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I. INTRODUCTION

Proteins are some of the most complex and vital molecules in nature. Their

complexity arises from the intricate balance of intra- and intermolecular

interactions that define their native three-dimensional structures and biological

functionalities. Recent advances in genetic engineering and genome projects

have heightened interest in predicting the folding dynamics and equilibrium

structures of proteins and protein–protein complexes. This prediction ability is of

great theoretical interest, especially in the fields of biophysics and biochemistry.

The applications of these predictions promise to be especially valuable. The

ability to predict the structure of individual and complexed protein molecules

would increase our understanding of disease, aid in the interpretation of genome

data, and revolutionize the process of de novo drug design.

Anfinsen’s thermodynamic hypothesis [1] suggests that the native structure

of a protein system is in a state of thermodynamic equilibrium corresponding to

the system with the lowest free energy. Experimental studies have shown that,

under native physiological conditions and after denaturation, globular proteins

spontaneously refold to their unique, native structure [2]. Understanding the

transition of a protein from a disordered state to its native state defines the

protein folding problem. A natural extension of the protein folding problem is

the related problem of predicting protein–protein interactions, also known as

peptide docking. Prediction of protein–protein interactions requires the identi-

fication of equilibrium structures for protein–protein complexes. One part of this

prediction challenge involves identifying the conformation of the binding sites

through which complexed proteins interact, which can be accomplished experi-

mentally or approached as an independent protein folding problem. Another

part of the peptide docking prediction challenge involves identifying equili-

brium structures for a number of candidate ‘‘docking’’ molecules complexed

with a target macromolcule and then quantifying and comparing their relative

binding affinities.

The use of computational techniques and simulations in addressing the

protein folding and peptide docking problems became possible through the

introduction of qualitative and quantitative methods for modeling these systems.

The development of realistic energy models also established a link to the field of

global optimization, where, based on Anfinsen’s hypothesis, the quantity to be

optimized is the free energy of the system. Because the number of local minima
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is vast, the corresponding problem formulation has earned the simple yet

suggestive title of the ‘‘multiple-minima’’ problem. The basis for these

difficulties is best summarized by Levinthal’s paradox [3]. This paradox

suggests a contradiction between the almost infinite number of possible stable

states that the system may sample and the relatively short time scale required for

actual protein folding. Levinthal’s observations suggest that the native state is

the lowest kinetically accessible free energy minimum, which may be different

from the true global minimum. These principles have been used to develop

computational techniques for predicting protein folding pathways [4–8]. Such

techniques attempt to map the shape of the energy hypersurface and determine

whether this surface ‘‘funnels’’ a protein toward a dominant conformational

basin. By invoking the thermodynamic hypothesis, the overall shape of the

energy hypersurface is neglected and the problem can be formulated in terms of

global minimization, which requires the use of effective global optimization

techniques. If this formulation is to reproduce the behavior of realistic systems,

the folding of actual proteins should not be kinetically hindered. This has been

verified for various systems by performing denaturation–refolding experiments.

In addition, by introducing structural characteristics whose formation may act as

kinetic barriers, such as the formation of disulfide bonds, the performance of the

thermodynamic equilibrium model should be improved.

To better understand the dynamics of protein folding, it is also necessary to

examine a protein’s energy hypersurface. The characterization of the energy

surface must include the identification of other stable and metastable config-

urations. Mathematically, these structures correspond to stationary points of the

energy function. In particular, local minima represent stable conformations,

while (first-order or higher-order) saddle points constitute transition states that

connect two stable structures. A folding pathway defines the connection

between two stable conformations (local minima) through a series of transition

states (saddle points). Because the folding pathway may include a number of

intermediates, a rigorous description of the energy surface would require the

identification of all local minima and saddle points of the energy function.

Based on the complexity of the energy hypersurface, there is an obvious need

for the development of efficient global optimization techniques. Although the

energy can be expressed analytically, exhaustive searches are possible for only

the smallest of systems. These observations, along with the importance of the

protein folding and peptide docking problems, have propelled the introduction

of new global search strategies specifically designed for these problems.

In the sequel, we first outline the basics of the deterministic global

optimization approach, aBB, which has been used extensively to study the

protein structure prediction, dynamics of protein–protein folding, and protein

docking problems. This is followed by a comprehensive study of ab initio

modeling for structure prediction of single-chain polypeptides in Section III. An
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extensive comparison of energy modeling, including solvation, entropic effects,

and free energy calculations, is provided for the oligopeptides. The related

problem of restrained structure refinement in the presence of sparse experimen-

tally derived restraints is also discussed. Section IV moves beyond the static

structure prediction problem toward an understanding of the dynamics of

protein folding. An in-depth analysis of the coil-to-helix transition is provided

for the alanine tetrapeptide. This analysis includes the elucidation of folding

pathways and the identification of plausible reaction coordinates. Section V

addresses the peptide docking problem. First, an approach for the determination

of binding site structure is introduced. This is followed by a decomposition-

based approach for the prediction of relative binding affinities. Both approaches

are applied to peptide docking in HLA molecules.

II. DETERMINISTIC GLOBAL OPTIMIZATION

A. Twice Continuously Differentiable NLPs

The generic optimization problem to be addressed has the following form:

min
x

f ðxÞ

subject to gðxÞ � 0

hðxÞ ¼ 0

x 2 ½xL; xU �

ð1Þ

where x is a vector of n continuous variables, f ðxÞ is the objective function, gðxÞ
is a vector of inequality constraints, and hðxÞ is a vector of equality constraints.

Both the objective function and constraint equations are assumed to be twice

continuously differentiable. xL and xU denote the lower and upper bounds on

the x variables, respectively. The constraints define the feasible region for the

problem.

Two main classes of global optimization techniques have been developed to

address problem (1), namely, stochastic and deterministic approaches. Stochastic

methods, such as those based on genetic algorithms [9] and simulated annealing

[10], can be used to treat unconstrained nonconvex problems. However, the

stochastic nature of the search strategy invalidates any claims regarding global

optimality because it is impossible to obtain valid bounds on the solution of the

problem. The addition of nonconvex constraints further complicates these

solution schemes. In contrast, deterministic methods rely on a theoretically

based search of the domain space to guarantee the identification of the global

optimum solution.

A common characteristic of deterministic global optimization algorithms is

the progressive reduction of the domain space until the global solution has been
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found with arbitrary accuracy. The solution is approached from above and

below by generating converging sequences of upper and lower bounds, and the

generation of these bounds on the global optimum solution is an essential part of

all deterministic global optimization algorithms [11–13].

The aBB algorithm has been developed to address general twice continu-

ously differentiable models of type (1) [14–18]. The algorithm is built on a

branch-and-bound framework and can handle generic nonconvex optimization

problems represented by formulation (1). E-Convergence to the global optimum

solution is guaranteed when the functions f ðxÞ, gðxÞ, and hðxÞ are twice

continuously differentiable. The algorithm has been shown to terminate in a

finite number of iterations for this broad class of problems [16,17,19,20].

The aBB global optimization approach is based on the convex relaxation of

the original nonconvex formulation (1). This requires convex lower bounding of

all expressions, and these expressions can be classified as (i) convex terms, (ii)

nonconvex terms of special structure, and (iii) nonconvex terms of general

structure. Obviously, convex lower bounding functions are not required for

original convex expressions (e.g., linear terms). Certain nonconvex terms,

including bilinear, trilinear and univariate concave functions, possess special

structure that can be exploited in developing lower bounding functions. All

other nonconvex terms can be underestimated using a general expression [18].

When applying the aBB approach to the protein folding problem, formula-

tion (1) involves only nonconvex expressions of general structure. For this

reason, the following exposition will briefly cover underestimation for terms of

special structure and then focus on the development of a convex lower bounding

formulation for global optimization involving generic nonconvex objective and

constraint functions.

1. Underestimating Terms of Special Structure

In the case of a bilinear term xy, Ref. 21 showed that the tightest convex lower

bound over the domain ½xL; xU � � ½yL; yU � is obtained by introducing a new

variable wB that replaces every occurrence of xy in the problem and satisfies the

following relationship:

wB ¼ maxfxLyþ yLx� xLyL; xUyþ yUx� xUyUg ð2Þ

This lower bound can be relaxed and included in the minimization problem by

adding two linear inequality constraints:

wB 
 xLyþ yLx� xLyL

wB 
 xUyþ yUx� xUyU
ð3Þ

Moreover, an upper bound can be imposed on w to construct a better approxi-

mation of the original problem [22]. This is achieved through the addition of
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two linear constraints:

wB � xUyþ yLx� xUyL

wB � xLyþ yUx� xLyU
ð4Þ

A trilinear term of the form xyz can be underestimated in a similar fashion

[23]. A new variable wT is introduced and bounded by the following eight

inequality constraints:

wT 
 xyLzL þ xLyzL þ xLyLz� 2xLyLzL

wT 
 xyUzU þ xUyzL þ xUyLz� xUyLzL � xUyUzU

wT 
 xyLzL þ xLyzU þ xLyUz� xLyUzU � xLyLzL

wT 
 xyUzL þ xUyzU þ xLyUz� xLyUzL � xUyUzU

wT 
 xyLzU þ xLyzL þ xUyLz� xUyLzU � xLyLzL

wT 
 xyLzU þ xLyzU þ xUyUz� xLyLzU � xUyUzU

wT 
 xyUzL þ xUyzL þ xLyLz� xUyUzL � xLyLzL

wT 
 xyUzU þ xUyzU þ xUyUz� 2xUyUzU

ð5Þ

Fractional terms of the form x=y are underestimated by introducing a new

variable wF and two new constraints [23] which depend on the sign of the

bounds on x:

wF 

xL=yþ x=yU � xL=yU if xL 
 0

x=yU � xLy=yLyU þ xL=yL if xL < 0

�

wF 

xU=yþ x=yL � xU=yL if xU 
 0

x=yL � xUy=yLyU þ xU=yU if xU < 0

� ð6Þ

For fractional trilinear terms, eight new constraints are required [23]. The

fractional trilinear term xy=z is replaced by the variable wFT and the constraints

for xL; yL; zL 
 0 are given by

wFT 
 xyL=zU þ xLy=zU þ xLyL=z� 2xLyL=zU

wFT 
 xyL=zU þ xLy=zL þ xLyU=z� xLyU=zL � xLyL=zU

wFT 
 xyU=zL þ xUy=zU þ xUyL=z� xUyL=zU � xUyU=zL

wFT 
 xyU=zU þ xUy=zL þ xLyU=z� xLyU=zU � xUyU=zL

wFT 
 xyL=zU þ xLy=zL þ xUyL=z� xUyL=zL � xLyL=zU

wFT 
 xyU=zU þ xUy=zL þ xLy=z� xLyU=zU � xUyU=zL

wFT 
 xyL=zU þ xLy=zL þ xUyL=z� xUyL=zL � xLyL=zU

wFT 
 xyU=zL þ xUy=zL þ xUyU=z� 2xUyU=zL

ð7Þ
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Univariate concave functions are trivially underestimated by their lineariza-

tion at the lower bound of the variable range. Thus the convex envelope of the

concave function utðxÞ over ½xL; xU � is the linear function of x:

utðxLÞ þ utðxUÞ � utðxLÞ
xU � xL

ðx� xLÞ ð8Þ

The generation of the best convex underestimator for a univariate concave

function does not require the introduction of additional variables or constraints.

2. Underestimating General Nonconvex Terms

A general nonconvex term f ðxÞ belonging to the class of twice continuously

differentiable functions can be underestimated over the entire domain

x 2 ½xL; xU� by the function f̂ ðxÞ defined as

f̂ ðxÞ ¼ f ðxÞ þ
Xn

i¼1

aiðxL
i � xiÞðxU

i � xiÞ ð9Þ

where the ai’s are nonnegative scalars.

f̂ ðxÞ is a guaranteed underestimator of f ðxÞ because the original nonconvex

expression is augmented by the addition of separable quadratic functions that

are negative over the entire domain ½xL; xU �. Furthermore, because the quadratic

term is convex, all nonconvexities in the original term f ðxÞ can be overpowered

by using sufficiently large values of the ai parameters.

The convex lower bounding function f̂ ðxÞ, defined over the rectangular

domain of xL � x � xU, possesses a number of important properties that

guarantee the convergence of the aBB algorithm to the global optimum

solution:

(i) f̂ ðxÞ is a valid underestimator of f ðxÞ. That is,

8 x 2 xL; xU
� �

it can be shown that f̂ ðxÞ � f ðxÞ

(ii) f̂ ðxÞ matches f ðxÞ at all corner points.

(iii) f̂ ðxÞ is convex in x 2 xL; xU½ �.
(iv) The maximum separation between the nonconvex term of generic

structure, f ðxÞ, and its convex relaxation, f̂ ðxÞ, is bounded and also

proportional to the positive a parameters and to the square of the

diagonal of the current box constraints:

max
xL�x�xU

½ f ðxÞ � f̂ ðxÞ� ¼ 1

4

Xn

i

aiðxU
i � xL

i Þ
2 ð10Þ
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(v) The underestimators constructed over supersets of the current set are

always less tight than the underestimator constructed over the current

box constraints for every point within the current box constraints.

The key development in the convex lower bounding formulation is the

definition of the a parameters. Specifically, the magnitude of the a parameters

may be related to the minimum eigenvalue of the Hessian matrix of the

nonconvex term f ðxÞ:

a 
 max 0;� 1

2
min

i;xL�x�xU
liðxÞ

� �
ð11Þ

where lðxÞ represent the eigenvalues of the Hessian matrix (Hf ðxÞ) for the

nonconvex term. An explicit minimization problem can be written to find the

minimum eigenvalue (lmin):

min
x;l

l

subject to det Hf ðxÞ � lI
� �

¼ 0

x 2 ½xL; xU �

The solution of this problem is a nontrivial matter for arbitrary nonconvex

functions.

One method for the rigorous determination of a parameters for general twice

differentiable problems involves interval analysis of Hessian matrices to

calculate bounds on the minimum eigenvalue [14,15]. The difficulties arising

from the presence of the variables in the convexity condition can be alleviated

through the transformation of the exact x-dependent Hessian matrix to an

interval matrix ½Hf � such that Hf ðxÞ � ½Hf �; 8 x 2 ½xL; xU �. The elements of the

original Hessian matrix are treated as independent when calculating their

natural interval extensions [24,25]. The interval Hessian matrix family ½Hf � is

then used to formulate a theorem in which the a calculation problem is relaxed

[15]. In other words, a valid lower bound on the minimum eigenvalue can be

used to calculate rigorous a values:

a 
 0; � 1

2
lmin ½Hf �

� �� �
ð12Þ

where lminð½Hf �Þ is the minimum eigenvalue of the interval matrix family ½Hf �.
An Oðn2Þ method to calculate these a values is the straightforward extension

of Gerschgorin’s theorem [26] to interval matrices. For a real matrix A ¼ ðaijÞ,
the well-known theorem states that the eigenvalues are bounded below by lmin
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such that

lmin ¼ min
i

aii �
X
j6¼i

jaijj
 !

ð13Þ

For an interval matrix ½A� ¼ ð½aij; �aij�Þ, a lower bound on the minimum eigen-

value is given by

lmin 
 min
i

aii �
X
j 6¼i

maxðjaijj; j�aijjÞ
" #

This procedure provides a single a value that is valid for all variables.

Nonuniform diagonal shift matrices can be used to calculate a different a
value for each variable in order to construct an underestimator of the form

shown in Eq. (9). The nonzero elements of the diagonal shift matrix can no

longer be related to the minimum eigenvalue of the interval Hessian matrix ½Hf �.
If all elements of the scaling vector are set to 1, the equation for the ai values

becomes

ai ¼ max 0;� 1

2
aii �

X
j6¼i

jajij

 !( )

However, the choice of scaling is arbitrary, and different ai parameters can be

estimated through various scaling techniques.

3. Convexification of Feasible Region

To obtain a valid lower bound on the global solution of the nonconvex problem,

the lower bounding problem generated in each domain must have a unique

solution. This implies that the formulation includes only convex inequality

constraints, linear equality constraints, and an increased feasible region relative

to that of the original nonconvex problem. The left-hand side of any nonconvex

inequality constraint, gðxÞ � 0, in the original problem can simply be replaced

by its convex underestimator ĝðxÞ, constructed according to Eq. (9), to yield the

relaxed convex inequality ĝðxÞ � 0.

For an equality constraint containing general nonconvex terms, the equation

obtained by simple substitution of the appropriate underestimators is also

nonlinear. Therefore, the original equality hðxÞ ¼ 0 must be rewritten as two

inequalities of opposite signs:

hþðxÞ ¼ hðxÞ � 0

h�ðxÞ ¼ �hðxÞ � 0
ð14Þ

These two inequalities must then be underestimated independently to give ĥþðxÞ
and ĥ�ðxÞ.
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4. Convex Lower Bounding Problem Formulation

Summarizing the concepts introduced so far, a convex relaxation for any

nonconvex problem of type (1) belonging to the broad class of twice

continuously differentiable continuous NLPs can be constructed as

min
x

f̂ ðxÞ

subject to ĝðxÞ � 0

ĥþðxÞ � 0

ĥ�ðxÞ � 0

x 2 ½xL; xU �

ð15Þ

where ^ denotes the convex underestimator of the specified function over the

domain x 2 ½xL; xU �. Because the inclusion of convex terms and nonconvex

terms of special structure has been neglected, these functions involve only a-type

underestimating expressions. These underestimators are functions of the size of

the domain under consideration, and because the aBB algorithm follows a

branch-and-bound approach, this domain is systematically reduced at each new

node of the tree. Tighter lower bounding functions can therefore be generated by

updating the underestimating equations. The lower bounds on the problem form

a nondecreasing sequence, and the underestimating strategy is therefore

consistent, as required for convergence.

5. Variable Bound Updates

The quality of the convex lower bounding problem can also be improved by

ensuring that the variable bounds are as tight as possible. These variable bound

updates can be performed either at the onset of an aBB run or at each iteration.

In both cases, the same procedure is followed in order to construct the bound

update problem. Given a solution domain, the convex underestimator for every

constraint in the original problem is formulated. The bound problem for variable

xi is then expressed as

x
L;NEW
i =x

U;NEW
i ¼

min
x

=max
x

xi

subject to ĝðxÞ � 0

xL � x � xU

8<
: ð16Þ

where ĝðxÞ are the convex underestimators of the constraints, and the bounds on

the variables xL and xU are the best calculated bounds. Thus, once a new lower

bound x
L;NEW
i on xi has been computed via a minimization, this value is used in

the formulation of the maximization problem for the generation of an upper

bound x
U;NEW
i .
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Because of the computational expense incurred by an update of the bounds

on all variables, it is often desirable to define a smaller subset of the variables on

which this operation is to be performed. The criterion devised for the selection

of the branching variables can be used in this instance, because it provides a

measure of the sensitivity of the problem to each variable.

6. The aBB Algorithm

The global optimization method aBB deterministically locates the global

minimum solution of (1) based on the refinement of converging lower and

upper bounds. The lower bounds are obtained by the solution of (15), which is

formulated as a convex programming problem. Upper bounds are based on the

solution of (1) using local minimization techniques.

As previously mentioned, the maximum separation between the generic

nonconvex terms and their respective convex lower bounding representations is

proportional to the square of the diagonal of the current rectangular partition. As

the size of the rectangular domains approach zero, this separation also become

infinitesimally small. That is, as the current box constraints ½xL; xU � collapse to a

point, the maximum separation between the original objective function of (1)

and its convex relaxation in (15) becomes zero. This implies that for the positive

numbers E and x there always exists another positive number d which, by

reducing the rectangular region ½xL; xU � around x so that kxU � xLk � d, cause

the difference between the feasible region of the original problem (1) and its

convex relaxation (15) to become less than E. Therefore, any feasible point x
of problem (15), including the global minimum solution, becomes at least

E-feasible for problem (1) by sufficiently tightening the bounds on x around this

point.

Once the solutions for the upper and lower bounding problems have been

established, the next step is to modify these problems for the next iteration. This

is accomplished by successively partitioning the initial rectangular region into

smaller subregions. The number of variables along which subdivision is

required is equal to the number of variables x participating in at least one

nonconvex term of the (1) formulation. The default partitioning strategy used in

the algorithm involves successive subdivision of the original rectangle into two

subrectangles by halving on the midpoint of the longest side of the initial

rectangle (bisection). Therefore, at each iteration a lower bound of the objective

function (1) is simply the minimum over all the minima of problem (15) in each

sub-rectangle of the initial rectangle. In order to ensure lower bound improve-

ment, the subrectangle to be bisected is chosen by selecting the subrectangle

that contains the infimum of the minima of (15) over all the subrectangles. This

procedure guarantees a nondecreasing sequence for the lower bound. A

nonincreasing sequence for the upper bound is found by solving the original

nonconvex problem (1) locally and selecting it to be the minimum over all the
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previously recorded upper bounds. Obviously, if the single minimum of (15) for

any subrectangle is greater than the current upper bound, this subrectangle can

be discarded because the global minimum cannot lie within this subdomain

(fathoming step).

Because the maximum separation between the nonconvex terms and their

respective convex lower bounding functions is both a bounded and a continuous

function of the size of rectangular domain, arbitrarily small feasibility and

convergence tolerance limits are attained for a finite-sized partition element.

The basic steps of the aBB global optimization algorithm are as follows:

1. Initialization. A convergence tolerance, Ec, and a feasibility tolerance, Ef ,

are selected and the iteration counter, I, is set to one. The current variable

bounds ½xL
I ; xU

I � for the first iteration are set equal to the global ones

½xL
0 ; xU

0 �. Lower and upper bounds ½ f L; f U � on the global minimum of (1)

are initialized and an initial current point is selected from the domain.

