long-

range energy parameters such that correct helix assignments are favored. An

alternative approach is to use an atomic level potential function and continuum

solvation model to compare the energies of the predictions with different

secondary structure assignments. We intend to explore both of these strategies

is future work.

1am3: This example contains the other side of the long helix problem

observed in 1aj3. Again, all of the secondary structure prediction three-state

percentages are reasonable. However, three of the methods (PRED, and Zpred)

predict a single long helix between residues 11 and 42, whereas the DSSP-

derived secondary structure (and the remaining predictions) specify two short

helices. In this case, the methods that incorrectly predict the long helix are

unable to obtain reasonable RMSD structures from the native structure. How-

ever, here the composite prediction method easily eliminates the qualitatively
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incorrect predictions, in this case benefiting from the lower energies obtained

due to greater flexibility of the two helical segments as opposed to a single long

helix. Also of interest here is the result obtained from the Mulpred prediction,

which inserts an incorrect short loop splitting the single helix between residues

12 and 26 into two shorter helices. This leads to a degradation in the rank of the

best native-like structure, but does not eliminate the possibility of obtaining a

reasonable prediction. Presumably, the magnitude of the effects of this sort of

insertion are qualitatively larger when the size of the helix in question is large

compared to the radius of gyration of the protein (as is the case in the two

instances discussed here). It is also interesting that this error does not

qualitatively degrade the results of the composite prediction method; it may

be that structures with a significant bend at the short loop are energetically

disfavored in this specific case.

1mzm: This protein is a startling example indicating that in some cases the

tertiary folding potential can survive very large qualitative errors in secondary

structure prediction. The only prediction that is satisfactory in terms of

predicting major elements correctly is that of PSIPRED (and even here, a

b-strand is incorrectly added on at the end), and indeed the PSIPRED results are

certainly the best, particularly in terms of the RMSD of the low-energy structure

which is below 5 Å. However, numerous other predictions are capable of

achieving reasonable results, despite gross errors in the secondary structure of

many different types. We have not analyzed in detail why this is the case; an

initial speculation would be that this protein does not have a large number of

alternative approaches to forming a good hydrophobic core. Also, because the

potential energy function does not include explicit b-strand pairing terms,

incorrect prediction of a strand is a local effect.

3. Summary of the Results for All Proteins

The following is a brief analysis of how the various types of errors identified in

the secondary structure predictions affected the proteins in the test set:

1. Incorrect Prediction of Long Helices. This problem, which amounts to

missing a critical loop, affected at least some predictions in most of the

proteins studied. Fortunately, in most cases at least one of the secondary

structure prediction methods correctly identified the loop in question.

Because the composite energy ranking protocol favors flexibility over

long helices, the presence of several incorrectly predicted long helices

was not, in general, a fatal error.

2. Incorrect Replacement of a Helix by a Strand. This problem most signi-

ficantly affected the proteins 1jvr and 1lfb. In some cases, good low-

energy tertiary folds are obtained despite the replacement of a helix with a
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strand; in other cases, the replacement eliminates any good predictions.

More work is needed to determine under what conditions this type of error

can be overcome, and when it is fatal.

3. Incorrect Replacement of an Important Helix by Loop. Given our current

composite energy ranking scheme, which favors flexibility, this error is in

general fatal. Fortunately, in all but one case (1nre) at least one (and

usually more than one) secondary structure prediction method correctly

identified the important helix. As discussed above, a composite energy

that combines local and long-range energy terms appears necessary in

order to treat long helices. In the short term, simply preventing one

secondary structure assignment from dominating the composite ranking

may sufficiently diversify the resulting low-energy structures.

4. Small Errors in the Prediction (Incorrect Lengths of Secondary Structure,

Small Helix, or Strand Incorrectly Present or Missing). Generally, these

types of errors led to quantitative degradation in the ranking of low-

RMSD structures as opposed to complete elimination of these structures.