2. Local Solution of Nonconvex Problem. The nonconvex optimization

problem (1) is solved locally within the current variable bounds ½xL
I ; xU

I �. If

the solution is Ef -feasible, the upper bound f U is updated as follows:

f U ¼ minð f U ; f U
I Þ

where f U
I is the objective function value for the current Ef -feasible solution.

3. Partitioning of Current Rectangle. The current rectangle, ½xL
I ; x

U
I �, is

bisected into two subrectangles ðr ¼ a; bÞ for the variable ðlÞ with the

longest side of the initial rectangle:

lI ¼ arg max
i
ðxU

i;I � xL
i;IÞ

4. Solution of Underestimating Problems. The parameters ai;I;r are updated

for both rectangles ðr ¼ a; bÞ. The convex optimization problem (15) is

solved inside both subrectangles ðr ¼ a; bÞ using a nonlinear solver (e.g.,

MINOS5.4 [27], NPSOL [28]). If a solution f L
I;r is less than the current

upper bound, f U , then it is stored.

5. Update of Lower Bound. The iteration counter is increased by one, and

the lower bound, f L, is updated to be the minimum solution over the

stored solutions from previous iterations. The selected region is erased

from the stored set.

f L ¼ min
I0;r

f L
I0;r; r ¼ a; b; I0 ¼ 1; . . . ; I � 1

6. Update Bounds. The bounds of the current rectangle are updated to those

of the sub-rectangle containing the previously found solution ( f L).
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7. Check for Convergence. If f U � f Lð Þ > Ec, then return to Step 2.

Otherwise, Ec-convergence has been reached, and the global minimum

solution corresponds to point providing f U .

Figure 1 diagrams an unconstrained one-dimensional example of the

approach. The mathematical proof that the aBB global optimization algorithm

Figure 1. One-dimensional illustrative example of the aBB approach. In iteration 1 the overall

domain is bisected, the two convex lower bounding functions are created, and their unique minima

(L1 and L2) are identified. An upper bound is also identified. Because L1 is less than L2, the region

containing L1 is further bisected in iteration 2, whereas the other region is stored. The minimum of

one region (L3) is greater than the new upper bound, so this region can be fathomed. The other

region is stored. In iteration 3 the region with the next lowest lower bound (L2) is bisected and

because both new lower bound minima (L5 and L6) are greater than the current best upper bound, the

entire region is fathomed. Finally, by iteration 4, the region containing L4 is bisected, which results

in a region that can be fathomed (containing L7) and a convex region whose minimum (L8) equals

the current upper bound and is the global minimum.
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converges to the global optimum solution is presented in Ref. 19. In addition to

computational chemistry related problems, the aBB approach has been applied

to a variety of constrained optimization problems [15–18].

B. Enclosure of All Solutions

The aBB algorithm discussed in the previous section was originally designed to

solve global optimization problems. However, this algorithm has also proven to

be effective in the solution of non-linearly constrained systems of algebraic

equations [23], provided only that the constraints are twice continuously

differentiable. The key idea is to reformulate the algebraic system of equations as

a global optimization problem that exhibits multiple global solutions and then

use the aBB approach as a basis for the enclosure of all solutions. In the

following sections, we discuss the enclosure of all solutions.

1. Problem Formulation

In general, a non-linearly constrained system of algebraic equations can be

expressed in the form

fiðxÞ ¼ 0; i ¼ 1; . . . ;Nf

gjðxÞ � 0; j ¼ 1; . . . ;Ng

xL � x � xU

ð17Þ

where fiðxÞ represent the equality constraints (N f is the number of such

constraints) and gjðxÞ represent the inequality constraints (Ng is the number of

such constraints).

In order to apply the aBB algorithm to (17), we must reformulate it as a

global optimization problem. This is accomplished by introducing a slack

variable s and minimizing its value over an augmented variable set ðx; sÞ
subject to a set of relaxed constraints:

min
x;s

s

subject to fiðxÞ � s � 0; i ¼ 1; . . . ;Nf

�fiðxÞ � s � 0; i ¼ 1; . . . ;Nf

gjðxÞ � 0; j ¼ 1; . . . ;Ng

xL � x � xU

ð18Þ

In comparing the two formulations, the following two facts are self-evident:

� If s < 0, the constraints in (18) are infeasible.

� If s ¼ 0, the constraints in (18) reduce to the original problem (17).
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It follows that s ¼ 0 is the global minimum of (26)—provided that (17) has

solutions—and that there is a one-to-one correspondence between global minima

ðx�; s�Þ of (18) and solutions x� of the original problem (17). Therefore, the

problem of finding all solutions to (17) can be reformulated as the problem of

finding all global minima of (18).

In the next section, we will explain how the aBB global optimization

algorithm can be used to enclose all global minima of (18), and hence, all

solutions to (17).

2. Framework for Enclosing All Solutions

In this section, we describe the aBB global optimization algorithm as it is applied

to the general problem of determining all solutions to a system of algebraic

constraints (17). This adaptation is based on the correspondence between

solutions of (17) and global minima of (18) with s ¼ 0. Since the aBB algorithm

can be applied to any problem involving constraints which are twice continuously

differentiable (C2), the only necessary assumptions we need to make are that

fiðxÞ and gjðxÞ are C2 functions for i ¼ 1; . . . ;Nf and j ¼ 1; . . . ;Ng, respectively.

The algorithm proceeds by exploring the configuration space for solutions

to (17). We begin with the full region x 2 ½xL; xU � and subdivide regions into

smaller regions. Each region is tested before it is divided to see if a solution to

(17) can possibly exist there. This is accomplished by finding a lower bound of

the global minimum of (18) over the region in question. If the lower bound is

positive, then s ¼ 0 cannot lead to a feasible point of (18), and hence no solution

to (17) can exist in the given region. The region will be fathomed (i.e.,

eliminated from further consideration). On the other hand, if the lower bound

is negative or zero, there may or may not be a solution to (17) in that region. In

this case, further subdivision and testing will be necessary. If the region size

becomes small enough and the region is still active (i.e., its lower bound is

negative or zero), then a solution to (17) is obtained within that region by a local

search. The algorithm terminates when all regions have been fully processed.

Note that upper bounds of the global minimum need not be determined.

Since we are assuming that the global minimum of (18) is zero, we can set the

upper bound to this value from the start, and thus avoid the effort of solving an

upper bounding problem.

Lower bounds of the global minimum of (18) are determined by solving the

lower bounding problem over the given region:

min
x;s

s

subject to f̂
þ
i ðxÞ � s � 0; i ¼ 1; . . . ;Nf

f̂
�
i ðxÞ � s � 0; i ¼ 1; . . . ;Nf

ĝjðxÞ � 0; j ¼ 1; . . . ;Ng

xL � x � xU

ð19Þ
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where f̂
þ
i ðxÞ, f̂

�
i ðxÞ, and ĝ jðxÞ are convex functions which underestimate fiðxÞ,

�fiðxÞ, and gjðxÞ, respectively. Because the constraints are all convex functions,

any local optimization package should be able to locate its global minimum.

Furthermore, every feasible point of (18) is also a feasible point of (19) because

these functions are underestimators of the original functions. It follows that the

global minimum of (19) is a valid lower bound of the global minimum of (18).

The crux of the aBB algorithm is finding valid convex underestimators,

f̂
�
i ðxÞ and ĝjðxÞ, for the functions �fiðxÞ and gjðxÞ, respectively, over a given

region. An important consideration is that the convex underestimators be as

tight (i.e., close in value to the original constraint functions) as is reasonably

possible, because tighter underestimators lead to better lower bound estimates.

It is important to be able to fathom regions as quickly as possible if they do not

contain any solutions to (17). However, this cannot always be done: It

frequently occurs that a region contains no solution to (17) [i.e., the global

minimum of (18) over that region is positive], but the lower bound obtained

from (19) for that region is negative. Such regions obviously must be explored

further, until positive lower bounds are obtained. A better lower bound estimate

can lead to significant improvement in the efficiency of the algorithm.

When applying this algorithm to the problem of finding all stationary points

of a potential energy surface, the constraint functions, �fiðxÞ and giðxÞ, are

general nonconvex functions. Whenever these constraint functions are C2, they

can be underestimated using the a underestimation described in Section II.A.2.

In this context, the underestimators take the form

f̂
þ
i ðxÞ ¼ fiðxÞ � a f ;þ

i

X
k

ðxU
k � xkÞðxk � xL

k Þ

f̂
�
i ðxÞ ¼ �fiðxÞ � a f ;�

i

X
k

ðxU
k � xkÞðxk � xL

k Þ

ĝjðxÞ ¼ gjðxÞ � ag
j

X
k

ðxU
k � xkÞðxk � xL

k Þ

ð20Þ

where the a parameters satisfy the convexity conditions

a f ;þ
i 
 � 1

2
min

x2½xL;xU �
flkðHfiðxÞÞ; 0g

a f ;�
i 
 þ 1

2
max

x2½xL;xU �
flkðHfiðxÞÞ; 0g

ag
j 
 �

1

2
min

x2½xL;xU �
flkðHgj

ðxÞÞ; 0g

ð21Þ

The discussion in Section II.A.2 applies equally well in this situation.
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3. Geometrical Interpretation

In this section, we give a geometric illustration of how the aBB algorithm works

by showing how it would locate all of the solutions of a single equation f ðxÞ ¼ 0

over the interval x 2 ½0; 4�. The function we use for our illustration is

f ðxÞ¼�2 cos
p
3
ðxþ0:05Þ þ e�20ðx�0:2Þ2 � e�20ðx�1:6Þ2þ e�20ðx�2:4Þ2 � e�20ðx�3:5Þ2

A graph of this function is given in Fig. 2. There are three solutions to f ðxÞ ¼ 0 in

this interval. They are

xsol 2 f0:59014; 1:82399; 3:27691g

The corresponding global optimization problem is obtained by introducing a

slack variable s and minimizing s subject to the constraints

f ðxÞ � s � 0 � f ðxÞ þ s

The feasibility region for fixed s is determined by intersecting the region of space

between f ðxÞ � s and f ðxÞ þ s with the x-axis. This procedure is shown

graphically in Fig. 3. For s > 0, the feasibility region forms intervals around

the actual solutions to f ðxÞ ¼ 0. Minimizing s subject to the constraints above

has the effect of pushing the two graphs together until they both meet at f ðxÞ (at

s ¼ 0). At s ¼ 0, the feasibility region reduces to the solution set for f ðxÞ ¼ 0

Figure 2. Plot of f ðxÞ for x E ½0; 4�.
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(each interval reduces to a point). For s < 0, the graphs cross and the feasibility

region is empty. s ¼ 0 is clearly the global minimum whenever f ðxÞ ¼ 0 has

solutions.

In order to set up the lower bounding problem, we need to find convex

underestimators for �f ðxÞ for each interval under consideration. We begin with

the complete interval ½0; 4�. The function f ðxÞ and a valid set of convex

underestimators f̂
�
½0;4�ðxÞ are plotted in Fig. 4. The convex underestimators

Figure 3. f ðxÞ is shifted by a positive slack variable s ¼ 1. Note that the feasibility region of

f ðxÞ � s � 0 � f ðxÞ þ s forms intervals around the solutions to f ðxÞ ¼ 0.

Figure 4. The functions f̂�ðxÞ are convex underestimators of �f ðxÞ over the interval [0, 4].

Note how f̂þðxÞ and �f̂� ðxÞ form a convex envelope around f ðxÞ.
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f̂
�
½0;4�ðxÞ essentially envelop the graph of f ðxÞ in a convex region. This convex

region contains all the points f̂
þðxÞ � y � �f̂

�ðxÞ, and its intersection with

the x-axis is given by f̂
þðxÞ � 0 � � f̂

�ðxÞ. All solutions to f ðxÞ ¼ 0 in the

region x 2 ½0; 4� must lie in this intersection region because f̂
þðxÞ and �f̂

�ðxÞ
surround the function f ðxÞ (see Fig. 4). If this region had been empty, then no

solution to f ðxÞ ¼ 0 could possibility exist in the interval ½0; 4�. This is not the

case, but see later on when we discuss the interval ½2; 3�.
Determining whether or not the feasibility region of f̂

þðxÞ � 0 � �f̂
�ðxÞ is

empty involves introducing a slack variable and minimizing it subject to

f̂
þðxÞ � s � 0 � �f̂

�ðxÞ þ s ð22Þ

This is the lower bounding problem. For s ¼ 0, (22) reduces to f̂
þðxÞ �

0 � �f̂
�ðxÞ. For s 6¼ 0, the feasibility region of (22) is determined by shifting

the enveloping functions f̂
þðxÞ and �f̂

�ðxÞ by an amount s—away from each

other if s > 0, and toward each other if s < 0 (see Fig. 5). Graphically,

minimizing s subject to (22) involves expanding or shrinking the region between

the underestimators by adjusting s until the region between f̂
þðxÞ � s and

�f̂
�ðxÞ þ s intersects the x-axis at a single point. For the interval ½0; 4�, this

requires moving �f̂
�ðxÞ toward each other, implying smin < 0. The fact that

smin < 0 indicates that there might be solutions to f ðxÞ ¼ 0 in this interval: we

will be forced to explore this region further. Note that the lower bounding

problem is a convex problem, and so any local optimization package should reach

this unique global minimum.

Figure 5. During the solution to the lower bounding problem, the convex underestimators

f̂�ðxÞ are shifted by a slack variable. Two different shifts are shown above: One is positive, sþ ¼ 1;

and the other is negative, smin ¼ �2:135. smin represents the global minimum to the lower bounding

problem: The feasibility region of the lower bounding problem is reduced to a single point

xmin ¼ 1:754, shown above.
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We therefore subdivide the interval ½0; 4� into two subintervals, ½0; 2� and

½2; 4�, and explore each interval for solutions just as we did for ½0; 4�. The convex

underestimators for each interval, f̂
�
½0;2�ðxÞ and f̂

�
½2;4�ðxÞ, are shown in Fig. 6. Note

that each pair of underestimators envelops the corresponding portion of the

function f ðxÞ, and that the underestimators have improved: They are closer to

the function f ðxÞ. This will continue to happen as the intervals become

narrower.

Again, the question we ask in each interval is: Can a solution to f ðxÞ ¼ 0

exist there? The question is answered by solving the lower bounding problem.

In both cases, the region f̂
þðxÞ � 0 � �f̂

�ðxÞ does intersect the x-axis

(see Fig. 6), indicating possible solutions in each interval. This fact is

established by minimizing s subject to (22) within each interval. In both cases,

smin < 0, suggesting that f̂
�ðxÞ must move toward each other to reduce the

feasibility region to a point (see Fig. 7 and 8). Both intervals must be explored

further.

So we subdivide again, and look at the intervals ½0; 1�, ½1; 2�, ½2; 3�, and ½3; 4�.
The underestimators f̂

�
½n;nþ1�ðxÞ are plotted in Fig. 9. For the intervals ½0; 1�,

½1; 2�, and ½3; 4�, the story is the same: s ¼ 0 yields feasible points, smin is

negative, and so we must subdivide those intervals further. But something new

happens for ½2; 3�. The convex envelope f̂
�
½2;3�ðxÞ completely isolates f ðxÞ from

the x-axis. The lower bounding problem (22) is infeasible for s ¼ 0. The region

between f̂
þ
½2;3�ðxÞ and �f̂

�
½2;3�ðxÞ must be expanded before it touches the x-axis

(see Fig. 10), and thus smin will be greater than zero. We have rigorously

concluded that no solution to f ðxÞ ¼ 0 can exist in the interval ½2; 3�, and so we

Figure 6. The interval [0, 4] has been subdivided into [0, 2] and [2, 4]. The convex

underestimators f̂�ðxÞ for each subinterval, shown above, form a convex envelope around f ðxÞ. As

the intervals get smaller, the envelope gets tighter.
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do not need to explore this interval any further. The ability to fathom regions

like this is what distinguishes aBB from a straight gridsearch.

Exploration will continue with the intervals ½0; 1�, ½1; 2�, and ½3; 4�. These

intervals will be subdivided and further tested. As the algorithm progresses,

most intervals will eventually be fathomed. A few intervals (three, in fact) will

survive. Each of these intervals surrounds a solution point, which will be located

by a local search once the interval size is small enough.

Figure 7. This figure represents the solution to the lower bounding problem in the interval

[0, 2]. (xmin; sminÞ ¼ ð0:656;�1:189).

Figure 8. This figure represents the solution to the lower bounding problem in the interval

[2, 4]. (xmin; sminÞ ¼ ð3:154;�1:150).
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III. STRUCTURE PREDICTION OF POLYPEPTIDES

A. Structure Prediction of Oligopeptides

The use of computational techniques and simulations in addressing the protein

folding problem became possible through the introduction of qualitative and

quantitative methods for modeling these systems. Given a sufficiently accurate

Figure 9. The intervals [0, 2] and [2, 4] have been further subdivided into [0, 1], [1, 2], [2, 3],

and [3, 4]. Shown above are the convex envelopes around f ðxÞ formed by convex underestimators in

each of these intervals. Note that the convex envelopes for [0, 1], [1, 2], and [3, 4] intersect the

x-axis, but the convex envelope for [2, 3] does not. This will allow us to conclude rigorously that no

solutions to f ðxÞ ¼ 0 exist in [2, 3].

Figure 10. The lower bounding problem for the interval [2, 3] is solved. Note that the convex

envelope must be expanded before it touches the x-axis, resulting in a positive value for smin. This

interval will be fathomed. (xmin; sminÞ ¼ ð2;þ0:479).
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description of the intramolecular forces, it is in principle possible to predict the

folded conformation by optimization. In our work, we have focused not only on

the development of global optimization methods, but also on the verification of

energy modeling techniques.

In the area of energy modeling, our work has involved the investigation of

numerous detailed representations of protein systems. In addition to the

traditional all-atom potential energy models, our work has explored the effects

of solvation contributions. In fact, although the problem of considering solva-

tion effects in global conformational energy searches has been made tractable

by the development of implicit solvation models, results for such formulations

are essentially nonexistent, and those that have appeared are for limited searches

only. In our work, both solvent accessible area and volume effects have been

considered in the context of global searches for oligopeptides. In addition, we

have examined the effects of several parameterizations for these models and

have been able to identify those that provide the best correspondence between

computational and experimental results.

1. Potential Energy Models

There are a number of approaches that may be used to model protein interac-

tion energies. In reality, the dynamics of atoms are governed by the quantum

theory of their participating electrons. Using the Born–Oppenheimer

approximation, one can determine the energy for fixed atomic nuclei from the

smallest eigenvalue of the Hamiltonian of the electron system. These

approximations and their derivatives are calculated using ab initio methods.

However, due to their computational complexity, such calculations are limited to

extremely small molecules. Less detailed, semiempirical methods are based on

all atom representations of the peptide. In general, these models, also known as

force fields, are expressed as summations of empirically derived potential

functions, with the mathematical form of individual energy terms based on the

phenomenological nature of that term. Other simplified models have been used to

reduce the degrees of freedom associated with the conformational energy

expressions.

A number of empirically based molecular mechanics models have been

developed for protein systems, including AMBER [29–31], CHARMM [32],

DISCOVER [33], ECEPP [34–36], ECEPP/2 [37], ECEPP/3 [38], ENCAD

[39,40], GROMOS [41], MM2 [42], and MM3 [43–45]. A general total energy

equation, such as Eq. (23), includes terms for bond stretching (Ebond), angle

bending (Eangle), torsion (Etor), nonbonded (Enb) and coupled (Ecross) interac-

tions.

Etot ¼ Ebond þ Eangle þ Etor þ Enb þ Ecross ð23Þ
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Bond stretching and angle bending energies are included in those force fields

that allow flexible geometries. A simple representation for both terms is based

on the harmonic approximation, which corresponds to the classical description

of the movement of a spring (by Hooke’s law). The simplest approach, based on

the fact that most bonds are near the minimum of their respective energy well,

employs a quadratic term to model bond stretching and angle bending energies,

as shown in Eqs. (24) and (25):

Ebond ¼
kbond

2
ðl� l0Þ2 ð24Þ

Eangle ¼
kangle

2
ðy� y0Þ2 ð25Þ

These equations act as penalty functions to force bond distances and bond

angles, l and y, to reference bond lengths and distances, l0 and y0, whose values

depend on the specific atoms involved. In actuality, these energy terms are more

complicated. For bond energies cubic terms are often introduced, and angle

energy terms usually include higher power expansions.

Torsional terms are used to describe the internal rotation energy of torsion

angles, which exist between all atoms with a 1–4 relationship (separated by two

other atoms). For rigid geometry force fields, these torsion angles can be used to

define a set of independent variables that effectively describe any protein

conformation. This approximately reduces the number of variables by a factor

of 10 over those force fields that use a Cartesian coordinate system to describe

flexible molecular geometries. In addition, bond and angle energies can be

neglected for rigid geometry force fields. The torsion energy expression is

typically represented by a Fourier series expansion that, as shown in Eq. (26),

includes three terms:

Etor ¼ E1ð1� cos fÞ þ E2ð1� cos 2fÞ þ E3ð1� cos 3fÞ ð26Þ

The parameters involved in this expansion—namely E1, E2, and E3—are

torsional barriers that are usually specified for the pair of atoms around which the

torsion occurs. Each term can be interpreted physically. The 1� x (cosf)

symmetry term accounts for those nonbonded interactions not included in

general nonbonded terms. The 2� x (cos 2f) symmetry term is related to the

interactions of orbitals, while the 3� x (cos 3f) symmetry term describes steric

contributions.