4. Results from the CASP3 Prediction Contest

In addition to the test cases discussed above, we have also studied two small

helical proteins that were targets in the CASP3 prediction contest. These studies

allow us to compare our results with those of other groups [11]. The two targets

we have investigated are target T0061 (PDB-code: 1bg8) and target T0074 (PDB

code: 1eh2). Each is a helical protein between 50 and 100 residues and hence is

part of the same general category as most of the proteins in the test set. The

results for these two proteins are presented in detail in Tables VIII and IX and

discussed below. We make explicit comparisons with the results of the Scheraga

[25,45] and Samudrala [29] groups, both of whom carried out ab initio folding on

these targets and used methods similar in spirit to what we present here. Those of

the latter group are in fact quite analogous, because prediction methods are used

to determine secondary structure, followed by tertiary folding simulations to

generate a three-dimensional topology.

It should be noted that a nontrivial aspect of making these comparisons is

that the proteins were truncated differently in the various calculations; we

present all of the relevant information below so that the reader can draw his or

her own conclusion. We do, however, wish to make one point with regard to the

manner in which the comparison sequence is truncated. In our approach,

truncation of terminal loop regions is done automatically using the secondary

structure prediction, without reference to the native structure. In several of the

comparisons we report below, truncation was carried out with the native

structure in hand, presumably to minimize the RMSD obtained. While such

results do indicate partial success of the folding algorithm, from a statistical
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point of view it is much easier to achieve an RMSD of 6–7 Å when an extensive

choice of fragments are available to be optimized as opposed to when a single

fragment is chosen a priori. This is particularly the case when the fragment is

relatively small compared to the total length of the sequence.

1eh2: The secondary structure prediction methods generally performed well

on this protein. The tertiary folding simulations were also quite effective, with

the best results yielding an RMSD of less than 5 Å as the lowest energy

prediction. The composite energy method provides a prediction ranking 3 with

an RMSD of 6.02 Å, a respectable result for a protein in the 50 to 100-residue

range. If the PSIPRED secondary structure method were to be used exclusively,

the best prediction among five submitted predictions would be 4.84 Å; this is an

excellent result, competitive with the best results obtained from threading

methods [46]. We note that in both predictions, a long terminal loop of the

protein was truncated, so that the total number of residues predicted was 72 in

the PSIPRED simulation and 65 in the composite energy method.

In CASP3, results for 1eh2 varied greatly with prediction method. Several

groups were able to identify a remote homolog and hence utilize threading

approaches to structure prediction [46], whereas others use methods based

more on ab initio approaches. When only �80% of the protein structure

was predicted, the best results were in the 5 Å RMSD range; as the percentage

of the protein predicted increased to 100%, the prediction accuracy degraded

to 6.01 Å. Our results using PSIPRED secondary structure are comparable to

the former results; in this case 74% of the residues were predicted to an

accuracy of 4.84 Å.

The Scheraga group submitted a prediction for this target; however, they

included the long terminal loop in their prediction which it is extremely difficult

to predict correctly with ab initio methods. Consequently, their reported RMSD

of 9.99 Å for the entire protein does not constitute a fair evaluation of the

capabilities of their methodology. They also report a 5.8 Å RMSD for a 53-

residue fragment of the protein. The calculations would most likely have been

more successful had the terminal loop been deleted during the simulation, as

was done in our approach. The Samudrala group, who achieved an RMSD of

11.3 Å, also included the terminal loop in their calculations. Their post-CASP3

analysis yielded an optimal fragment prediction of 7.0 Å for a 60-residue

fragment. The results reported above (4.84 Å RMSD for 72 residues predicted)

is qualitatively superior to either of these results, particularly as the truncation

was carried out prior to the simulation.

1bg8—Chain A: 1bg8 is a target for which none of the predictors success-

fully located a remote homolog. The best results (and indeed the only ones that

could be considered even partially successful for a protein this size) were those
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of Scheraga and co-workers, who achieved an RMSD of 7.27 Å (for all 76

residues reported experimentally) as the best result of four submitted predictions

(their remaining predictions had RMSDs of 8.91 Å, 9.08 Å, and 9.23 Å). Their

best results for a postprocessed fragment are 4.2 Å for a 61-residue fragment.