Nonbonded energy terms attempt to model electrostatic and van der Waals

interactions between those atoms that are not connected to each other or through

a common atom. Typically, a Coulombic term is used to represent electrostatic
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energies based on atomic point charges, as shown in Eq. (27):

Eelec ¼
QiQj

ERij

ð27Þ

Here Qi and Qj represent the two point charges, while Rij equals the distances

between these two points. In some force fields, Coulombic interactions are

modified by changing the dependence of the dielectric constant, E. In general,

van der Waals interactions are modeled using a 6–12 Lennard-Jones potential

energy term. This expression, shown in Eq. (28), consists of a repulsion and

attraction term.

Evdw ¼ Eij

R�ij
Rij

� �12

�2
R�ij
Rij

� �6
" #

ð28Þ

The energy minimum for a given atomic pair is described by the potential depth,

Eij, and position, R�ij. Other force fields model van der Waals interactions using a

modified Hill equation, which replaces the twelfth power term in Eq. (28) with an

exponential term [42,43]. Different approaches are also used to describe

nonbonded interactions between those atoms that may form hydrogen bonds.

Some force fields model these interactions using only Coulombic terms, whereas

other force fields employ special functions, such as a modified 10–12 Lennard-

Jones-type potential term [46], as shown in Eq. (29).

Ehbond ¼ Eij 5
R�ij
Rij

� �12

�6
R�ij
Rij

� �10
" #

ð29Þ

The cross term, shown in Eq. (23), accounts for interactions due to the in-

herent coupling between bonds, angles and torsions. Generally, these terms are

small, and in many force fields they are neglected. Correction terms, which vary

for each force field, are also typically added to the general energy equation. For

example, the formation of disulfide bridges can be enforced by adding a penalty

term to constrain the values of specified bond angles and bond lengths. Correc-

tion terms have also been used to adjust conformational energies according to

the configurations of proline and hydroxyproline residues [38].

For a significant portion of this work, the ECEPP/3 (Empirical Conforma-

tional Energy Program for Peptides) [38] potential model is utilized. In this

force field, it is assumed that the covalent bond lengths and bond angles are

fixed at their equilibrium values. Then, the conformation is only a function of
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the independent torsional angles of the system, also known as dihedral angles.

The total conformational energy is calculated as the sum of the electrostatic,

nonbonded, hydrogen bonded, and torsional contributions. There is also a pseudo-

potential for loop closing if the polypeptide contains two or more sulfur-

containing residues. More recent work includes a revised treatment of prolyl

and hydroxyprolyl residues [38]. For each prolyl or hydroxyprolyl residue

contained in the polypeptide a fixed internal conformational energy for the

pyrolidine ring is added. The main energy contributions (electrostatic, non-

bonded, hydrogen bonded) are computed as the sum of terms for each atom pair

(i; j) whose interatomic distance is a function of at least one dihedral angle. The

general potential energy terms of ECEPP/3 are shown in Fig. 11, while the deve-

lopment of the appropriate parameters is discussed and reported elsewhere [38].

2. Solvation Energy Models

Solvation contributions are generally believed to be a significant force in

stabilizing the native conformations of proteins. Explicit methods can be used to

include solvation effects by actually surrounding the polypeptide with solvent

Figure 11. Potential energy terms in ECEPP/3 force field. rij refers to the interatomic distance

of the atomic pair (ij). Qi and Qj are dipole parameters for the respective atoms, in which the

dielectric constant of 2 has been incorporated. Fij is set equal to 0.5 for 1–4 interactions and equal to

1.0 for 1–5 and higher interactions. Aij, Cij, A0ij, and Bij are nonbonded and hydrogen bonded

parameters specific to the atomic pair. Eo;k and Eo;l are parameters corresponding to torsional barrier

energies for a given dihedral angle. yk represents any dihedral angle. ck takes the values �1, 1, and

nk refers to the symmetry type for the particular dihedral angle. The cystine loop-closing term is

calculated as a penalty term of three distances involved in loop-closing, where ril represents the

actual distance and rio represents the required distance. Bi, the penalty parameter, is set equal to 100.

Finally, Ep is a fixed internal energy that is added for each proline residue in the protein. Energy

units are kcal/mol and distance units are Å.
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molecules and calculating solvent–peptide and solvent–solvent interactions.

Although these methods are conceptually simple, explicit inclusion of solvent

molecules greatly increases the computational time needed to simulate the

polypeptide system. Therefore, most simulations of this type are limited to

restricted conformational searches. In addition, it is difficult to quantify the effect

of hydrophobic interactions that result from the ordering of water molecules.

Methods for estimating solvent free energies have also been developed using

both integral equations and continuum models. Integral equation methods can

be used to evaluate solvent structure and thermodynamic properties. Typically,

molecular dynamics or Monte Carlo simulations are used to calculate ensemble

averages from which free energy differences can be obtained. A number of

methods have been proposed to estimate these solvation free energies from

simulations based on molecular dynamics and Monte Carlo averages [47–49].

The integral equation method has also been used to analyze the solvent structure

of a protein system [50]. In contrast, continuum models use a simplified

representation of the solvent environment by neglecting the molecular nature

of the water molecules. Calculations of solvation free energies using electro-

static continuum models rely on numerical solutions to the Poisson–Boltzmann

equation from which dielectric and ionic strength effects are obtained [51].

Other continuum models estimate free energies of solvation as a function of

surface areas and volumes.

In this work, solvation contributions are included implicitly using empirical

correlations with both surface area [52] and volume [53]. The main assumption

of these models is that, for each functional group of the peptide, a hydration free

energy can be calculated from an averaged free energy of interaction of the

group with a layer of solvent known as the hydration shell. In addition, the total

free energy of hydration is expressed as a sum of the free energies of hydration

for each of the functional groups of the peptide; that is, an additive relationship

is assumed.

Accessible surface area methods assume that the free energy of hydration is

proportional to the solvent-accessible surface area of the peptide, as described

by the following equation:

EHYD ¼
XN

i¼1

ðAiÞðsiÞ ð30Þ

In Eq. (30), an additive relationship for N individual functional groups is

assumed. (Ai) represents the solvent-accessible surface area for the functional

group, and (si) is an empirically derived free energy density parameter.

There are a number of ways to define the surface of a peptide. In developing

these surfaces the peptide is represented by a union of spheres, with the radii of
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the spheres set by the van der Waals radii of the constituent atoms. A spherical

test probe is then rolled over these spheres, thereby tracing out a surface. The

molecular surface is set by direct contact between the probe sphere and the

peptide spheres. In areas where the probe cannot make direct contact, the closest

part of the probe is used. The solvent-accessible surface is defined by the

surface traced by the center of the probe as the probe rolls over the peptide

spheres. These areas depend on the radius of the probe sphere; when this radius

is set to zero, both the molecular and solvent–accessible surface areas become

the van der Waals surface of the peptide.

Solvent-accessible surface areas are calculated using the MSEED [52]

program, which employs algorithms developed by Connolly [54]. MSEED

eliminates many unnecessary computations by considering only those convex

faces that are on the accessible surface. Rigorous implementation of Connolly’s

method requires the calculation of interior surface areas, which are ultimately

found to be zero. A full description of the MSEED algorithm is given elsewhere

[52]. A number of other methods for calculating surface areas are also available

[55–57].

One potential problem that may arise when calculating accessible surface

areas is the appearance of gradient discontinuities. This may occur when a new

vertex or edge appears on the surface. If the discontinuity is large, minimization

techniques requiring gradients may fail to converge to the local minimum

conformation. A complete analysis of all situations for which the gradient of the

molecular surface area becomes discontinuous has been reported [58].

Once the solvent–accessible surface areas have been calculated, these values

must be multiplied by the appropriate (si) parameters as shown in Eq. (30). A

variety of parameter sets have been developed to model the transfer of atoms

from a gaseous to a hydrated environment. The parameter values for the five

ASP sets used in this study are given in Table I.

The ASP sets WE1 and WE2, are taken from Table 3 of Ref. 59. These

parameters are both derived from Wolfenden’s measured free energies of

transfer of amino acid side-chain analogs from vapor to water [60]. Both sets

have been adjusted to correct for entropy of mixing effects based on solute and

solvent size differences [61,62], although the applicability of these corrections

has been criticized [63,64]. The parameters for these two sets are negative for

all atoms excluding carbon. Qualitatively, this means that the nitrogen, oxygen,

and sulfur atoms are considered hydrophilic; that is, they favor solvent

exposure. Comparatively, the WE1 and WE2 parameters are similar, with the

largest relative difference being a 3 : 1 ratio (WE1 :WE2) for the sC parameter.

Therefore, the hydrophobic character of these carbon atoms is stronger for the

WE1 ASP set.

The OONS parameter set has been specifically developed to supplement the

ECEPP/2 force field [65]. These parameters were derived by a least squares
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fitting to experimental free energies of gas to water transfer of small aliphatic

and aromatic molecules. The most significant difference from the two previous

ASP sets is a substantial increase in hydrophobic character for carboxyl

(carbonyl) carbon atoms, which corresponds to a hundredfold increase when

compared to the same WE2 parameter. In addition, the free energy parameter

becomes negative for aromatic carbons, which indicates a hydrophilic tendency.

The threefold decrease of the OONS values for carboxyl (carbonyl) and charged

oxygen atom parameters, as compared to both the WE1 and WE2 ASP sets, is

also significant.

Unlike the aforementioned models, the SCKS ASP set is not directly based

on experimental free energies [66]. Instead, it is an optimized parameter set

developed to complement the CHARMM [32] molecular mechanics force field.

Specifically, through the use of experimental and molecular dynamics informa-

tion, the relative weightings of solvation parameters were refined to provide the

best correspondence between minimized and experimental structures. In com-

paring the individual free energy parameters, it is evident that the hydrophobic

character of the carbon atoms is increased approximately three- and eightfold

over the WE1 and WE2 values, respectively. In contrast, the uncharged oxygen

and nitrogen atom parameters are 6.5 times smaller (less hydrophilic) than those

for the WE1 and WE2 ASP sets. This decrease does not apply to charged

oxygen and nitrogen atoms, which possess extremely hydrophilic values.

The JRF ASP set was derived from NMR studies of low energy solvated

configurations of 13 tetrapeptides [67]. This represents an important difference

from other derivations because actual peptides, rather than simple model

compounds, were used to develop the JRF parameters. An ensemble of low-

energy structures for these tetrapeptides was also produced using the ECEPP/2

TABLE I

Free Energy Density of Solvation Parameters for the ASP Set Employed with the Solvent-Accessible

Surface Area Modela

Atom Type WE1 WE2 OONS SCKS JRF

C aliphatic 12.0 4.0 8.0 32.5 216.0

C carboxyl, carbonyl 12.0 4.0 427.0 32.5 �732.0

C aromatic 12.0 4.0 �8.0 32.5 �678.0

N noncharged �116.0 �113.0 �132.0 �17.5 �312.0

N charged �186.0 �169.0 �132.0 �217.5 �312.0

O carboxyl, carbonyl �116.0 �113.0 �38.0 �17.5 �262.0

O hydroxyl �116.0 �113.0 �172.0 �17.5 �910.0

O charged �175.0 �169.0 �38.0 �280.0 �910.0

S all �18.0 �17.0 �21.0 �9.0 �281.0

aThe first column describes the atom type, whereas the remaining columns provide the solvation

parameters in cal/(mol Å2) for the corresponding ASP set.
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potential function. Then, a nonlinear least-squares system was optimized for the

best set of atomic solvation parameters. Although the parameters for oxygen,

nitrogen, and sulfur atoms are negative, their large absolute values indicate

much larger hydrophilicities than corresponding atoms of any other ASP set. In

addition, both the carboxyl (carbonyl) and aromatic carbon atoms possess

strong hydrophilic parameters, which contradicts other free energy parameter

values for these atoms. The single positive value belongs to the aliphatic carbon

atom type, which, although larger than any other parameter for this atom type,

possesses the smallest magnitude for the JRF ASP set. Furthermore, because it

was developed from minimum energy conformations of peptides, the JRF ASP

set has been shown to produce undesirable perturbations during local mini-

mizations if the solvation energy contributions are added at every iteration.

Therefore, unlike the aforementioned ASP sets, the JRF solvation energy effects

are only included at local minimum conformations.

For volume shell models, the free energy of hydration is assumed to be

proportional to the water-accessible volume of a hydration layer surrounding the

peptide. This can be represented in the form

EHYD ¼
XN

i¼1

ðVHSiÞðdiÞ ð31Þ

An additive relationship for the N individual atoms of the peptide is assumed,

and (VHSi) represents the solvent-accessible volume of hydration shell for each

atom i that is exposed to water. The (di) parameters are empirically determined

free energy of hydration densities for these atoms.

The hydration shell is defined by the volume inside a sphere of radius Rh
i but

outside a sphere of radius Rv
i , with both radii centered on atom i. The larger

radius, Rh
i , corresponds to the radius of the first hydration shell of atom i, while

Rv
i is equal to the van der Waals radius. In order to calculate (VHSi), the volume

of a collection of overlapping hard spheres must be computed using:

VðRÞ ¼
X

i

aiSi �
X

ij

bijDij þ
X

ijk

cijkTijk �
X
ijkl

dijklQijkl ð32Þ

In Eq. (32), Si signifies the volume of a single sphere, while Dij, Tijk and Qijkl

represent the volume of intersection of two, three, and four spheres, respectively.

This is sufficient because all higher-order overlaps can be decomposed into the

three types of intersections included in Eq. (32). Therefore, the solvent-

accessible volume of hydration can be written as

ðVHSiÞ ¼ VðRh
i Þ � VðRv

i Þ ð33Þ
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The first term in Eq. (33) is calculated using Eq. (32) with the radii of all atoms

set equal to their van der Waals radii, whereas the second term is calculated with

the radius of atom i equal to Rh
i and the van der Waals radii of all the other atoms.

A number of methods to compute hydration shell volumes have been proposed

[53,68,69].

The form of Eq. (32) is not suitable for force-field models using pairwise

intramolecular potential, such as ECEPP/3. Furthermore, direct truncation at the

double-overlap term would lead to large errors. In this work, the RRIGS

(reduced-radius independent Gaussian sphere) approximation is used to effi-

ciently calculate the exposed volume of the hydration shell [53]. This method

uses a truncated form of Eq. (32) but also artificially reduces the van der Waals

radii of all atoms other than atom i when calculating (VHSi). These reductions

effectively decrease the contribution of the double-overlap terms, leading to a

cancellation of the error which results from neglecting the triple and higher

overlap terms. In addition, the characteristic density of being inside the overlap

volume of two intersecting spheres is not represented as a step function, but as a

Gaussian function; this provides continuous derivatives of the hydration

potential. Therefore, the solvation energy contributions can easily be added at

every step of local minimizations because the RRIGS approximation has the

same set of interactions as the ECEPP/3 potential.

Free energy density parameters for solvent accessible volumes have been

developed for nonionic and charged organic solute molecules [70–72]. In this

work, RRIGS specific (di) parameters, which were developed by a least-square

fitting of experimental free energy of solvation data for 140 small organic

molecules [53], are used (Table II). The classification of the RRIGS atom types

is more fragmented than for the solvent accessible surface area ASP sets. The

most hydrophilic values belong to the nitrogen and selected oxygen and

hydrogen atom types. In addition, aromatic carbons tend to possess slightly

hydrophilic values, whereas the carbonyl and aliphatic carbon atoms exhibit the

most hydrophobic parameter values.

3. Global Optimization Framework

The energy minimization problem is formulated as a unconstrained nonconvex

global optimization problem, which is fashioned after the general formulation

given in problem (1). Let i ¼ 1; . . . ;NRES be an indexed set describing the

sequence of amino acid residues in the peptide chain. There are fi;ci;oi;
i ¼ 1; . . . ;NRES, dihedral angles along the backbone of this peptide. In

addition, let Ki denote the number of dihedral angles for the side chain of the ith

residue and let JN and JC denote the number of dihedral angles for the amino

and carboxyl end groups, respectively. Using these definitions the optimization
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problem takes the following form:

min Eðfi;ci;oi; wk
i ; y

N
j ; y

C
j Þ

subject to � p � fi � p; i ¼ 1; . . . ;NRES

� p � ci � p; i ¼ 1; . . . ;NRES

� p � oi � p; i ¼ 1; . . . ;NRES

� p � wk
i � p; i ¼ 1; . . . ;NRES; k ¼ 1; . . . ;Ki

� p � yN
j � p; j ¼ 1; . . . ; JN

� p � yC
j � p; j ¼ 1; . . . ; JC

ð34Þ

In general, E represents the total potential energy function and the free energy

of solvation. However, in the case of the JRF ASP set, the potential energy

TABLE II

Free Energy Density of Solvation Parameters Employed in the RRIGS Modela

Atom Type d Rv Rh

H hydroxyl, amino �10.35 1.415 4.17

H acid �3.206 1.415 4.17

H amide �7.714 1.415 4.17

H thiol 2.709 1.415 4.17

C aliphatic CH3 1.319 2.125 5.35

C aliphatic CH2 0.2374 2.225 5.35

C aliphatic CH �1.271 2.375 5.35

C other aliphatic �2.297 2.060 5.35

C cyclic CH 0.2890 2.375 5.35

C aromatic CH �0.2137 2.100 5.35

C aromatic CR �1.713 1.850 5.35

C branched aromatic C �1.910 1.850 5.35

C aromatic COH �0.6063 1.850 5.35

C carbonyl 2.696 1.870 5.35

N primary amine �1.149 1.755 5.05

N secondary amine �10.28 1.755 5.05

N aromatic �10.48 1.755 5.05

N amide �7.332 1.755 5.05

O hydroxyl, ether �7.396 1.620 4.95

O acid, ester 0.07897 1.620 4.95

O ketone, carbonyl �15.70 1.560 4.95

O acid, amide carbonyl �15.56 1.560 4.95

S thiol, disulfide �4.706 2.075 5.37

aThe second column provides the solvation parameters in cal/(mol Å2), and the last two columns

correspond to the van der Waals and hydration radii (Å), respectively.
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function is minimized before adding the hydration energy contributions for this

ASP set. In other words, gradient contributions from solvation are not

considered. This approach is represented by the following equation:

ETotal
JRF ¼ EUnsol

Min þ ESol
JRF ð35Þ

Even after reducing this optimization problem to a function of internal

variables (dihedral angles), the multidimensional surface that describes the

energy function has an astronomically large number of local minima. A large

number of techniques have been developed to search this nonconvex conforma-

tional space. In general, the major limitation is that these methods depend

heavily on the supplied initial conformation. As a result, there is no guarantee

for global convergence because large sections of the domain space may be

bypassed. To overcome these difficulties, the aBB global optimization approach

[15,18,73] has been extended to identifying global minimum energy conforma-

tions of solvated peptides. The aBB global optimization algorithm effectively

brackets the global minimum solution by developing converging sequences of

lower and upper bounds. These bounds are refined by iteratively partitioning the

initial domain. Upper bounds on the global minimum are obtained by local

minimizations of the original energy function, E. Lower bounds belong to the

set of solutions of the convex lower bounding functions, which are constructed

by augmenting E with the addition of separable quadratic terms. The lower

bounding functions, L, of the energy hypersurface can be expressed in the

following manner:

L ¼ E þ
XNRES

i¼1

af;iðfL
i � fiÞðfU

i � fiÞ þ
XNRES

i¼1

ac;iðcL
i � ciÞðcU

i � ciÞ

þ
XNRES

i¼1

ao;iðoL
i � oiÞðoU

i � oiÞ þ
XNRES

i¼1

XKi

k¼1

aw;i;kðwk;L
i � wk

i Þðw
k;U
i � wk

i Þ

þ
XJN

j¼1

aj;yN ðyN;L
j � yN

j Þðy
N;U
j � yN

j Þ þ
XJC

j¼1

aj;yC ðyC;L
j � yC

j Þðy
C;U
j � yC

j Þ

ð36Þ

Here fL
i ;c

L
i ;o

L
i ; w

k;L
i ; yN;L

j ; yC;L
j and fU

i ;c
U
i ; oU

i ; wk;U
i ; yN;U

j ; yC;U
j represent

lower and upper bounds on the dihedral angles fi;ci;oi; wk
i ; y

N
j ; y

C
j . The a

parameters represent nonnegative parameters that must be greater or equal to the

negative one-half of the minimum eigenvalue of the Hessian of E over the

defined domain. The computational requirement of the aBB algorithm depends
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on the number of variables (global) on which branching occurs. Therefore, these

global variables need to be chosen carefully.

The determination of the global minimum energy conformation using aBB

requires the interfacing of a number of programs (aBB [15–18,73], PACK [74],

NPSOL [28] and potential and solvation energy modules). PACK, a peptide

generation program, is called once directly by aBB in order to initialize the

current problem. In subsequent steps PACK is called through NPSOL [28], a

local nonlinear optimization solver used to solve both the upper and lower

bounding problems. PACK internally transforms to and from Cartesian and

internal coordinate systems, and provides potential energy and gradient con-

tributions for the ECEPP/3 potential model at every step of the local minimiza-

tions. When considering surface-accessible solvation, surface areas are calculated

using MSEED [52]; whereas volumes of hydration shells are determined using

the RRIGS module [53]. Finally, an additional module, UBC (upper bound

check), is used to verify the quality of the upper bound solutions. The entire

suite of programs has been combined to form the GLO-FOLD software package

for the prediction of protein structure, as shown in Fig. 12.

The basic steps of the algorithm are as follows:

1. The initial best upper bound is set to an arbitrarily large value. The

original domain is partitioned along one of the global variables.

2. A convex function (L) is constructed in each hyper-rectangle and

minimized using NPSOL, with calls (through PACK) to both ECEPP/3

and one of the two solvation modules. If a solution is greater than the

current best upper bound, the entire subregion can be fathomed; otherwise

the solution is stored.

3. The local minima solutions for L are used as initial starting points for

local minimizations of the upper bounding function (E) in each hyper-

rectangle. Again, the appropriate calls are made to PACK and the

potential and solvation energy modules. In solving the upper bounding

problems, all variable bounds are expanded to [�180, 180]. These

solutions are upper bounds on the global minimum solution in each

hyper–rectangle.

4. The current best upper bound is updated to be the minimum of those thus

far stored. If a new upper bound (from Step 3) is selected, the upper bound

check, UBC, module is called. UBC checks that the absolute value of each

gradient in the objective function gradient vector is below a specified

tolerance (kcal/mol/deg). If a gradient does not satisfy this check the

corresponding variable bounds are incrementally increased and the

problem is solved with the previous point used as the initial starting

point. This process is repeated until the gradient constraints are satisfied

or an iteration limit is exceeded. UBC also employs algorithms to
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calculate the second derivative matrix [75], which is used to verify that the

upper bound solution is a local minimum; that is, the Hessian matrix is

positive semidefinite. If the matrix is not positive semidefinite or the

gradient checks are not satisfied, the upper bound solution is rejected.

5. The hyper-rectangle with the current minimum value for L is selected and

partitioned along one of the global variables.

6. If the best upper and lower bounds are within the E tolerance, the program

will terminate; otherwise it will return to Step 2.

Figure 12. Interface for aBB within GLO-FOLD. The arrows indicate the direction of

information flow. The names of the input, output, and intermediate files are indicated, in addition to

selected source code files. References to ‘‘f & f 0’’ and ‘‘f only’’ describe whether gradient

evaluations or only function evaluations are used in the respective modules.
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4. Computational Studies

Single-residue examples were defined as terminally blocked by using acetyl

(amino) and methyl (carboxyl) end groups. All dihedral angles were treated as

global variables, excluding the three y angles of the end groups. The relative

convergence was set to 10�2. For these examples, all dihedral angles, excluding

those of the end groups, were treated as global variables. The remaining variables

were treated locally; that is, they were allowed to vary during minimization, but

their domain space was not partitioned. When using the RRIGS and JRF models,

the global variables were assigned initial a values of 3.0. For the other solvation

models, the a values were increased to 5.0.

For a number of residues, the JRF global minimum solutions possess o angles

in the range of [�30, 30] with the corresponding f and c angles near the

[�150, 80] region. Additional runs were conducted in which the o angles were

constrained to the range of [160, 200]. In all cases, with the exception of serine,

this constraint led to increases in solvation energies and decreases in potential

energy terms while the structures became either b-sheet-like or a-helical.

Without exception, the o angles for the all other global minimum energy

solutions were within the [160, 200] range. The remaining analysis in this

section refers to these constrained (o within [160, 200]) minima for the JRF

ASP set. This is appropriate not only in comparing the JRF results with other

solvation results, but it also makes the analysis relevant for the oligopeptide

studies because similar o bounds are typically used.

The results of the solvation models are more clearly evaluated when examin-

ing energy differences. For example, �EPOT (�EPOT ¼ EPOT
ASP � EPOT

RRIGS) refers

to the change in potential energy of an area based global minimum (EPOT
ASP) and

the RRIGS global minimum (EPOT
RRIGS) solution for a given terminally blocked

residue. This difference is positive in almost all cases, which indicates that the

potential energy of the RRIGS structure is always lower and provides more

stabilization at the corresponding global minimum solution. In most cases, this

difference is very small, especially for the OONS and SCKS ASP sets. In fact,

for both, of these ASP sets, several residues, most noticeably phenylalanine and

tyrosine, have more potential energy stabilization at their corresponding global

minima. However, for five peptides, namely phenylalanine, serine, threonine,

tyrosine and leucine, the JRF potential energy is more than 10 kcal/mol less

stabilizing. This set of residues includes the three residues (serine, threonine,

and tyrosine) that contain hydroxyl groups among the side-chain atoms, as well

as the two regular aromatic residues (phenylalanine and tyrosine). It is also

interesting to note that these atom types (i.e., hydroxyl oxygen and aromatic

carbon) correspond to two of the most hydrophilic type atoms in the JRF ASP

set. Finally, the leucine �EPOT seems to be abnormally high because of the large

torsional contribution at the JRF global minimum conformation.
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The results for �EHYD (�EHYD ¼ EHYD
ASP � EHYD

RRIGS), which refers to the

change in hydration energy between an area based global minimum (EHYD
ASP )

and the RRIGS global minimum (EHYD
RRIGS) solutions, are especially interesting.

These differences are positive in most cases, which indicates that the hydration

energy of the RRIGS structure is generally lower. However, when examining the

JRF results, �EHYD is negative for four examples, namely histidine, phenyla-

lanine, tryptophan, and tyrosine. Excluding the special case of proline, these

four residues correspond to the naturally occurring residues which possess

ringed side-chain structures. Other trends are also apparent. The most

positive �EHYD values for the JRF ASP set are provided by the aliphatic

residues. In addition, the acidic residues, glutamic and aspartic acid, and the

amide forms of these residues, glutamine and asparagine, have comparable

values for �EHYD.

For the other (gradient inclusive) ASP sets, the �EHYD of different residues

are less varied. However, it is important to consider that for all residues,

excluding tyrosine, the ASP sets follow a WE2, WE1, OONS, and SCKS order

when ranked beginning with the most stabilizing hydration energy. Low

hydration energies are expected for WE2 because of the consistently small

hydrophobic and relatively large hydrophilic parameters. In most cases, the

WE1 �EHYD are only slightly larger than for WE2. This can be directly

attributed to the increased hydrophobicity of the free energy parameter for the

carbon atoms of the WE1 ASP set. When comparing the OONS and WE1 ASP

sets, the increased �EHYD is more noticeable, which is most likely a result of

the combined effects of the strong hydrophobic value of the carboxyl (carbonyl)

carbon parameter and the decreased hydrophilic value of the carboxyl (carbo-

nyl) oxygen parameter for the OONS ASP set. However, for aromatic residues

(i.e., phenylalanine, tryptophan and tyrosine), these effects are partially offset

by introducing a hydrophilic character for aromatic carbons in the OONS ASP

set. In fact, for tyrosine this change is strong enough to cause the OONS ASP set

to produce a more stabilizing hydration energy than the WE1 ASP set. A

comparison between the OONS and SCKS reveals the largest increase in

�EHYD values. This can partly be attributed to the relatively large value of

the free energy parameters for carbon atoms of the SCKS ASP set. The increase

is also enhanced for aromatic residues because of the hydrophilic nature of the

aromatic carbon atoms for the OONS ASP set. In addition, for residues with

nitrogen-containing side chains, the �EHYD increase is heightened because of a

subsequent decrease in the value of the free energy parameter for nitrogen atoms

in the SCKS ASP set. Finally, a comparison of other surface accessible

solvation results to the JRF results is qualitatively similar to those made

between the RRIGS and JRF models. Specifically, the strong hydration energy

stabilization of ring-containing residues, as well as the decreased stabilization

provided by aliphatic residues, is evident.
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A more detailed analysis was performed by generating adiabatically relaxed

f–c maps for N–acetyl–N0–methyl–alanineamide. The adiabatic curves define

regions within a given energy of the global minimum value. The first map

corresponds to an adiabatically relaxed map for the unsolvated form of the

peptide. This was calculated by fixing the f and c angles at 3� increments and

using a local minimization solver to minimize the ECEPP/3 potential energy by

varying the remaining dihedral angles. The other maps were constructed by a

similar procedure, although the minimized energy now included both ECEPP/3

and the appropriate hydration free energy. In generating the data for the JRF, the

ECEPP/3 energy was first minimized in the absence of solvent at each point and

the map was generated by adding the solvation free energy for the JRF model at

the minimized conformation.

These maps reveal several important effects of including solvation. Experi-

mental data for the alanine peptide suggests that more than one conformation is

present in solution, and NMR coupling constants indicate a large population of

conformations with �70 > f > �80 [76]. It is also expected that hydration may

weaken intrapeptide hydrogen bonding. The unsolvated map indicates well-

defined regions for intramolecular hydrogen bonding (C7) and for right-handed

a-helices (aR). The global minimum occurs within the C7 region. The RRIGS

map retains some features of the unsolvated map, with the global minimum in

the C7 region and a very strong aR region. However, there is a broadening of the

b-sheet (C5) region as well as a less distinct C7 minimum. This can be

contrasted with both the WE1 and WE2 adiabatic maps, which exhibit large

C5 regions and significant decreases in the size of both the C7 and aR regions.

The OONS map contains an even larger low-energy region that connects the C5

and C7 domains. The aR low-energy region is also broader than either of those

indicated by the WE1 or WE2 map. In all three cases (WE1, WE2, and OONS)

the global minimum is shifted to the b-sheet domain. In contrast, the SCKS

adiabatic map is more similar to the RRIGS map because of its smaller and

disjoint C5 and C7 regions, as well as the location of the global minimum in the

C7 well. The largest disparity between these maps exists with the JRF adiabatic

map, which indicates a complete shift away from the C7 minimum toward the

C5 region.

Qualitatively, similar trends are observed for the f–c distribution of other

terminally blocked amino acids. The RRIGS model predicts a majority of global

minima in the C7 region, which indicates a tendency to preserve certain

potential energy effects. As expected, the majority of WE1 and WE2 global

minima lie within the C5 domain, with the same distribution for each parameter

set. The most uniform distribution of global minima belongs to the OONS ASP

set, for which there are an almost equal number of C5 and C7 global minimum

structures. This agrees with the large low-energy regions displayed on the N-

acetyl-N0-methyl-alanineamide adiabatic map. The large population of C7 global
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minima for the SCKS ASP set is also suggested by the strong C7 region on the

N-acetyl-N0-methyl-alanineamide map. In accordance with the distinct imple-

mentation of the JRF model, these results are less predictable. Specifically,

although almost half of the JRF global minima lie in the C5 domain, a

significant number also exhibit a-helical type structures, which contrasts with

the f–c map of N-acetyl-N 0-methyl-alanineamide.

Met-enkephalin (H–Tyr–Gly–Gly–Phe–Met–OH) is an endogenous opioid

pentapeptide found in the human brain, pituitary, and peripheral tissues and is

involved in a variety of physiological processes. The peptide consists of 24

independent torsional angles and a total of 75 atoms and has played the role of a

benchmark molecular conformation problem. The energy hypersurface is

extremely complex with the number of local minima estimated on the order

of 1011 [77]. Based on a previous study, the unsolvated global minimum

potential energy conformation, with an ECEPP/3 energy of �11.707 kcal/

mol, was shown to exhibit a type II0 b-bend along the N-C0 peptidic bond of

Gly3 and Phe4 [78].

In studying the effects of solvation on the structure of met-enkephalin, the

results for the unsolvated structure were verified by employing the algorithm

outlined in Section III.A.2. A major difference from the previous implementa-

tion [78] is the addition of the UBC module, as well as the expansion of all

variable bounds (to [�180, 180]) when solving the upper bounding problems.

Because the backbone dihedral angles (i.e., f and c) are the most influential

variables in defining the backbone structure, the corresponding 10 backbone

dihedral angles were treated as global variables for the enkephalin problems.

Although they were not partitioned during the global search, all other variables

(i.e., o and all w) were allowed to vary during local minimizations. The global

variables were assigned initial a values of 5.0 when using the unsolvated,

RRIGS, and JRF models and were assigned values of 10.0 for all other models.

In the case of unsolvated met-enkephalin, the structural and energetic results of

the previously identified global minimum energy structure [78] were confirmed.

Experimental results have indicated that met-enkephalin in aqueous solution

does not possess an unique structure [79]. In general, experimentally determined

aqueous conformations are found to exhibit characteristics of extended random-

coil polypeptide with no discernible secondary structure. When considering the

effects of hydration, the competition for backbone hydrogen bonding (with

water), which contributes to the bending of the unsolvated conformation, should

result in a more extended structure.

The RRIGS model predicts a more extended structure than the global

minimum structure reported for the unsolvated case [78]. In fact, although a

slight turn occurs near the N-terminus, the structure possesses no hydrogen

bonds (<2.2 Å ) and an overall end-to-end Ca distance of 10.16 Å. In addition,

there exists close proximity of the Tyr and Phe aromatic rings, as shown in
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Fig. 13. The centroids of these rings are separated by 4.16 Å, which is slightly

closer than the preferential aromatic–aromatic interaction distance of 4.5 to 7 Å

[80]. Furthermore, the aromatic rings are essentially in a parallel, as opposed to

the more common orthogonal, orientation. This suggests an attempt to balance

the slightly hydrophilic nature of the aromatic carbon atoms, as given by the

RRIGS di, and the favorable hydrophobic interactions between the two rings.

The values of the dihedral angles for the global minimum energy conformation

are given in Table III.

Figure 13. Plot of met-enkephalin conformation (in stereo). Global minimum energy of

�50.01 kcal/mol using the RRIGS model for hydration.

TABLE III

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin, Using the RRIGS

Model for Hydration

f c o w1 w2 w3 w4

Tyr �168.32 �30.81 178.52 �173.58 �101.26 18.83

Gly 78.83 �86.96 182.73

Gly 162.94 91.72 172.83

Phe �150.72 162.32 181.50 66.66 92.68

Met �77.80 106.79 181.63 �67.82 178.91 180.01 �60.01
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The global minimum structures for the area-based hydration models (gra-

dient inclusive) are less extended, as exhibited by Figs. 14 and 15. The lowest

energy structures for the WE1 and WE2 models are very similar, with an

the end-to-end Ca distance of 5.85 Å for both solvation models. In addition, the

bend near the N-termini is stabilized by a hydrogen bond between the CO of the

tyrosine residue and the NH proton of the phenylalanine residue (approximately

1.98 Å). This bend is similar to the type II0 b-bend of the unsolvated global

minimum energy structure, although it is shifted to the Gly2–Gly3 backbone

region. The aromatic ring separation is wider (approximately 6.48 Å for both

models) than for the RRIGS global minimum structure, although the side-chain

orientations are similar. The values of the dihedral angles for the WE1 and WE2

global minimum structures are given in Tables IV and V, respectively.

The lowest energy conformation for the OONS ASP is also similar to

the WE1 and WE2 structures. In this case, the end-to-end Ca distance is again

5.85 Å. The bending near the N-termini is again similar to a type II0 b-bend

along the Gly2–Gly3 backbone, although in this case it is stabilized by a slightly

weaker hydrogen bond between the CO of the tyrosine residue and the NH

proton of the phenylalanine residue (approximately 2.01 Å). The 6.60 Å

aromatic ring separation is also slightly larger, which may be attributed to the

slightly hydrophilic character of the aromatic carbon parameters as compared to

the WE1 and WE2 ASP sets. The values of the dihedral angles for the global

minimum structure are given in Table VI.

Figure 14. Plot of met-enkephalin conformation (in stereo). Global minimum energy of

�30.31 kcal/mol using the WE1 model for hydration.
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TABLE IV

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin, Using the WE1

Model for Hydration

f c o w1 w2 w3 w4

Tyr �162.65 �43.34 �177.43 �173.76 �90.62 2.61

Gly 66.15 �86.62 172.92

Gly �152.31 32.40 �178.49

Phe �157.59 154.87 179.36 52.02 �96.19

Met �90.62 128.89 �179.18 �169.29 176.88 180.14 �59.99

Figure 15. Plot of met-enkephalin conformation (in stereo). Global minimum energy of �0.62

kca/mol using the SCKS model for hydration.

TABLE V

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin, Using the WE2

Model for Hydration

f c o w1 w2 w3 w4

Tyr �162.70 �43.23 �177.47 �173.94 �90.83 2.63

Gly 66.15 �86.59 173.03

Gly �152.49 32.41 �178.55

Phe �157.84 154.97 179.26 52.12 �96.11

Met �89.96 129.19 �179.17 �169.47 176.75 180.13 �59.99
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The SCKS global minimum structure is even less extended, as shown in

Fig. 15. Although the aromatic ring separation becomes wider (8.13 Å), the

overall end-to-end Ca distance decreases to 5.80 Å. In this structure, there are

two stabilizing hydrogen bonds—a 1.86 Å hydrogen bond between the NH

proton of the first glycine residue and the CO of the methionine residue, and a

2.02 Å hydrogen bond between the CO of the first glycine residue and the NH

proton of the phenylalanine residue. This backbone structure exhibits a type II0

b-bend around the Gly3 and Phe4 residues, which is similar to the global

minimum energy conformation for unsolvated met-enkephalin. This compact

structure is consistent with the relatively strong hydrophobic values of all

carbon atom free energy parameters, as well as the relatively weak hydrophobic

values of the oxygen and nitrogen atoms for the SCKS ASP set. The values of

dihedral angles corresponding to the global minimum energy structure are given

in Table VII.

In contrast, the JRF global minimum energy structure resembles a more

extended conformation, with an overall end-to-end Ca distance of 9.56 Å.

The plot of this structure, given in Fig. 16, shows that the residues near the

N-terminus are almost fully extended, although there is slight turn near the

C-terminus. This bending is stabilized by the formation of 2.10 Å hydrogen

bond between the CO of the second glycine residue and the NH proton of the

TABLE VI

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin,

Using the OONS Model for Hydration

f c o w1 w2 w3 w4

Tyr �166.11 �50.84 �176.25 �188.97 �102.81 2.45

Gly 63.86 �86.04 175.39

Gly �151.94 33.86 �178.80

Phe �159.47 153.41 179.46 50.93 �96.43

Met �79.75 148.31 �178.93 �68.16 181.45 178.08 59.70

TABLE VII

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin,

Using the SCKS Model for Hydration

f c o w1 w2 w3 w4

Tyr �82.91 154.09 �176.27 �172.88 79.47 �166.08

Gly �151.61 81.91 168.71

Gly 84.09 �72.41 �169.54

Phe �137.07 18.52 �173.06 57.94 �86.04

Met �162.71 158.63 �179.76 51.94 173.67 179.21 �58.18
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methionine residue. In addition, the structure displays a large 14.87 Å separa-

tion between the centroids of the Phe and Tyr aromatic rings. This can be partly

attributed to the strongly hydrophilic character of the aromatic and carboxyl

(carbonyl) carbons parameters for the JRF ASP set. The values of dihedral

angles corresponding to the global minimum energy are given in Table VIII.

The structures were further analyzed by comparing energy evaluations at

corresponding global minimum solutions. This information is given in Tables

IX and X. In all cases, excluding the SCKS model, the JRF global minimum

energy structure provides that most stabilizing values for the hydration energy.

However, these stabilizing hydration energies are generally offset by the

relatively high value for potential energy at the JRF global minimum con-

formation (5.06 kcal/mol, obtained by calculating ETOT � EHYD from Tables IX

and X). In fact, the high potential energy causes the JRF structure to exhibit the

highest values for overall energy, excluding the case of the JRF model. Only

when considering the JRF model do these stabilizing hydration free energies

tend to dominate the prediction of the global minimum structure. This is

Figure 16. Plot of met-enkephalin conformation (in stereo). Global minimum energy of

�283.76 kcal/mol using the JRF model for hydration.
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evidenced by the fact that the JRF structure provides an overall energy, more

than 100 kcal/mol lower than any other total energy, which can be directly

attributed to the differences in hydration energy. When using the SCKS model,

the only case for which the JRF conformation does not produce the most

stabilizing hydration energy, the JRF structure provides the least stabilizing

TABLE VIII

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin,

Using the JRF Model for Hydration

f c o w1 w2 w3 w4

Tyr �84.96 160.74 179.09 �59.83 100.80 �179.29

Gly �160.26 151.83 �177.53

Gly 159.50 �157.94 178.71

Phe �76.55 76.23 �178.05 �61.87 108.68

Met �132.90 147.47 �179.83 �65.17 �175.99 �84.91 59.38

TABLE IX

Comparison of Hydration Energies for Met-enkephalina

Global of ETOT EHYD ENB EES ETOR (RMSD)

RRIGS RRIGS �50.01 �41.42 21.84 �31.46 1.02 0.00

WE1 �47.87 �38.12 22.09 �32.61 0.78 2.83

WE2 �47.91 �38.14 22.09 �32.63 0.76 2.83

OONS �47.17 �37.95 22.25 �32.13 0.66 2.66

SCKS �47.24 �35.61 21.47 �35.40 2.30 4.04

JRF �41.63 �46.69 23.29 �19.13 0.90 4.83

WE1 RRIGS �26.60 �18.00 21.84 �31.46 1.02 2.83

WE1 �30.31 �20.56 22.09 �32.61 0.78 0.00

WE2 �30.31 �20.53 22.09 �32.63 0.76 0.01

OONS �29.01 �19.79 22.25 �32.13 0.66 0.80

SCKS �27.80 �16.17 21.47 �35.40 2.30 3.33

JRF �19.49 �24.55 23.29 �19.13 0.90 4.33

WE2 RRIGS �29.87 �21.27 21.84 �31.46 1.02 2.83

WE1 �33.26 �23.52 22.09 �32.61 0.78 0.01

WE2 �33.27 �23.49 22.09 �32.63 0.76 0.00

OONS �32.01 �22.79 22.25 �32.13 0.66 0.80

SCKS �30.77 �19.15 21.47 �35.40 2.30 3.33

JRF �22.93 �27.99 23.29 �19.13 0.90 4.32

aThe first column refers to the hydration model used in the function evaluations, which are

performed at the global solutions for the hydration model listed in the second column. The total

energy, ETOT, is provided along with the contributions from hydration, EHYD, nonbonded interactions

(including hydrogen bonding), ENB, electrostatic interactions, EES, and torsion, ETOR. The last

column provides the heavy-atom root-mean-squared deviation between the global minimum energy

structures of the hydration models listed in the first two columns.
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hydration energy. This indicates that unlike the other hydration models, the

SCKS model does not provide more hydration energy stabilization for extended

conformations. This agrees with the prediction of the SCKS global minimum

energy structure, which exhibits the most folded conformation. The SCKS

structure also closely resembles the unsolvated global minimum energy struc-

ture and it exhibits the lowest potential energy contribution, �11.63 kcal/mol,

which is only 0.08 kcal/mol higher than the global minimum potential energy.