Using the composite energy method, our lowest energy prediction achieves an

RMSD of 6.69 Å, but for only 52 residues obtained after truncating to allow

energetic comparisons among all of the secondary structure predictions. The

PSIPRED calculations yield a 6.07 Å RMSD, again for 52 residues (PSIPRED

incorrectly predicts a long terminal loop, which we truncate). These results are

respectable in terms of RMSD but involve significant truncation in a region

where there is actual secondary structure.

The Samudrala group achieved an RMSD of 10.1 Å for all 76 residues and

7.4 Å for 66 residues after postprocessing. The Scheraga group results in this

case have to be considered best. Much of their success can be attributed to an

impressive 79% accuracy in the secondary structure assembled in their most

successful simulation; in this case, the standard neural-network-based secondary

structure prediction methods that we (and Samudrala and co-workers) employed

have a much poorer performance than they do for the test set, with accuracies

below 65% in all cases.

V. CONCLUSION

We have demonstrated that the inclusion of size dependence in the derivation of a

statistical potential for tertiary protein folding yields substantially improved

results, as compared to previous efforts, for a substantial number of proteins of

less than 100 residues in size. The new potential reliably yields highly ranked

structures with low RMSDs as compared to the native structure (in contrast to

earlier results that displayed occasional failures in this regard) and also provides

a significant quantitative improvement in the energetic ranking of the best low

RMSD cluster. There remain in most cases a small number (5–10) of competing

misfolded structures with low energies; discrimination of these from the native-

like topology, necessary for truly reliable tertiary structure prediction, will be a

major objective of subsequent work. The reduction of the huge phase space of

possible tertiary assemblies to a short list of discrete alternatives does, however,

clearly represent progress in the nature and parameterization of the potential

function.

We next examined the effect of replacing secondary structure elements

derived from the PDB with idealized strands and helices, at the same locations.

This substitution examines the effects of helix and strand distortion from ideal

geometry on the predicted tertiary fold. Our conclusion is that, while there are

occasional cases where substantial effects are observed, particularly for

b-strands where a major distortion in length is manifested, the quality of the
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results is in general comparable to that obtained using PDB-derived secondary

structure elements. This suggests that a folding protocol that initially uses

idealized geometries and subsequently refines these geometries by allowing

distortions is likely to be successful; furthermore, even if it is necessary in some

cases to incorporate distortion directly into the initial simulations, the perturba-

tions induced are relatively small and hence handling them should be compu-

tationally tractable.

Finally, we attempted genuine ab initio prediction by using predicted, rather

than PDB-derived (in either geometry or location), secondary structure,

focusing on small helical proteins. Recent improvements in secondary structure

prediction, as exemplified by the PSIPRED code of Jones [26], allowed

impressively accurate secondary structure predictions to be generated in many

cases. When errors in secondary structure were made, the most difficult to deal

with were cases in which a long helix was incorrectly predicted to be two short

helices, or when two short helices were incorrectly predicted to be a single long

helix. Reliable prediction of tertiary structure for a-helical proteins will clearly

require secondary structure prediction methods than can robustly discriminate

these two cases. Other types of large errors, such as replacement of a helix by a

strand or a loop, produced variable results; in some cases, the predictions were

surprisingly good despite such major errors. Smaller errors—for example, in

length or position of a predicted helix—generally led to relatively minimal

quantitative degradations in accuracy as compared to the use of PDB-derived

secondary structure. Results for two small, helical CASP3 targets were

presented which compared well with the work of other groups [11], including

those employing fold recognition methods [46].

While there is still clearly a lot of work to be done, the above results are

encouraging with regard to the possibility of developing reliable ab initio

methods for protein structure prediction to low resolution, at least for small

helical proteins. A different direction to pursue is the combination of these

methods with fold recognition techniques (threading) and with experimental

data, specifically NMR and X-ray crystallographic information. We have

demonstrated in previous work [16] that the combination of a tertiary folding

potential with sparse NMR constraints can successfully produce structures in

the 2–4 Å resolution regime even for large systems; improvements in the

folding potential will enhance the utility of such methods.
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