This suggests that low potential energy conformations are not only favored but

also enhanced by hydration effects for the SCKS model. Excluding the SCKS

model, the other models predict relatively large hydration energies at the SCKS

structure. In fact, for the RRIGS, WE1 and WE2 models, the SCKS structure

produces the highest values for the hydration energies. For the OONS and JRF

model, the hydration energies are only smaller than those for the RRIGS

structure. This is consistent with the hydrophilic nature of the aromatic carbons

for the OONS and JRF models. Specifically, because the aromatic ring

separation is smallest for the RRIGS structure, the OONS and JRF hydration

TABLE X

Comparison of Hydration Energies for Met-enkephalina

Global of ETOT EHYD ENB EES ETOR (RMSD)

OONS RRIGS �24.18 �15.59 21.84 �31.46 1.02 2.66

WE1 �31.08 �21.33 22.09 �32.61 0.78 0.80

WE2 �31.09 �21.31 22.09 �32.63 0.76 0.80

OONS �31.45 �22.23 22.25 �32.13 0.66 0.00

SCKS �29.57 �17.95 21.47 �35.40 2.30 3.38

JRF �19.60 �24.66 23.29 �19.13 0.90 4.12

SCKS RRIGS 3.43 12.02 21.84 �31.46 1.02 4.04

WE1 0.90 10.65 22.09 �32.61 0.78 3.33

WE2 0.89 10.67 22.09 �32.63 0.76 3.33

OONS 1.66 10.88 22.25 �32.13 0.66 3.38

SCKS �0.62 11.00 21.47 �35.40 2.30 0.00

JRF 17.44 12.38 23.29 �19.13 0.90 3.78

JRF RRIGS �139.36 �130.77 21.84 �31.46 1.02 4.83

WE1 �180.59 �170.84 22.09 �32.61 0.78 4.33

WE2 �180.57 �170.79 22.09 �32.63 0.76 4.32

OONS �181.70 �172.48 22.25 �32.13 0.66 4.12

SCKS �171.67 �160.04 21.47 �35.40 2.30 3.78

JRF �283.76 �288.82 23.29 �19.13 0.90 0.00

aThe first column refers to the hydration model used in the function evaluations, which are

performed at the global solutions for the hydration model listed in the second column. The total

energy, ETOT, is provided along with the contributions from hydration, EHYD, nonbonded interactions

(including hydrogen bonding), ENB, electrostatic interactions, EES, and torsion, ETOR. The last

column provides the heavy-atom root-mean-squared deviation between the global minimum energy

structures of the hydration models listed in the first two columns.
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models tend to provide higher hydration energies for this structure. Although

hydration energies for the RRIGS structure are typically high, the RRIGS model

predicts a stabilizing hydration energy for this structure, second only to the JRF

structure. It is this hydration energy contribution, when coupled with a relatively

low potential energy (�8.59 kcal/mol), that sets the RRIGS global minimum

energy structure. For the other hydration models, low potential energy con-

tributions (�9.77, �9.75, and �9.22 kcal/mol for WE2, WE1, and OONS,

respectively) seem to be more important in the prediction of relatively compact

structures. In these cases the relative weighting of the hydration energy

contributions does not favor extended conformations. However, these models

also do not provide low hydration energies at the most compact structures, such

as the SCKS global minimum energy structure. This indicates an interplay of

hydration and potential energy contributions, although the prediction of rela-

tively compact structures suggest the importance of low potential energy

contributions.

Like met-enkephalin, leu-enkephalin (H–Tyr–Gly–Gly–Phe–Leu–OH) is an

endogenous pentapeptide in which the methionine residue has been replaced by

a leucine residue. Qualitatively, the results for the hydrated forms of leu-

enkephalin are similar to those for met-enkephalin [81].

5. Free Energy Modeling

Locating the global minimum potential energy or the global minimum potential

plus solvation energy conformation is not sufficient because Anfinsen’s thermo-

dynamic hypothesis requires the minimization of the conformational free energy.

Specifically, potential energy minimization neglects the entropic contributions to

the stability of the molecule. An approximation to these entropic contributions

can be developed by using information about low-energy conformations. That is,

once a sufficient ensemble of low-energy minima has been identified, a statistical

analysis can be used to estimate the relative entropic contributions, and thus the

relative free energy, for conformations in the ensemble.

Therefore, the analysis of the free energy of peptides requires efficient

methods for locating not only the global minimum energy structure but also

large numbers of low-energy conformers. A variety of methods have been used

to find such stationary points on potential energy surfaces. For example, periodic

quenching during a Monte Carlo or molecular dynamics trajectory can be used

to identify local minima [82]. However, a drawback of these approaches is their

inherent stochastic nature. In its original form, the aBB deterministic global

optimization algorithm [15–18,73] has been shown to be an efficient method for

finding the global minimum energy conformation for both unsolvated and

solvated peptide systems [78,81,83]. Here, novel methods are proposed within

the framework of the aBB algorithm to optimize the free energy of peptide

systems. These modifications facilitate the generation of ensembles of
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low-energy conformers, which can be used to identify the global minimum free

energy conformation, as well as perform detailed free energy rankings.

In peptide systems, this entropic contribution arises from fluctuations around

a local conformational state. There exist a number of procedures, including both

exact and approximate calculations, that can be used to determine the entropic

contributions, and thus the free energy, of peptide systems.

First, assume that the full conformational space R can be considered as the

union of disjoint basins of attraction, and the conformational space associated

with a given basin (denoted by g) is defined by Rg. The energy, E, is a function

of the variable set y, which corresponds to the set of dihedral angles used to

describe the conformational state of the system. Each basin of attraction is

characterized by a unique local minimum at position y�g, with a corresponding

energy E�g. That is, local minimization starting at any point in Rg will lead to the

local minimum at y�g. It should be noted that this approximation of the

conformational space excludes all maxima and saddle point conformations.

For a given temperature, T , the probability that a peptide occupies the con-

formational space of a given basin (Rg) can be described by a Gibbs–Boltzmann

distribution:

pg ¼
Ð

Rg
expð�bEðyÞÞ dyÐ

R
expð�bEðyÞÞ dy

ð37Þ

Here b is equivalent to 1=kBT . If the numerator is redefined as the partition

function (Zg) for the basin, Eq. (37) can be rewritten as

pg ¼
Zg

Z
ð38Þ

The total partition function for the entire conformational space is represented by

Z. Because this function is described by a disjoint set of basins (Rg), it is

equivalent to the following form:

Z ¼
X
g

Zg ð39Þ

Once the probability is known, the corresponding free energy, Gg, associated

with each basin can also be calculated:

Gg ¼ �
ln pg

b
ð40Þ

Using these definitions, a rigorous procedure can be envisioned for calculat-

ing the exact probability associated with a given basin. First, a sample of

conformations must be generated with initial starting energies Ei, as defined by

the total set I. Each structure is minimized to identify its corresponding basin

deterministic global optimization and ab initio approaches 313



minimum (y�g). These structures define the set IðgÞ (i.e., those structures

associated with basin g). As the sampling goes to infinity, the probability

associated with basin g can be calculated by the following expression:

pexact
g ¼

P
iðgÞ2IðgÞ expð�bEiðgÞÞP

i2I expð�bEiÞ
ð41Þ

Obviously, such a method is intractable for large systems, and this is the impetus

for developing approximate methods.

6. Harmonic Approximation

A tractable method for including entropic effects for proteins relies on the

concept of the harmonic approximation. Initially, the theoretical development of

this approximation for polymer systems generated debate in the literature [84–

86]. In the work of Goldberg [84] a classical rigid model was used to characterize

a partition function based on the fixed bond length and bond angle assumptions.

In contrast, Flory [86] derived a different partition function using a classical

flexible model. Later analysis by G�o and Scheraga [85] actually showed that the

flexible model was also applicable to the fixed bond length and bond angle

system (i.e., a peptide described by the internal coordinate system).

In either case (i.e., rigid or flexible), entropic contributions can be calculated

by employing an harmonic approximation [85]. The fundamental concept is to

characterize the basin of attraction (g) by the properties of its corresponding

local minimum (y�g), and not by a random sampling of conformations. These

properties include the local minimum energy value, E�g, and the convexity

around the local minimum. Essentially, the convexity measure is used to

approximate the basin of attraction region as a hyperparabola centered at the

local minimum. Therefore, the anharmonic nature of the true basin, which

defines the deviation from approximated harmonic behavior, controls the error

associated with this assumption.

At each minimum (y�g) the harmonic approximation to the entropy can be

evaluated using the following expression:

Sapprox
g ¼ � kB

2
ln ½DetðHgÞ� þ f̂ ðTÞ ð42Þ

Here Det Hg
� �

refers to the determinant of the Hessian (second derivative matrix)

evaluated at the local minimum y�g. The function f̂ ðTÞ is an additive term that is

only dependent on temperature. The approximated free energy can then be
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calculated by combining the energetic and entropic contributions through the

follow expression:

Gapprox
g ¼ E�g � TSapprox

g þ �f ðTÞ ð43Þ

By substituting the harmonic entropic approximation from Eq. (42), Eq. (43)

becomes

Gapprox
g ¼ E�g þ

1

2b
ln ½DetðHgÞ� þ ~f ðTÞ ð44Þ

In this equation, it becomes evident that the free energy for a given basin is

estimated using only the properties of the corresponding local minimum—that is,

the local minimum energy (E�g) and a measure of local convexity (DetðHgÞ). A

temperature-dependent term, ~f ðTÞ, is included, although it does not affect

relative free energy comparisons.

Expressions for the probabilities and partition functions can also be devel-

oped. By combining Eqs. (38), (40), and (44), an approximation for the partition

function of a given basin can be written as:

ln Zapprox
g ¼ �bE�g �

ln ½DetðHgÞ�
2

� b~f ðTÞ þ ln Z ð45Þ

A further simplification can be made by realizing that �b ~f ðTÞ and ln Z are

constant for a given temperature (i.e., f ðTÞ ¼ �b~f ðTÞ þ ln Z). Equation (45) can

be rewritten as

Zapprox
g ¼

�
1

½DetðHgÞ�

�1=2

expð�bE�gÞ f ðTÞ ð46Þ

Finally, by using Eq. (39), an approximate probability associated with a given

basin (g) can be calculated using the following equation:

papprox
g ¼

½DetðHgÞ��1=2
expð�bE�gÞPN

i¼1 ½DetðHiÞ��1=2
expð�bE�i Þ

ð47Þ

As expected, the f ðTÞ term disappears, and the statistical weight becomes a

function of only the temperature (through b), the local minimum energy value,
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and the measure of convexity. In order to develop a meaningful comparison of

relative free energies, the total partition function [i.e., the denominator of

Eq. (47)] must include an adequate ensemble of low-energy local minima, as

well as the global minimum energy conformation.

These probabilities can be used to estimate the occupancy of each individual

basin, or summed in order to calculate cumulative probabilities for an ensemble

of structures exhibiting similar physical or energetic properties. It should be

noted that the determination of free energy using the harmonic approximation

does not require the explicit inclusion of a contribution based on the density of

states. That is, the harmonic approximation decomposes the energetic states

within a basin of attraction into one energetic value represented by the local

minimizer of the basin. In contrast to counting methods, which estimate

probabilities based on the density of states, the contribution of each structure

should be accounted for only once. Therefore, using the harmonic approxima-

tion requires a structural comparison of all local minimizers.

The probabilities obtained through the harmonic approximation can also be

used to calculate thermodynamic quantities. Once the set of unique minimizers

has been identified, these structures can be ranked according to their free energy

values and then divided into bins of a specified energy width. Probabilities for

each bin can be calculated by summing the individual probabilities [as defined

in Eq. (47)]:

P
approx
j ¼

Xnj

g¼1

papprox
g ð48Þ

Here P
approx
j signifies the probability for energy bin j. The summation includes

the nj individual probabilities (papprox
g ) belonging to bin j. Average thermo-

dynamic quantities can now be estimated using equations with the following

form:

hEiT ¼
X

j

P
approx
j hEij ð49Þ

Here the total average energy, hEiT , is calculated by summing the bin

probabilities multiplied by the mean energy of bin j, hEij.

7. Free Energy Problem Formulation

As before, the energy minimization problem for proteins is formulated as a

nonconvex nonlinear optimization problem. The inclusion of free energy model-

ing into the protein folding problem does not change the general formulation.

However, an additional condition must be satisfied; that is, an ensemble of local

minimum low-energy conformations must be generated along with the global

minimum energy conformation. Once this ensemble has been compiled, a free
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energy ranking can be performed using the harmonic approximation presented in

the previous section.

Several rigorous methods can be envisioned for locating local minimum

energy conformations using the aBB deterministic global optimization

approach. As an introduction to the ideas used here, two rigorous approaches

for finding all local minimum energy conformations are discussed.

The first method relies on the introduction of a single inequality constraint to

the problem formulation given by (34). The new formulation is:

min Eðfi;ci;oi; wk
i ;f

N
j ;f

C
j Þ

subject to ðE� � EÞ þ E� < 0

�p � fi � p; i ¼ 1; . . . ;NRES

�p � ci � p; i ¼ 1; . . . ;NRES

�p � oi � p; i ¼ 1; . . . ;NRES

�p � wk
i � p; i ¼ 1; . . . ;NRES; k ¼ 1; . . . ;Ki

�p � fN
j � p; j ¼ 1; . . . ; JN

�p � fC
j � p; j ¼ 1; . . . ; JC

ð50Þ

The additional constraint requires that the objective function values be larger

than the energy value at some local (or global) minimum, as denoted by E�, plus

a positive parameter, E�. When E� ¼ 0, the solution of the corresponding global

optimization problem will give the best local minimum energy conformation

with an energy larger than E�. The original formulation given by (34) is actually

a special case of this problem in which E� ¼ �1 and E� ¼ 0. That is, in (34) no

bounds are placed on the value of the objective function, E. The global

minimum energy conformation is only required to take some finite value. In

order to locate all local minima, a set of global optimization problems must be

solved iteratively with updating of the parameter E�.
The problem of finding all local minimum energy conformations can also

be formulated as a single global optimization problem, which can be de-

terministically solved using the aBB algorithm [23]. This method stems from

the idea that all stationary points (i.e., minima, maxima, and transition states)

of the energy hypersurface satisfy the constraint rEðyÞ ¼ 0. This can be

written as:

qEðyÞ
qyi

¼ 0 ; i ¼ 1; . . . ;Ny ð51Þ
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Here Ny represents the total number of dihedral angles defined by the variable set

y. The problem of finding local minima is equivalent to finding all solutions of

Eq. (51) for which the Hessian of E is positive definite.

The problem posed in Eq. (51) involves the solution of a system of nonlinear

equations. The identification of all multiple global solutions requires the use

of a deterministic global optimization method, as outlined in Section II.B. The

application of this method to protein systems will be described fully in

Section IV.B.

Both methods for rigorously locating all local minimum energy confor-

mations have some disadvantages. On one hand, the first approach should

effectively locate low energy conformers in order of increasing energy.

However, locating each minimum requires the solution of a full global

optimization problem. The second approach avoids this drawback because it

can be solved as a single global optimization problem. However, when dealing

with a high-dimensional search space, the number of necessary subdivisions

may be computationally inhibitive. In addition, this method will potentially

locate stationary points other than local minima. Therefore, the development of

other methods for locating low-energy local minimum energy conformations

were pursued.

8. Ensemble of Local Minimum Energy Conformations

Because the number of local minima on a given energy hypersurface may become

astronomically large (e.g., the number of local minima for met-enkephalin is

estimated to be on the order of 1011 [77]), methods that do not necessarily

provide all local minima were developed. Specifically, it was determined that the

generation of ensembles of low-energy conformers is possible through

algorithmic modifications of the general aBB procedure. Rigorous implementa-

tion of the global optimization algorithm requires the minimization of a convex

lower bounding function in each domain. The unique solution y for each lower

bounding minimum can then used as a starting point for the minimization (or

function evaluation) of the original energy function in the current domain. In the

case of local minimization, each partitioned region provides a single minimum

energy conformation as the algorithm proceeds. Using this information, along

with the global minimum energy conformation, a list of low-energy conformers

can be constructed.

A method for increasing the number of local minima produced within each

subdomain would involve the selection of multiple random starting points for

minimizing the upper bounding function. At first, this approach appears to

be equivalent to choosing random points for local minimization. Initially, when

the subdomains constitute significant portions of the original domain space, this

is the case. However, as the separation between lower and upper bounds
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decreases, the subdomains are localized in regions of low energy. Therefore, the

random point selection is localized in regions that contain low-energy local

minima.

However, this approach does not take advantage of the information provided

by the lower bounding functions. Rigorously, these functions possess a single

minimum in each subdomain. Because the choice of a affects the convexity of

the lower bounding functions, the a values can be modified to ensure a certain

nonconvexity in these functions. In this case, the lower bounding functions

possess multiple minima, and these functions can be minimized several times in

each domain. In addition, because the lower bounding functions smooth

the original energy hypersurface, the location of these multiple minima provide

information on the location of low-energy minima for the upper bound-

ing function. Therefore, by using the location of the minima of the lower

bounding function as starting points for local minimization of the upper

bounding function, an improved set of low-energy conformations can be iden-

tified. As before, these conformations are also localized in those domains with

low-energy as the subdomains decrease in size. This Energy-Directed Approach

(EDA) is represented schematically in Fig. 17.

Figure 17. Using multiple lower bound minima to find low-energy conformers of the upper

bounding function.
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The basic steps of the algorithm, which are qualitatively similar to those

outlined in Fig. 12, are as follows:

1. The initial best upper bound is set to an arbitrarily large value. The

original domain is partitioned along one of the global variables. a values

are initially chosen to be constant (a ¼ a0) for all global variables.

2. The lower bounding function (L) is constructed in each hyper-rectangle.

Three local minimization are performed using the following procedure:

a. Fifty random points are generated and used for function evaluations.

b. The point with the minimum value is used as a starting point for local

minimization of L using NPSOL, with calls (through PACK) to ECEPP/

3 and possibly the RRIGS solvation module.

c. The unique solutions are stored.

If the minimum valued solution (of all local minima of L in this sub-

domain) is greater than the current best upper bound the subdomain is

fathomed.

3. The unique local minima (points) for L are used as initial starting points

for local minimizations of the upper bounding function (E) in each hyper-

rectangle. Again, the appropriate calls are made to PACK and the potential

and solvation energy modules. Two additional minimizations are perfor-

med using the following procedure:

a. Fifty random points are generated and used for function evaluations.

b. The point with the minimum value is used as a starting point for local

minimization of E using NPSOL, with calls (through PACK) to

ECEPP/3 and possibly the RRIGS solvation module.

In all cases, the UBC (upper bound check) module is also called. UBC

checks that the absolute value of each gradient in the objective function

gradient vector is below a specified tolerance (10�6 kcal/mol/deg). If a

gradient does not satisfy this check, the corresponding variable bounds are

incrementally increased and the problem is solved with the previous point

used as the initial starting point. This process is repeated until the gradient

constraints are satisfied or an iteration limit is exceeded. UBC also

employs algorithms to calculate the second derivative matrix [75], which

is used to verify that the upper bound solution is a local minimum; that is,

the Hessian matrix must be positive semidefinite. If the matrix is not

positive semidefinite or the gradient checks are not satisfied, the upper

bound solution is rejected. All local minima are stored.

4. The current best upper bound is updated to be the minimum of those thus

far stored.
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5. The hyper-rectangle with the current minimum value for L (this is the

minimum value of all local minima of L in each subdomain) is selected

and partitioned along one of the global variables. All a values are updated

according to the following rule:

a ¼ a0RL ð52Þ

In this equation a0 refer to the initial values from Step 1. R is a reduction

parameter (0 < R � 1), and L refers to the current level in the branch and

bound tree. For R ¼ 1 the a values are kept constant at the initial value, a0.

6. If the best upper and lower bounds are within the E tolerance, or a

maximum iteration limit has been exceeded, the program will terminate,

otherwise it will return to Step 2.

A second approach incorporates free energy information into the branch and

bound algorithm. Specifically, harmonic entropic contributions are calculated

and included at each minima of the upper and lower bounding functions. In this

way, the progression of lower and upper bounds includes a temperature-

dependent entropic term. A similar modification to the Monte Carlo minimiza-

tion method has also been proposed [87] and has been shown to be effective in

locating low-energy conformers of peptides [88,89].

The problem formulation is identical to the one given in (34). That is, the

minimization of E and L are still performed using only potential and solvation

energy contributions. However, once local minima have been located, the free

energy is calculated by the following expression:

G ¼ UMin þ
1

2b
ln ½DetðHMinÞ� ð53Þ

This equation is similar to Eq. (44), although the additive term f ðTÞ has been

omitted because it is a function of temperature only. UMin represents the local

minimum energy of E or L, and DetðHMinÞ is the determinant of the Hessian

evaluated at this local minimum. The specification of a thermodynamic

temperature (b ¼ 1=kBT) is required as an additional input parameter.

A single rigorous application of the aBB algorithm to this problem will result

in the identification of the global minimum free energy at a given temperature.

However, the goal is to identify an ensemble of low energy and, in this case, low

free energy conformers so that a free energy ranking and comparison can be

made. Therefore, the algorithmic steps for the Free Energy-Directed Approach

(FEDA) are similar to those for EDA, with the additional evaluation of the free

energy (G) at each local minima of E and L. The thermodynamic temperature

used in Eq. (53) must be specified as an additional input parameter.
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9. Free Energy Computational Studies

The EDA was first applied to the isolated form of met-enkephalin. All 24

dihedral angles were considered variable, with the 10 dihedral angles of the

backbone residues acting as global variables (variables on which branching

occurs). For both peptides, the EDA algorithm detailed above was applied 10

times. The input conditions correspond to initial a values of 5 and 10, with a

subsequent reduction of these values based on the current level in the branch and

bound tree.

Once the ensemble of local minima had been compiled, a set of distinct

conformations was identified by checking for repeated and symmetric

conformations. In addition, a conformation was only considered unique if at

least one dihedral angle differed by at least 50� when comparing each pair of

conformations. These conformations were then used to generate results and

distributions according to energy and free energy values. Energy bins were used

to characterize a group of distinct structures between a range of energy values

(every 0.5 kcal/mol) relative to the global minimum energy structure. For

example, Bin 1 contains structures that are 0.0–0.5 kcal/mol above the global

minimum energy structure, Bin 2 contains structures that are 0.5–1.0 kcal/mol

above the global minimum energy structure, and so on.

In the case of isolated met-enkephalin, the 10 (EDA) runs generated a total of

83,908 distinct local minima. The potential energy global minimum (PEGM)

conformation for met-enkephalin possesses an energy of �11:707 kcal/mol.

This conformation exhibits a type II0 b-bend along the N–C0 peptidic bond of

Gly3 and Phe4. Essentially, this structure corresponds to the free energy global

minimum (FEGM) conformation for a temperature of 0 K—that is, when

entropic contributions are not included. When considering the harmonic free

energy, the prediction of the FEGM can be calculated over a range of

temperatures. Table XI provides information on the FEGM for temperatures

ranging from 100 K to 500 K.

As Table XI shows, the PEGM persists as the FEGM at a temperature of

100 K. However, at the next three temperature points (i.e., 200 K, 300 K, 400 K)

the FEGM exhibits a potential energy contribution 1.808 kcal/mol higher than

the PEGM. The f and c values for this structure are also significantly different

than those for the PEGM. In fact, the conformational code (B*AAAE) indicates

that the central residues display an a helical configuration. At a temperature of

500 K, the FEGM structure changes again, while the potential energy difference

between the FEGM and PEGM increases to 5.369 kcal/mol. These differences

suggest that the inclusion of entropic contributions greatly affects the relative

stability of individual low energy structures. In addition, as the temperature

increases, the stability offered by entropic contributions offsets substantial

differences in potential energy.

322 john l. klepeis et al.



Table XII provides information on the distribution of distinct low free energy

minima within 8.0 kcal/mol of the FEGM for a range of temperatures. For a

given temperature the general trend indicates a large increase in the number of

minima as the free energy increases above the FEGM. Several exceptions to this

trend occur at high temperature and large bin number. In these cases, the

number of minima remains constant or even decreases slightly. This is most

likely due to an inadequate sampling of higher potential energy minima. For a

given bin, it is also apparent that the clustering of low free energy structures

increases with temperature. This increased density of the free energy bins

indicates that increases in energy are offset by entropic contributions.

TABLE XI

Dihedral Angle Values for PEGM and FEGM Structures of Isolated Met-enkephalin Using EDAa

Residue DA PEGM 100 K 200 K 300 K 400 K 500 K

Tyr1 f �83.4 �83.4 179.8 179.8 179.8 90.2

c 155.8 155.8 �18.2 �18.2 �18.2 149.1

o �177.1 �177.1 �178.1 �178.1 �178.1 177.5

w1 �173.2 �173.2 178.2 178.2 178.2 169.8

w2 79.3 79.3 81.3 81.3 81.3 �108.2

w3 �166.3 �166.3 177.3 177.3 177.3 177.6

Gly2 f �154.3 �154.3 �59.8 �59.8 �59.8 �66.1

c 85.8 85.8 �37.6 �37.6 �37.6 87.5

o 168.5 168.5 �178.8 �178.8 �178.8 �173.4

Gly3 f 83.0 83.0 �67.0 �67.0 �67.0 147.2

c �75.0 �75.0 �40.1 �40.1 �40.1 �36.7

o �170.0 �170.0 179.7 179.7 179.7 175.1

Phe4 f �136.9 �136.9 �70.9 �70.9 �70.9 �92.5

c 19.1 19.1 �39.5 �39.5 �39.5 �34.7

o �174.1 �174.1 �179.8 �179.8 �179.8 �179.1

w1 58.9 58.9 173.9 173.9 173.9 179.1

w2 94.5 94.5 �102.6 �102.6 �102.6 74.7

Met5 f �163.5 �163.5 �161.0 �161.0 �161.0 �154.7

c 160.9 160.9 122.1 122.1 122.1 135.3

o �179.8 �179.8 �178.0 �178.0 �178.0 179.9

w1 52.9 52.9 �174.7 �174.7 �174.7 �172.6

w2 175.3 175.3 174.0 174.0 174.0 175.1

w3 �179.9 �179.9 179.0 179.0 179.0 179.9

w4 �178.6 �178.6 �60.1 �60.1 �60.1 �60.0

G �11.707 �2.499 6.151 14.175 22.200 29.592

E �11.707 �11.707 �9.899 �9.899 �9.899 �6.338

aThe temperatures are provided in the first row. The last two rows indicate the harmonic free energy

(kcal/mol) and the potential energy value (kcal/mol), respectively.
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These observations are also supported by the information shown in Fig. 18.

This plot displays the range of potential energy in free energy bins at

temperatures of 250 and 500 K, with the potential energy bins included for

comparison. As expected, the potential energy values for the free energy bins

increase with increasing temperature. In addition, the range of potential energy

values increases in higher free energy bins. It is interesting to note that this

occurs because the minimum potential energy is relatively (i.e., within a few

kcal/mol of the PEGM) low for each bin, whereas the maximum potential

energy value increases in higher bins. The corresponding differences are

also greater at higher temperature. For example, at 500 K some bins exhibit a

20-kcal/mol range in potential energy. These trends explain the increased

number of low free energy conformers. That is, bins of low free energy contain

conformers of relatively high potential energy because of their more stabilizing

entropic contributions. The plot also implies that the PEGM appears in bins 3

and 10 for temperatures of 250 and 500 K, respectively.

Relative free energies were also calculated for clusters of low-energy

conformers. This analysis is useful because it is difficult to capture the true

accessibility of individual structures based on a pointwise approximation of

entropic effects. That is, the harmonic free energy approximation does not

provide a continuous free energy landscape. By clustering structures into larger

TABLE XII

Number of Distinct Minima in Bins for Isolated Met-enkephalin Using EDAa

Bin 0 K 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K

1 2 1 2 10 6 3 3 4 16 16 8

2 3 5 13 22 12 9 15 24 18 21 31

3 12 25 36 58 52 42 40 40 59 69 77

4 45 48 55 105 105 100 101 115 164 184 184

5 49 69 120 233 199 206 213 249 309 397 475

6 90 125 263 451 435 403 410 491 726 893 918

7 166 292 467 806 763 765 848 1,043 1,438 1,655 1,687

8 303 497 766 1,250 1,297 1,362 1,524 1,906 2,464 2,821 2,695

9 552 776 1,233 1,929 2,079 2,247 2,601 3,069 3,932 4,284 4,111

10 840 1,177 1,710 2,915 3,168 3,475 3,927 4,707 5,774 6,030 5,562

11 1,121 1,675 2,681 3,879 4,355 4,899 5,708 6,655 7,573 7,775 7,116

12 1,618 2,467 3,526 5,303 5,935 6,572 7,364 8,333 9,437 9,448 8,721

13 2,331 3,223 4,491 6,821 7,619 8,360 9,203 10,228 10,730 10,473 9,719

14 2,973 4,050 6,037 8,058 8,834 9,712 10,598 11,244 11,651 11,285 10,630

15 3,747 5,250 7,258 9,031 9,821 10,585 11,504 11,939 11,915 11,396 10,745

16 4,588 6,422 8,053 8,587 9,687 10,958 11,563 11,432 9406 8,482 8,338

aEach bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the

first row.
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groups, it is hoped that the error associated with these estimates will average

out. Typically, structures are clustered by calculating and comparing root-mean-

squared deviations. Because the enkephalin peptide is relatively small, struc-

tures were grouped based on the Zimmerman codes for the central residues of

the peptide [90]. Specifically, for met-enkephalin, structures were said to belong

to the same cluster if the central three residues possessed the same three code

letters based on the Zimmerman classification [90]. The relative free energy of a

cluster was calculated by the following equation:

Gcluster ¼ �
ln
P

i2C p
approx
i

b
ð54Þ

In Eq. (54) the individual p
approx
i , which refers to the statistical weight based on

the harmonic approximation, are summed for the set of conformations belonging

to a particular cluster (C). These individual probabilities were calculated by

normalizing each probability with respect to the overall probability at a given

temperature:

p
approx
i ¼ exp½�bðGapprox

0 � G
approx
i Þ�P

j exp½�bðGapprox
0 � G

approx
j Þ� ð55Þ

Figure 18. Potential energy comparison for isolated met-enkephalin using EDA. Minimum and

maximum potential energies versus bin number are plotted for three temperatures: T = 0 K, 250 K,

500 K.
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A reference free energy, G
approx
0 , was used to normalize the probabilities at each

temperature point. All free energies, G
approx
0 , G

approx
i and G

approx
j , refer to the

harmonic approximation of the free energy as calculated using Eq. (44). The

denominator, which represents the total probability at a given temperature, is

calculated by summing over the set of all conformers.

The relative free energies for clusters of met-enkephalin structures are given

in Table XIII. At each temperature point the Zimmerman code and correspond-

ing data for the top three clusters are listed. The results indicate that the structure

exhibiting the individual lowest free energy does not always belong to the

cluster with lowest free energy. At 100 and 200 K the DC*B and AAA clusters

are consistent with the structures of the FEGM. However, although the FEGM

retains the AAA structure at 300 and 400 K, the group of structures possessing

the lowest Gcluster at these temperatures exhibits a CD*A Zimmerman code. This

is, at least in part, attributable to the large number of structures grouped in this

cluster. In contrast to the a-helical-type structure for the FEGM, the CD*A

structures possess elements of a b-turn conformation. Specifically the lowest

free energy conformer exhibiting a CD*A structure at 300 and 400 K, possesses

a type II b-bend along the Gly2–Gly3 backbone.

TABLE XIII

Clustered Relative Free Energies for Isolated Met-enkephalin Using the EDAa

Temperature (K) Code Number
P

i p
approx
i Gcluster

DC*B 113 0.636 0.0899

100 CC*B 136 0.0794 0.503

C*DE 557 0.0765 0.511

AAA 323 0.230 0.585

200 DC*A 1828 0.213 0.615

C*DE 676 0.192 0.656

CD*A 2685 0.297 0.723

300 DC*A 1843 0.100 1.372

AAA 328 0.0990 1.379

CD*A 2654 0.219 1.209

400 DC*A 1799 0.0452 2.461

AAA 329 0.0380 2.600

CD*A 2449 0.112 2.174

500 C*C*A 1361 0.0256 3.640

C*AE 1463 0.0229 3.752

aFrom left to right, the information provided in this table includes temperature, Zimmerman codei,

number of individual structures in cluster, total probality ð
P

i p
approx
i Þ, and free energy of cluster

ðGclusterÞ.
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FEDA was also applied to the isolated form of met-enkephalin. For this

approach, the thermodynamic temperature appears as an input parameter, and

these values had to be specified along with initial a values. Several methods can

be envisioned for initializing the FEDA. For example, if the goal is to char-

acterize the low free energy conformers at a single temperature, a full set of

FEDA runs could be performed for that temperature. This type of search should

efficiently locate the global and many low free energy conformers for that

temperature. However, the goal was to effectively characterize the FEGM and

low free energy conformers over a range of temperatures. Therefore each of the

10 (FEDA) runs were conducted at a unique temperature point in the range of 50

to 500 K. The details of the conditions for these runs are given in Table XIV.

In total, 87,974 distinct local minima were found after compiling the results

from the 10 (FEDA) runs for isolated met-enkephalin. The PEGM and FEGM

found using the FEDA are displayed in Table XV. It should be noted that when

comparing PEGM for the EDA and FEDA, both structures possess the same

potential energies, but a different set of dihedral angles. However, these

structures are actually the same. That is, the different values of w2 and w3 for

Tyr1 represent a degenerate state for tyrosine, which is generated by rotating

both of these dihedral angles by 180�. An important observation is that at 200 K

the FEDA method predicts a slightly lower FEGM. The structure possesses a

lower potential energy (�10.547 vs. �9.899 kcal/mol) and exhibits a free

energy value that is 0.044 kcal/mol lower than the EDA predicted FEGM. The

remaining FEGM predictions are consistent for the two approaches.

An analysis of the distribution of distinct minima, as given by Table XVI,

reveals that the results are qualitatively consistent with those produced by the

EDA. It should be noted that in all cases the lowest free energy bin is as densely

populated as the corresponding EDA bins, which indicates that each run using

the FEDA was able to find a better distribution of low free energy conformers

near the FEGM. This is not unexpected, considering that the FEDA runs were

TABLE XIV

Input Parameters Used for FEDA Runsa

Run No. a0 R T (K) Run No. a0 R T (K)

1 5 0.90 50 6 5 0.90 300

2 5 0.90 100 7 5 0.90 350

3 5 0.90 150 8 5 0.90 400

4 5 0.90 200 9 5 0.90 450

5 5 0.90 250 10 5 0.90 500

aHere a0 refers to the initial a values used for all global variables. R refers to the reduction rate

applied at each level of the branch and bound tree. T refers to the thermodynamic temperature at

which the free energy was calculated.
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conducted at the same discrete temperature points used in the analysis. However,

when comparing the populations of higher energy bins at low temperatures, the

number of minima is larger for the EDA. Some of this variation, especially near

the 150 to 200 K range, is probably due to the lower FEGM found by the FEDA.

In general, the FEDA seems to provide a denser distribution of distinct minima

at higher temperatures and large bin number.

A comparison of the relative efficiencies for the EDA and FEDA to generate

low-energy local minima can also be made by examining Fig. 19. In this plot the

cumulative fraction of conformers, which is equal to the total number of unique

conformers within the first 8, 12, and 16 energy bins over the total number of

unique conformers, is given as a function of temperature. It is apparent that both

approaches are highly efficient. For example, at 400 K approximately 90% of

TABLE XV

Dihedral Angle Values for PEGM and FEGM Structures of Isolated Met-enkephalin Using FEDAa

Residue DA PEGM 100 K 200 K 300 K 400 K 500 K

Tyr1 f �83.4 �83.4 �163.1 179.8 179.8 �90.2

c 155.8 155.8 �40.5 �18.2 �18.2 149.1

o �177.1 �177.1 �177.7 �178.1 �178.1 177.5

w1 �173.2 �173.2 �172.2 178.2 178.2 169.8

w2 �100.7 �100.7 93.2 81.3 81.3 71.8

w3 13.7 13.7 �177.2 177.3 177.3 �2.4

Gly2 f �154.3 �154.3 65.1 �59.8 �59.8 �66.1

c 85.8 85.8 �89.7 �37.6 �37.6 87.5

o 168.5 168.5 174.1 �178.8 �178.8 �173.4

Gly3 f 83.0 83.0 �152.6 �67.0 �67.0 147.2

c �75.0 �75.0 34.4 �40.1 �40.1 �36.7

o �170.0 �170.0 �178.9 179.7 179.7 175.1

Phe4 f �136.8 �136.8 �155.4 �70.9 �70.9 �92.5

c 19.1 19.1 159.8 �39.5 �39.5 �34.7

o �174.1 �174.1 179.2 �179.8 �179.8 �179.1

w1 58.9 58.9 52.1 173.9 173.9 179.1

w2 �85.5 �85.5 82.9 �102.6 �102.6 74.7

Met5 f �163.5 �163.5 �79.3 �161.0 �161.0 �154.7

c 160.9 160.9 130.4 122.1 122.1 135.3

o �179.8 �179.8 �178.7 �178.0 �178.0 179.9

w1 52.9 52.9 �66.8 �174.7 �174.7 �172.6

w2 175.3 175.3 179.8 174.0 174.0 175.1

w3 �179.9 �179.9 �179.9 179.0 179.0 179.9

w4 �178.6 �178.6 �60.0 �60.1 �60.1 180.0

G �11.707 �2.499 6.107 14.175 22.200 29.592

E �11.707 �11.707 �10.547 �9.899 �9.899 �6.338

aThe temperatures are provided in the first row. The last two rows indicate the harmonic free energy

(kcal/mol) and the potential energy value (kcal/mol), respectively.
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TABLE XVI

Number of Distinct Minima in Bins for Isolated Met-enkephalin Using FEDAa

Bin 0 K 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K

1 2 1 3 10 8 5 5 6 17 15 8

2 3 6 14 9 10 11 16 23 19 23 30

3 12 26 38 52 53 43 42 41 56 63 86

4 46 48 55 87 91 100 97 107 156 188 193

5 47 69 116 180 189 205 208 249 324 407 478

6 87 122 259 373 400 391 403 481 721 898 988

7 161 290 470 654 730 758 846 1,051 1,476 1,801 1,756

8 297 488 760 1,063 1,246 1,368 1,524 1,936 2,576 2,966 3,052

9 543 762 1,182 1,637 1,918 2,188 2,597 3,181 4,136 4,618 4,538

10 828 1,140 1,624 2,413 2,996 3,511 4,032 4,863 6,033 6,481 6,070

11 1,066 1,560 2,569 3,542 4,193 4,852 5,726 6,791 8,047 8,466 7,832

12 1,527 2,404 3,433 4,735 5,785 6,616 7,499 8,630 9,989 10,069 9,426

13 2,244 3,070 4,470 6,288 7,382 8,341 9,315 10,632 11,286 11,130 10,484

14 2,818 4,004 5,833 7,451 8,649 9,727 10,862 11,833 12,430 11,937 11,102

15 3,657 5,064 7,075 8,723 9,617 10,818 12,004 12,606 12,358 11,968 11,238

16 4,472 6,257 7,848 8,718 10,108 11,295 12,167 12,003 9,952 8,640 8,576

aEach bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the

first row.

Figure 19. Plot of cumulative fraction of low energy conformers for isolated met-enkephalin,

which is equal to the number of unique conformers within the first 8, 12, and 16 energy bins over the

total number unique conformers, versus temperature. Both EDA and FEDA data are plotted.
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the total unique conformations identified are in the top 16 free energy bins,

which ranges up to 8 kcal/mol above the FEGM. The lower fractions at lower

temperatures indicate that a relatively large number of conformations have high

potential energies and that these energetic differences are not offset by entropic

effects at low temperatures. A more subtle comparison can be made by

observing that the EDA cumulative fractions are generally higher for tempera-

tures lower than 400 K. Although the total number of unique conformations is

slightly lower for the EDA, this trend indicates that the EDA is more efficient at

filling low-energy bins, especially at lower temperatures.

The results for the cluster analysis of the FEDA met-enkephalin structures

are given in Table XVII. There are some differences between the EDA and

FEDA cluster free energies, although the overall trend is the same. At all tem-

peratures, excluding 200 K, the cluster exhibiting the lowest cluster free energy

is the same as in the EDA analysis. At 200 K, the FEDA predicts the AAA cluster

as having a slightly higher free energy than the C*DE cluster, which only

appears as the third cluster in Table XIII. In both analyses, the transition from

the ground-state DC*B cluster to the CD*A cluster as temperature increases is

evident.

TABLE XVII

Clustered Relative Free Energies for Isolated Met-enkephalin Using the FEDAa

Temperature (K) Code Number
P

i p
approx
i Gcluster

DC*B 107 0.532 0.125

100 C*DE 990 0.232 0.291

CC*A 1604 0.0636 0.547

C*DE 1275 0.331 0.439

200 AAA 322 0.209 0.623

DC*A 1729 0.174 0.694

CD*A 2128 0.263 0.796

300 C*DE 1360 0.125 1.239

AAA 327 0.111 1.309

CD*A 2116 0.192 1.313

400 C*DE 1362 0.0464 2.440

DC*A 1714 0.0429 2.502

CD*A 1966 0.0922 2.368

500 C*AE 2088 0.0308 3.459

C*C*A 1900 0.0279 3.555

aFrom left to right, the information provided in this table includes temperature, Zimmerman codei,

number of individual structures in cluster, total probability ð
P

i p
approx
i Þ, and free energy of cluster

ðGclusterÞ.
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Because both the EDA and FEDA provide large amounts of statistical infor-

mation for the peptide system, these data were used to perform a simple

thermodynamic analysis of the folding process. It is widely accepted that the

folding of peptides progresses successively. The first step of this process is

typically associated with a structural collapse—that is, a transition from random

extended structures to an ensemble of compact structures. This transition should

also be associated by significant changes in the description of the ensemble as

temperature changes. For example, a peak in the specific heat at the transition

temperature indicates a steep decrease in average potential energy of the

ensemble. In order to verify that such a transition occurs for met-enkephalin,

the specific heat was calculated using the following expression:

C ¼ b2ðhE2iT � hEi
2
TÞ

N
ð56Þ

Here N refers to the number of amino acid residues in the peptide. The average

energy and squared energy (hEiT and hE2iT , respectively) were calculated at 10

temperature points using expressions of the form given in Eq. (49). The bin

probabilities were based on an energy width of .015625 kcal/mol. In addition, a

reference free energy, G
approx
0 (the lowest free energy), was used to normalize the

probabilities at each temperature point.

The results for isolated met-enkephalin are shown in Fig. 20. Both the EDA

and FEDA predict a transition temperature in the 250–275 K temperature range.

This is consistent with the increase in bin density and structural diversity at

higher temperatures, and it suggests a sharp increase in the average potential

energy of the system at this temperature. It also supports the transition from the

DC*B ground-state (PEGM) cluster to the higher potential energy CD*A cluster

in this temperature range.

Similar results for characterizing the folding transitions of enkephalins have

also been obtained by multicanonical simulations [91]. This is encouraging

because the two methods possess fundamental differences. In contrast to this

work, the multicanonical approach does not rely on the identification of low-

energy local minima or the concepts of the harmonic approximation. Instead,

thermodynamic quantities are developed by first generating large ensembles of

structures with wide ranging energies and then employing reweighting techni-

ques. In addition, although the multicanonical simulations included detailed

atomistic level modeling, only unsolvated systems were considered.

The EDA was then applied to the RRIGS solvated form of met-enkephalin

using the same protocol and conditions as detailed above. Qualitatively, the

PEGM (in this case, PEGM refers to potentialþsolvation) for solvated met-

enkephalin exhibits a more extended conformation than that which is observed

for the isolated form. As detailed in Table XVIII, the PEGM structure persists as
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the FEGM at 100 K. However, at each subsequent temperature, the FEGM

structure changes, and this change is accompanied by an increase in total energy

(potential and solvation). As with isolated met-enkephalin, the difference in

total energy between the PEGM and FEGM at 500 K is greater than 5 kcal/mol.

This suggests that entropic effects are important in defining the predicted native

structure. When considering individual structures, entropic effects tend to

produce more extended FEGM conformations at higher temperatures, especially

with regard to the placement of the aromatic rings. It is interesting to note that in

a previous study the positioning of aromatic rings was found to be a major

difference when considering the ability of solvation models to predict extended

PEGM conformations for the solvated enkephalin peptides [83]. The sequence

of FEGM structures is illustrated in Fig. 21.

The distribution of the 72784 distinct minima for solvated met-enkephalin

exhibits some important differences from those results obtained for the isolated

form of the peptide. This is evidenced by the information presented in Table XIX

and the plot in Fig. 22. In particular, the low- and intermediate-energy bins are

much denser than the corresponding bins for isolated met-enkephalin, especially

within 4 kcal/mol (8 bins) of the FEGM. In addition, some higher-energy bins

are actually more populated at lower temperatures. One obvious reason for these

differences is the high density of conformers for the original system (at 0 K).

This high density of states causes the original energy differences to be relatively
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Figure 20. Plot of specific heat using EDA and FEDA free energy results for isolated met-

enkephalin.
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small, and the entropic correction tends to induce an even stronger equalization

of the free energy values. This equalization is best illustrated by the data plotted

in Fig. 22, which indicate that the efficiency of locating low-free-energy

conformers is relatively high at all temperatures. In fact, the highest density

of states occurs near the middle of the temperature range, rather than at high

temperatures as predicted for the isolated peptide. This behavior may be due to

a lack of much-higher-energy local minima that would probably populate these

high-temperature, high-energy bins.

Similar conclusions can be drawn by examining the data presented in Fig. 23,

which provides information on the energy extrema for free energy bins at

temperatures of 0, 250, and 500 K. As expected, for both 250, and 500 K, the

TABLE XVIII

Dihedral Angle Values for PEGM and FEGM Structures of Solvated Met-enkephalina

Residue DA PEGM 100 K 200 K 300 K 400 K 500 K

Tyr1 f �168.2 �168.2 �170.9 �168.4 �168.4 �152.5

c �30.9 �30.9 �28.5 �34.3 �34.3 153.2

o 178.6 178.6 177.5 �178.9 �178.9 178.5

w1 �173.5 �173.5 178.8 178.7 178.7 �179.0

w2 �100.9 �100.9 61.3 �100.8 �100.8 �101.2

w3 19.3 19.3 �4.1 179.0 179.0 �179.9

Gly2 f 78.5 78.5 73.8 177.8 177.8 �173.9

c �86.5 �86.5 47.6 �179.9 �180.0 177.1

o �177.3 �177.3 �179.2 180.0 180.0 �179.8

Gly3 f 162.4 162.4 167.6 �180.0 �180.0 179.6

c 92.2 92.2 �145.2 179.9 179.9 �179.3

o 172.6 172.6 175.2 179.7 179.7 179.6

Phe4 f �150.3 �150.3 �149.3 �155.3 �155.4 �155.4

c 159.8 159.8 135.8 147.2 149.5 149.3

o �178.1 �178.1 �176.6 �176.8 �178.3 �178.3

w1 65.8 65.8 177.3 �179.5 �179.5 �179.7

w2 �87.4 �87.4 �108.1 �111.7 �105.6 74.4

Met5 f �75.0 �75.0 �85.5 �78.7 �78.7 �78.9

c 113.9 113.9 �41.1 �51.1 113.4 113.5

o �178.4 �178.4 179.9 179.7 �179.1 �179.1

w1 �172.3 �172.3 �65.6 �67.2 �67.4 �67.4

w2 176.1 176.1 �179.6 �178.8 �178.8 �178.8

w3 �180.0 �180.0 �179.4 �179.9 �179.9 �179.9

w4 60.0 60.0 179.5 �180.0 60.0 �60.0

G �50.060 �41.896 �34.566 �28.604 �22.828 �17.166

E �50.060 �50.060 �48.676 �46.030 �45.780 �44.797

aThe temperatures are provided in the first row. The last two rows indicate the harmonic free energy

(kcal/mol) and the potential energy value (kcal/mol), respectively.
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range of energy values increases for higher-free-energy bins. In addition, for all

bins, the minimum energy is relatively low and generally within a few kcal/mol

of the PEGM. However, unlike the isolated met-enkephalin results, the max-

imum energy values do not become larger at higher temperatures. In fact, the

curves for maximum energy at 250 and 500 K are almost identical. This

indicates that relatively high energy minima may be needed in order to fill out

these high-temperature bins.

A clustering analysis of the low-free-energy conformers was also performed

for solvated met-enkephalin, and the results are shown in Table XX. At 100 K,

the lowest free energy cluster included the FEGM structure, which is also the

PEGM structure. At higher temperatures, the correlation between the extended

FEGM structures and the lowest-free-energy cluster was also evident. In fact, all

low energy clusters at 300, 400, and 500 K possess highly extended backbone

conformations, with nearly all geometries within the E and E* regions on the

Zimmerman conformational map. In fact, although the number of individual

structures in each cluster is not excessively large, many of these extended

conformers reside in the lowest free energy bins.

Figure 21. FEGM structures for solvated met-enkephalin. The top figure is the PEGM and the

FEGM for 100 K. The structures at other temperatures (200 K, 300 K, 400 K, 500 K) are shown left

to right, top to bottom.
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Figure 22. Plot of cumulative fraction of low-energy conformers for solvated met-enkephalin,

which is equal to the number of unique conformers within the first 4, 6, 8, 10, 12, 14, and 16 energy

bins over the total number unique conformers, versus temperature.

TABLE XIX

Number of Distinct Minima in Bins for Solvated Met-enkephalina

Bin 0 K 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K

1 10 11 16 17 21 18 19 22 21 21 13

2 14 17 35 122 236 149 98 95 97 94 79

3 34 66 299 542 896 607 378 283 223 195 166

4 117 296 668 1589 2075 1496 885 635 520 412 343

5 326 626 1907 3163 3636 2644 1730 1175 814 678 548

6 717 1582 3324 4902 5438 4256 2812 1957 1418 1047 762

7 1440 2865 5393 6733 6816 5790 4451 3061 2172 1623 1202

8 2611 4521 6906 7692 7569 6730 5390 4376 3123 2299 1705

9 3891 6337 7857 7952 7650 7221 6301 4972 4073 3132 2263

10 5567 7342 8094 7304 6858 7158 6736 5925 4699 3788 2903

11 6677 8090 7193 6612 6320 6374 6675 6232 5426 4453 3501

12 7624 7483 6618 5915 5645 6028 6295 6270 5754 5015 4161

13 7650 6920 5726 4864 4582 5279 5756 5972 5822 5328 4577

14 7047 6106 4680 3875 3645 4280 5113 5546 5689 5387 4879

15 6375 5066 3710 3086 2978 3449 4361 4973 5376 5271 5012

16 5534 4090 2848 2237 2140 2796 3437 4233 4809 5141 4964

aEach bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the

first row.
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A specific heat profile was also derived for solvated met-enkephalin in order

to understand how the dominance of these extended cluster geometries affect

the folding transition. These results are shown in Fig. 24. As with isolated met-

enkephalin, a folding transition is indicated by the peak in the specific heat,

which, in this example, occurs between 275 and 300 K. This represents a

significant change in average energy, which accompanies the collapse from an

ensemble of extended conformations (EE*E and E*EE clusters) to the more

compact ground-state cluster. For the solvated met-enkephalin example, this

transition is clearly illustrated by the cluster analysis and the structure plots

given in Fig. 21.

B. Structure Refinement with Sparse Restraints

To effectively determine protein function, it is important to predict the three-

dimensional structure of the macromolecule. Over the last several decades a

number of experimental and theoretical approaches have been developed and

refined in order to achieve this goal. Experimentally, there now exist two basic

techniques used to perform protein structure refinement. The first, X-ray

crystallography, relies on the ability to crystallize the protein so that diffraction

patterns can be used for sufficient resolution. These requirements have limited

Figure 23. Energy comparison for solvated met-enkephalin. Minimum and maximum potential

energies versus bin number are plotted for three temperatures: T ¼ 0 K, 250 K, 500 K.
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TABLE XX

Clustered Relative Free Energies for Solvated Met-enkephalina

Temperature (K) Code Number
P

i p
approx
i Gcluster

C*H*E 139 0.466 0.152

100 C*DF 286 0.224 0.297

C*G*A 205 0.0991 0.459

C*A*E 1112 0.0521 1.174

200 A*E*E 393 0.0468 1.217

E*EE 149 0.0421 1.259

E*EE 148 0.0474 1.818

300 EE*E 152 0.0445 1.856

D*E*E 149 0.0273 2.147

EE*E 151 0.0476 2.419

400 E*EE 145 0.0391 2.575

EEE 159 0.0266 2.883

EE*E 149 0.0460 3.059

500 E*EE 142 0.0327 3.397

EEE 156 0.0299 3.488

aFrom left to right, the information provided in this table includes temperature, Zimmerman codei,

number of individual structures in cluster, total probability ð
P

i p
approx
i Þ and free energy of cluster

ðGclusterÞ.
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Figure 24. Plot of specific heat using free energy results for solvated met-enkephalin.
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the applicability of this technique. A more powerful method, NMR (nuclear

magnetic resonance) spectroscopy, is based on solution measurements of the

system. Several key developments, including multidimensional NMR experi-

ments, have resulted in the ability to determine solution structures for proteins

consisting of over 200 residues.

This section focuses on the development of a novel approach for protein

structure prediction via experimental NMR restraints. Traditionally, the protein

folding global optimization problem involves a progression of unconstrained

minimizations. However, the introduction of experimentally derived or artificial

restraints can be used to recast the fundamental protein folding problem as a

constrained global optimization problem. The constraints, through reduction of

the feasible search space, serve two important purposes: (1) to attempt to correct

any deficiencies of the energy model and (2) to focus the efforts of the global

optimization algorithm.

This constrained approach is applied to the NMR structure prediction

problem, although a variety of restraint information could be used. The

proposed constrained formulation differs from traditional NMR approaches in

several fundamental ways. First, the energy model is represented by a detailed

full atom force field, rather than simplified nonbonded potential terms. This

should make the approach especially effective when the number of NMR

restraints per residue decreases; that is, the accuracy of the energy model

becomes more significant. In addition, traditional solution approaches apply

target function distance geometry or simulated annealing to unconstrained

problem formulations in which restraints are represented by penalty function

approximations. The solution of the constrained formulation requires the use of

constrained local optimization solvers and an overall global optimization

framework for nonlinearly constrained problems. This is accomplished through

the application of the ideas of the aBB deterministic global optimization

approach [15–18,73]. aBB-based global optimization techniques have also

been applied to NMR-type structure prediction problems [92,93].

Because the location of the global minimum relies on effectively solving

constrained local optimization problems, convergence to the global minimum

can be enhanced by consistently identifying low-energy solutions. These

observations illustrate the need for reliably locating low-energy feasible points

for initializing the constrained local optimization routine. Along these lines, a

combined torsion angle dynamics (TAD) and simulated annealing scheme has

been implemented within the context of the global optimization framework.

TAD has recently been shown to be more effective than Cartesian coordinate

dynamics [94,95]. In this case, the degrees of freedom are rotations around

single bonds, which reduces the number of variables by approximately tenfold

because bond lengths, bond angles, chirality, and planarities are kept fixed at

optimal values during the calculation.
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1. Energy Modeling

Basic data obtained from NMR studies consist of distance and torsion angle

restraints. Once resonances have been assigned, nuclear Overhauser effect

(NOE) contacts are selected and their intensities are used to calculate interproton

distances. Information on torsion angles are based on the measurement of

coupling constants and analysis of proton chemical shifts. Together, this infor-

mation is used to formulate a nonlinear optimization problem, the solution of

which should provide the correct protein structure. Typically, a hybrid energy

function of the following form is employed:

E ¼ Eforcefield þWNMRENMR ð57Þ

The energy, E, specified by this target function includes a chemical description of

the protein conformation through the use of a force field, Eforcefield. The force

field potentials are generally much simpler representations of all atom force

fields. The distance and dihedral angle restraints appear as weighted penalty,

ENMR, terms that should be driven to zero.

The second term of Eq. (57) can be rewritten as

ENMR ¼ Edistance þ Edihedral ð58Þ

Here Edistance and Edihedral represent the violation energies based on the distance

and dihedral angle restraints, respectively. These functions can take several

forms, although a simple square well potential is commonly used. The express-

ions also include a summation over both upper and lower distance violations; for

example, Edistance ¼ E
upper
distance þ Elower

distance. When considering upper distance re-

straints, this becomes

E
upper
distance ¼

X
j

Ajðdj � d
upper
j Þ2 if dj > d

upper
j

0 otherwise

�
ð59Þ

The squared violation energy is considered only when the calculated distance dj

exceeds the upper reference distance d
upper
j . This squared violation can then be

multiplied by a weighting factor Aj. A similar contribution is calculated for those

distances that violate a lower reference distance, dlower
j :

Elower
distance ¼

X
j

Ajðdj � dlower
j Þ2 if dj < dlower

j

0 otherwise

�
ð60Þ

For dihedral angle restraints the functional form is similar to that of Eqs. (59)

and (60). As before, the total violation, Edihedral, is a sum over upper and lower
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violations (i.e., Edihedral ¼ E
upper
dihedral þ Elower

dihedral). A dihedral angle oj can be

restrained by employing a quadratic square well potential using upper (oupper
j )

and lower (olower
j ) bounds on the variable values. However, due to the periodic

nature of these variables, a scaling parameter must be incorporated to capture

the symmetry of the system. Furthermore, by centering the full periodic region

on the region defined by the allowable bounds, all transformed values will lie in

the domain defined by [olower
j ��HWoj

; oupper
j þ�HWoj

], where �HWoj
is

equal to half the excluded range of dihedral angle values (i.e., �HWoj
¼ p�

ðoupper
j � olower

j Þ=2). This results in the following set of equations:

E
upper
dihedral ¼

X
j

Aj

�
1� 2

�
oj�oupper

j

2p�ðoupper
j
�olower

j
Þ

�2�
ðoj � oupper

j Þ2 if oj > oupper
j

0 otherwise

8<
:

ð61Þ

Elower
dihedral ¼

X
j

Aj

�
1� 2

�
oj�olower

j

2p�ðoupper
j
�olower

j
Þ

�2�
ðoj � olower

j Þ2 if oj < olower
j

0 otherwise

8<
:

ð62Þ

The force field energy term, Eforcefield of Eq. (57), models the nonbonded

interactions of the protein, which can consist of simple or more detailed energy

functions. In practice, when considering NMR restraints, force field terms are

often simplified to include only geometric energy terms such as quartic van der

Waals repulsions. Such functions neglect rigorous modeling of energetic terms

in order to ensure that experimental distance violations are minimized. In fact, a

basic representation for this target function would be

ES ¼ Edistance þ Edihedral ð63Þ

Here the Edistance function includes additional distance restraints to avoid van der

Waals contacts. Notice that when all restraints are satisfied, the objective

function is driven to zero.

A detailed modeling approach is proposed by using the ECEPP/3 force field

[38]. When considering an unconstrained minimization, this approach provides

the following objective function:

ED ¼ Edistance þ Edihedral þ EECEPP/3 ð64Þ

In contrast to Eq. (63), the detailed energy modeling greatly increases the

complexity of the objective function. It should also be noted that the trans-

formation from Cartesian to internal coordinate space results in highly nonlinear
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functions. That is, there is not a one-to-one correspondence between distances

and internal coordinates. The advantage for working in dihedral angle space is

that the variable set decreases, with the disadvantage being the increased

nonconvexity of the energy hypersurface.

2. Global Optimization

The determination of a three-dimensional protein structure defines an optimiza-

tion problem in which the objective function may correspond to one of the target

functions outlined in the previous section. For the simple case, the formulation

becomes

min
f

ESðfÞ ¼ Edistance þ Edihedral ð65Þ

A standard procedure for addressing this global optimization problem consists of

a combination of simulated annealing and molecular or torsional angle dynamics

[96]. Generally, multiple initial conformers are generated and optimized to

provide a set of acceptable structures. Typically, a set containing on the order of

100 acceptable conformers may be identified, from which a subset of similar

structures (approximately 20) are used to characterize the system. The simulated

annealing protocol is incorporated in an attempt to reduce trapping in local

minimum energy wells.

However, the minimization of complex target functions necessitates the use

of rigorous global optimization techniques. For the detailed target function,

given by Eq. (64), the unconstrained formulation is similar to formulation (65).

Through the use of the constrained optimization approach, the dihedral angle

bounds are implicitly included as box constraints. Furthermore, distance

restraints are treated explicitly. This reformulation removes both Edihedral and

Edistance from the target function, leaving only Eforcefield:

min
f

EECEPP/3

subject to Edistance
l ðfÞ � Eref

l ; l ¼ 1; . . . ;NCON

fL
i � fi � fU

i ; i ¼ 1; . . . ;Nf

ð66Þ

Here i ¼ 1; . . . ;Nf corresponds to the set of dihedral angles, fi, with fL
i and fU

i

representing lower and upper bounds on these dihedral angles. In general, the

lower and upper bounds for these variables are set to �p and p, although

appropriate bounds derived from NMR data are also suitable.

3. Torsion Angle Dynamics

Standard unconstrained molecular dynamics simulations have been used

extensively to model the folding and unfolding of protein systems [97–99]. In
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addition, several methods for NMR structure calculation have been based on

molecular dynamics in Cartesian space [96]. Torsion angle dynamics differs

from traditional molecular dynamics in that bond lengths and bond angles are

fixed at equilibrium values, thereby allowing for a transformation from the

Cartesian to the internal coordinate system. The constraints on the systems also

dampen high-frequency motions, which permits the use of longer time steps

during the numerical integration of the equations of motion. The use of TAD in

place of conventional MD has been found to improve the efficiency of NMR

structure prediction [94,95].

A major disadvantage for employing TAD in place of Cartesian MD is that

the equations of motion become much more complex for the constrained

system. For unconstrained Cartesian MD the accelerations of the atoms can

be calculated independently due to the decoupled nature of the equations of

motion. The addition of constraints to the Cartesian system transforms the

equations from a system of ODEs to a system of differential algebraic equations

(DAEs). The alternative to solving this system of DAEs is to transform the

equations of motion to the internal coordinate reference frame. In this case, the

solution of a linear matrix equation in each time step is required, which, due to

the highly coupled structure of the equations, scales as a cubic function of the

number of degrees of freedom (torsion angles). To avoid the potentially prohi-

bitive computational cost required for the solution of the equations of motion, a

fast recursive algorithm, which scales linearly with the number of torsion

angles, was implemented. The algorithm is based on spatial operator algebra

that has been used to simulate the dynamics of astronautical and robotic

equipment [100].

The algorithm solves for the torsional accelerations, �y:

MðyÞ�yþ Cðy; _yÞ ¼ 0 ð67Þ

In this equation, M is an N � N nonlinear mass matrix and C is the N-

dimensional vector of velocity-dependent (Coriolis and other) forces. y, _y, and �y
represent the torsional position, velocities and accelerations, respectively.

The ability to calculate the accelerations recursively relies on the chainlike

structure of the protein, in which each node of the chain represents a rigid body.

These rigid bodies consist of one atom or a cluster of atoms whose relative

positions are fixed. To simplify the explanation of the algorithm, an unbranched

chain will be considered, although the approach can be easily extended to

branched systems. For this simple case, the first rigid body, at one end of the

chain, defines the base (k ¼ 0), while the last rigid body, at the other end of the

chain, defines the tip (k ¼ N). The rotatable torsion angle between bodies k and

k � 1 is defined as yk.
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The framework of the algorithm to calculate �y can be broken down into three

steps:

Step 1. A recursion from the base to the tip is required to calculate the

positions, spatial velocities, Coriolis and gyroscopic terms for each of the

rigid bodies. To proceed, the 6� 6 spatial transformation matrix, fk,

between rigid bodies k and k � 1 must first be defined:

fk ¼
�

I3
~lðrk � rk�1Þ

03 I3

�
ð68Þ

Here I3 and O3 denote the 3� 3-dimensional identity and zero matrices,

while the ~l operator refers to the cross-product tensor associated with

rk � rk�1, where rk is the position vector that defines the reference frame

for rigid body k. The spatial velocity, Vk, can be computed from the

following relation:
Vk ¼ fT

k Vk�1 þ HT
k
_yk ð69Þ

The spatial velocity is a six-dimensional vector that combines both the

three-dimensional angular, o, and linear, v, velocities:

Vk �
ok

vk

� �
ð70Þ

Hk is also a six-dimensional vector with the first three elements

corresponding to the unit vector, ek, in the direction of the bond forming

the connection between rigid bodies k and k � 1:

Hk �
ek

0

� �
ð71Þ

The Coriolis and gyroscopic terms, ak and bk, respectively, can then be

calculated using the following relationships:

ak ¼
0

~ok�1½vk � vk�1�

� �
þ

~ok 0

0 ~ok

� �
HT

k
_yk ð72Þ

bk ¼
�

~okJk~ok

mk~ok~okYk

�
ð73Þ

Both ak and bk are six-dimensional vectors. mk, Yk, and Jk represent the

mass, the center-of-mass vector, and the 3� 3 inertia matrix for the rigid

body, respectively. Finally, the spatial inertia, Lk, of the rigid body about

the reference frame is given by the following 6� 6 matrix:

Lk ¼
�

Jk mk
~Yk

�mk
~Yk mkI3

�
ð74Þ
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Step 2. The next step requires a backward recursion from the tip, k ¼ N, to

the base, k ¼ 1. The recursion is used to store a number of auxiliary

quantities needed for the final forward recursion to calculate the accelera-

tions. In addition, the gyroscopic terms, bk, and the spatial inertia terms,

Lk, calculated in step 1 can be used to initialize two auxiliary quantities,

zk and Pk, respectively. Both Pk and zk are updated recursively using the

following intermediate terms:

Dk ¼ HkPkHT
k ð75Þ

Gk ¼ PkHT
k D�1

k ð76Þ
Ek ¼ �Hkðzk þ PkakÞ � rEk ð77Þ

Here Dk and Ek denote scalar quantities, whereas Gk is a six-dimensional

vector. The final equation requires the gradient of the potential function,

rEk. The recurrence relationships for Pk�1 and zk�1 are given by:

Pk�1  Pk�1 þ fkðPk �GkHT
k PkÞfT

k ð78Þ
zk�1  zk�1 þ fkðzk þ Pkak þGkEkÞ ð79Þ

Step 3. A final forward recursion from the base to the tip is used to obtain the
�y values. The six-dimensional vector ak is used to store intermediate

quantities, with ak equal to a vector of zeroes for k ¼ 0.

ak ¼ fT
kak�1 ð80Þ

�yk ¼ EkD�1
k � Gkak ð81Þ

The following recursion relation is used to update the values of ak:

ak  ak þHk
�yk þ ak ð82Þ

For branched molecular structures, each node can potentially spawn more

than one child so that both the inward and outward recursions must be modified.

In the case of an inward recursion, the results from each of the child nodes must

be summed up before moving up one level. In the case of the outward recursion,

each of the node branches requires a separate recursion.

The TAD is carried out using simulated annealing, with temperature control

provided by coupling to an external bath [101]. This coupling provides a means

for forcing or damping the torsional velocities using the following scaling factor

at time t:

fT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

b
þ T0

bTðtÞ

s
ð83Þ
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In this equation, b is a force constant, while T0 is the bath temperature and TðtÞ is

the actual temperature. The actual temperature is calculated from the kinetic

energy, Ekinetic, with the following relationship:

TðtÞ ¼ 2EkineticðtÞ
NfkB

ð84Þ

where kB is the Boltzmann constant. The value for fT is used to scale the torsional

velocities:

_yðtÞ  fT
_yðtÞ ð85Þ

Once torsional velocities have been determined, the accelerations, �y, can be

calculated using the recursive algorithm outlined above. A basic leap-frog

technique is then employed to calculate velocities at the half-time step, which

can be used to calculate torsional positions, y, and new estimated velocities at

the full-time step.

4. Algorithmic Steps

The algorithmic steps for the constrained aBB approach can be generalized to

any force field model or routine for solving constrained optimization problems.

Here, the aBB approach is interfaced with PACK [74] and NPSOL [28]. PACK is

used to transform to and from Cartesian and internal coordinate systems, as well

as to obtain function and gradient contributions for the ECEPP/3 force field and

the distance constraint equations. NPSOL is a local nonlinear optimization solver

that is used to locally solve the constrained upper and lower bounding problems

in each subdomain.

The implementation can be broken down into two main phases: initialization

and computation. The basic steps of the initialization phase are as follows:

1. Choose the set of global variables. Because the bounds on these variables

will be refined during the course of global optimization, they should be

selected based on their overall effect on the structure of the molecule. In

this work (and in general) the f and c dihedral angles provide the largest

structural variability and are chosen to constitute the global variable set.

2. Set upper and lower bounds on all dihedral angles (variables). If infor-

mation is not available for a given dihedral angle, the variable bounds are

set to [�p, p]. Because a constrained local optimization solver is used,

these box constraints are strictly enforced.

3. Identify the set of NOE-derived distance restraints to be used in the

constraints. In general, this set can include all intra- and inter-residue

restraints. In this work, only backbone sequential and medium to
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long-range information was used in developing the constraints, because

intra-residue restraints are less likely to affect the overall fold. Although

the formulation can handle multiple constraints, distance restraints were

included as one constraint (NCON ¼ 1) for the computational studies.

4. Choose the value of Eref
l to be used in the constraint equations. This can be

determined by simply performing several local constrained optimizations

or possibly a short global optimization run with simplified energy models.

In this work, information based on X-PLOR [96] results was used to

define the Eref parameter (see below).

5. Identify initial a values for both the objective and constraint functions.

6. Set initial best upper bound to an arbitrarily large value.

The computation phase of the algorithm involves an iterative approach,

which depends on the refinement of the original domain by partitioning along

the global variables. In each subdomain, upper and lower bounding problems

are solved locally and used to develop the sequence of converging upper and

lower bounds. The basic steps are as follows:

1. The original domain is partitioned along one of the global variables.

2. Lower bounding functions for both the objective and constraints are

constructed in both subdomains. A constrained local minimization is

performed using the following procedure:

a. 100 random points are generated and used for evaluation of the lower

bounding objective function and constraints. The point with the

minimum objective function value is used as a starting point for local

minimization using NPSOL.

b. If the minimum value found is greater than the current best upper

bound, the subdomain can be fathomed (global minimum is outside

region); otherwise the solution is stored.

3. The upper bounding problems (original constrained formulation) are then

solved in both subdomains according to the following procedure:

a. 100 random points are generated and used for evaluation of the

objective function and constraints. The point with the minimum

objective function value and feasible constraints is used as a starting

point for local minimization using NPSOL. If a feasible starting point

is not found, local minimization is not performed.

b. All feasible solutions are stored.

4. The current best upper bound is updated to be the minimum of those thus

far stored.

5. The subdomain with the current minimum value of Lforcefield is selected

and partitioned along one of the global variables.
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6. If the best upper and lower bounds are within a defined tolerance, the

program will terminate; otherwise it will return to Step 2.

To enhance the search for low-energy feasible points, the basic procedure

described in Step 3a is modified to include TAD. The following protocol is used:

1. Set counter, c ¼ 1. Perform TAD (1000 high-temperature steps followed

by 3000 annealing steps) using ES as the target function. The torsion angle

bounds of the current subdomain determine the dihedral angle restraint

functions. In addition to the NOE-derived distance restraints, sterically

based distance restraints are added to prevent van der Waals overlaps.

a. If the Edistance
l < Eref

l 8 l ¼ 1; . . . ;NCON, go to Step 2. Else go to

Step 1b.

b. Increment counter, c ¼ cþ 1. If c < 5, reduce weight of sterically

based distance restraints, perform new TAD and go to Step 1a. Else go

to Step 2.

2. Set counter, c ¼ 1. Perform local minimization using NPSOL with

dihedral angle box constraints to implicitly enforce bounds. The objective

function is a weighted combination of forcefield energy and distance

restraint terms:

E ¼ EECEPP/3 þ
X

l

WlE
distance
l ð86Þ

where the weights, Wl, are based on the violation of the distance

constraints:

Wl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Edistance

l

Eref
l

s
ð87Þ

a. If Edistance
l < Eref

l 8 l ¼ 1; . . . ;NCON, go to Step 3. Else go to Step 2b.

b. Increment counter, c ¼ cþ 1. If c < 5, increase weight of distance

restraint terms, perform TAD (100 high-temperature steps followed by

300 annealing Steps) and go to Step 2a. Else go to Step 3.

3. Solve the constrained minimization problem using NPSOL.

5. Computational Study

The global optimization algorithm was tested on Compstatin, a synthetic 13-

residue (ICVVQD WGHHRCT) cyclic peptide (disulfide bridge between the

Cys2 and Cys12 residues) that binds to C3 (third component of complement) and

inhibits complement activation [102]. Two-dimensional NMR techniques [103]

yield a total of 30 backbone sequential (including Hb - backbone), 23 medium-

and long-range (including disulfide), and 82 intra-residue NOE restraints. In
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addition, 7 f angle and 2 w1 angle dihedral restraints are available. In previous

work [103], traditional distance geometry-simulated annealing protocol was

utilized to minimize the associated target function in the Cartesian coordinate

space using the program X-PLOR [96]. NOE distance and dihedral angle

restraints were modeled using a quadratic square well potential, while van der

Waals overlaps were prevented through the use of a simple quartic potential

function.

The NMR refinement protocols resulted in a family of 21 structures with

similar geometries for the Gln5–Gly8 region. A representative structure was

obtained by averaging the coordinates of the individually refined structures and

then subjecting this structure to further refinement to release geometric strain

produced by the averaging process. The formation of a type I b-turn was

identified as a common characteristic for these structures.

The consistency of the ensemble of Compstatin solution structures was

determined by evaluating distance restraints for each of the original 21

structures (accession number 1a1p at the RCSB, http://www.rcsb.org), as well

as for the average Compstatin conformation. In considering distance restraints,

only backbone sequential and medium/long-range NOEs were considered. That

is, the 82 intra-residue restraints were neglected because they are less likely to

effect the overall fold of the Compstatin peptide. This results in a total of 52

restraints, with an additional restraint on the distance between the sulfur atoms

forming the disulfide bridge. In order to quantify these results, the violation

energy, EVIO, which can be calculated by summing Eqs. (59) and (60), was

calculated for each of the original PDB structures. In these calculations, the

value of the weighting factor (Aj) was assumed to be constant and set equal to

50 kcal/mol/Å2.

The results of the analysis, shown graphically in Fig. 25 indicate that the

average structure (Compstatin) possesses the third largest violation energy,

whereas the smallest value is provided by structure 8 (hCompstatini8). These

quantities provide a range of comparison for violation energies and were used to

set the constraint parameter, Eref , to 200 kcal/mol. This value is chosen so that

the sum of the violation energies will necessarily result in an improvement over

the violation energy for the average Compstatin structure.

To measure the performance of the proposed global optimization approach,

the ensemble and average Compstatin structures (hCompstatini and Compstatin)

were then used as starting points for local minimization. Because these

calculations are performed in the torsion angle space, which requires fixing

bond lengths and bond angles to equilibrium values, the corresponding

Compstatin PDB structures could only be used to derive torsion angle values.

These dihedral angles were then used as input to directly evaluate the

corresponding force field energy. Differences in bond lengths and bond angles

propagate through the generation of the corresponding ECEPP/3 structure,
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which produces an inherent RMSD between the PDB structure and the ECEPP/

3-generated structure. For example, when using the set of dihedral angles

calculated from the Compstatin PDB, the ECEPP/3 structure possesses a 0.581

Å all atom RMSD (all heavy atoms in backbone and side chains) with respect to

the original Compstatin structure, with a corresponding ECEPP/3 energy of

519.2 kcal/mol. In addition, due to the differences in bond lengths and angles,

the total distance violation for the ECEPP/3 structure (CompstatinECEPP)

increases from 6.9 to 8.7 Å, which results in a subsequent increase in violation

energy to 315 kcal/mol. The superposition of the original and ECEPP/3

Compstatin conformations is shown in Fig. 26.

Due to the relatively large distance violations and energies obtained after

transformation of PDB to PACK (ECEPP/3) structures, the 22 structures were

then subjected to local minimization. The problem formulation for local

minimization uses the set of 53 restraints for the constraint function, a constant

50 kcal/mol/Å weighting factor (Aj), and a constraint parameter, Eref , equal to

200 kcal/mol. In all cases, the corresponding violation energy reached the upper

bound value of 200 kcal/mol. The corresponding total distance violations in-

creased, with an average value of 6.766 Å. The smallest distance violation

(5.873 Å) was reported for structure number 10 (hCompstatiniLocal
10 ), whereas the

corresponding energy for this structure (�41.685 kcal/mol) was only slightly

above the average energy of �47.75 kcal/mol. The lowest energy structures

Figure 25. Violation energy, EVIO, for original Compstatin PDB structures.
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(�71.613 for hCompstatiniLocal
2 , �68.704 kcal/mol for hCompstatiniLocal

21 ,

�67.653 kcal/mol for hCompstatiniLocal
9 ) provided above average values for

total distance violation (6.963 Å, 6.832 Å, 7.120 Å, respectively). In addition,

the conformation obtained from the average Compstatin structure (Compstatin)

exhibited near average values for energy (�52.283 kcal/mol) and total distance

violations (6.392 Å). The range of ECEPP/3 energies after local minimization

are shown in Fig. 27.

The structural characteristics of these locally minimized structures were

quantified using RMSD (root-mean-squared deviation) calculations. For the

original PDB structures, comparison with the average Compstatin structure

provided RMSD values between 1 and 2 Å for only backbone atoms. As

expected, these structures possess common structural features. However,

when comparing original PDB structures and their locally minimized counter-

parts, most RMSD values are larger than 2 Å, indicating that significant

conformational changes occur during local minimization. This is due to both

the reduced set of NOE restraints in the constraint function and the role of the

detailed energy force field. In contrast, the RMSD values for the b-turn region

remain consistently low when comparing the original PDB structures to their

locally minimized counterparts. These results indicate that the b-turn is a

conserved structural feature, even with the addition of the detailed energy

model.

Figure 26. Superposition of (CompstatinOrig) structure (in light gray) and corresponding

ECEPP/3 structure (in black) using calculated dihedral angles (CompstatinECEPP).
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The constrained global optimization approach was first applied to Comp-

statin structure prediction without the use of TAD. A subset of 26 (all f and c)

torsion angles, from a total of 73, were treated globally, whereas the remaining

ones were allowed to vary locally. As was the case for local minimization, the

same set of restraints were used to formulate the nonlinear constraint, with

a constant 50 kcal/mol/Å weighting factor and a constraint parameter equal to

200 kcal/mol. The lowest-energy structure satisfying the constraint functions

provided an ECEPP/3 energy of �85.71 kcal/mol, an energy value more than

15 kcal/mol lower than those values provided by local minimization. The global

minimization required approximately 40 CPU hours on a HP C160. The total

distance violation equaled 6.690 Å, which is near the average distance violation

for the local minimum structures.

RMSD calculations were performed to again quantify the structural differ-

ences between the global minimum energy structure and the other Compstatin

structures. RMSD values between the full backbone and the b-turn segments of

the 22 locally minimized PDB structures and the global minimum energy

structure are plotted in Figs. 28 and 29, respectively. When comparing

full backbone RMSD vcalues, the hCompstatiniLocal
9 , hCompstatiniLocal

21 ,

hCompstatiniLocal
19 and hCompstatiniLocal

17 provide the best agreement with the

global minimum energy structure. These structures also correspond to four of

the lowest energy local minima, indicating that some of the lowest energy

Figure 27. Locally minimized energy, EECEPP=3, for Compstatin structures.
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Figure 28. RMSD values for backbone when comparing global minimum energy structure to

locally minimized PDB structures.

Figure 29. RMSD values for Gln5–Gly8 backbone when comparing global minimum energy

structure to locally minimized PDB structures.
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conformers exhibit similar backbone structural characteristics. In contrast, the

lowest energy local minimum, hCompstatiniLocal
2 , is less similar to the global

minimum energy structure. For the b-turn segment, the correlation between low

RMSD values and low energy local minima does not exist. This observation,

coupled with the relatively low RMSD values between all structures, indicates

that the b-turn structure is a characteristic for all conformers, including the

global minimum energy structure. Plots for superpositioning (backbone atoms)

of the average local minimum energy structure Compstatin
Local

and the

global minimum energy structure are given in Fig. 30.

6. Comparison with TAD: DYANA

A comparison to an independent method for solving distance restraint problems

was also made in order to gauge the performance of the proposed aBB

constrained formulation. Specifically, a torsional angle dynamics (rather than a

Cartesian coordinate dynamics such as X-PLOR) package was used [94]. The

coupled simulated annealing/TAD protocol from DYANA was applied to a

starting sample of 1000 randomly generated structures. The same dihedral angle

constraints and 53 medium- and long-range distance constraints were con-

sidered; that is, no heuristic methods for reducing the variable space were

employed. In the case of unspecified symmetric hydrogens, a pseudoatom

approach, in which the restraint is based on a pseudoatom central to the

symmetric hydrogen atoms, was used. A subset consisting of the 20 conformers

Figure 30. Superposition of global minimum (in black) and Compstatin
Local

(in light gray)

structures. The left panel shows the full (backbone atom) structure, whereas the right panel compares

only the b-turn region.
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exhibiting the best target values were then used as starting points for a second set

of runs. Finally, a set of five conformations (with the smallest violations) were

used for further analysis. Because each method (DYANA vs. ECEPP/3)

employed different structural definitions, based on fixed bond lengths and

bond angles, a direct comparison was not sufficient. Instead, the DYANA-

generated structures were used as starting points for local minimizations using

the local constrained formulation. In all cases, the violations reached the upper

bound of 200 kcal/mol for Eref. The corresponding violation values, including

final local minimum energy values (EECEPP=3), are given in Table XXI.

The results given in Table XXI indicate that although the DYANA con-

formers satisfy the corresponding constraint, their energy values are signifi-

cantly higher than that of the global minimum energy structure (more than

70 kcal/mol). This can be anticipated because the goal of the DYANA algorithm

is to minimize distance restraint violations via penalty term optimization, while

neglecting any detailed force field terms. In fact, an analysis of the structural

characteristics indicate that the type I b-turn does not appear along the Gln5–

Gly8 backbone in these structures. This is verified by the data in Table XXII,

which gives the f and c dihedral angle values for the central b-turn residues.

TABLE XXI

Local Minimization Results for the Best DYANA (TAD)-Generated Conformationsa

Local Minimum DVIO (Å) EVIO (kcal/mol) EECEPP/3 (kcal/mol)

CompstatinDYANA
1 6.234 200.0 �11.945

CompstatinDYANA
2 6.538 200.0 6.782

CompstatinDYANA
3 6.163 200.0 �10.208

CompstatinDYANA
4 5.476 200.0 �14.516

CompstatinDYANA
5 6.927 200.0 5.006

aHere DVIO refers to the total distance violation, EVIO is the corresponding violation, and energy and

EECEPP/3 is the force field energy at the local minima.

TABLE XXII

f and c Values for Central Residues (Asp6 and Trp7) for Anticipated b-Turn Regiona

Local minimum f2 (�) c2 (�) f3 (�) c3 (�)

CompstatinDYANA
1 166.9 �66.07 �80.00 �40.40

CompstatinDYANA
2 165.9 �65.55 �81.02 �33.99

CompstatinDYANA
3 180.0 �60.94 �81.76 �42.43

CompstatinDYANA
4 168.8 �50.32 �80.00 �42.22

CompstatinDYANA
5 165.4 �72.75 �97.79 �39.86

aThe subscripts refer to the second and third residues in the Gln5–Gly8 sequence.
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The problem is evidenced by the Asp6 residue, which has f–c values in a

forbidden region of the Ramachandran plot. It appears that this may be related

to clustering of the side chains in the DYANA-predicted structures.

In order to further examine this deviation from the previous results (which

define a type I b-turn), the DYANA protocol was also tested on the full set of

restraints, including intra-residue distances. The five DYANA-predicted struc-

tures exhibiting the lowest target function values were then subjected to local

minimization using the constrained formulation. As before, only the 53 medium-

and long-range distance restraints were included during the local minimizations.

As the results in Table XXIII show, the average energy has decreased for this set

of conformers. However, the structural analysis of the Gln5–Gly8 region, given

in Table XXIV still indicates that a type I b-turn is not preferred.

An additional comparison between the structural characteristics of these

(DYANA) local minima and the global minimum was also performed using

RMSD calculations, as given in Tables XXV and XXVI. These values are

consistently larger than those between the average (Compstatin
Local

) and local

TABLE XXIII

Local Minimization Results for the Best DYANA (TAD)-Generated

Conformations Using All Restraints.a

Local minimum DVIO (Å) EVIO (kcal/mol) EECEPP/3 (kcal/mol)

CompstatinDYANA
1c 6.222 200.0 24.714

CompstatinDYANA
2c 5.643 200.0 �31.216

CompstatinDYANA
3c 6.527 200.0 �17.569

CompstatinDYANA
4c 7.135 200.0 �27.110

CompstatinDYANA
5c 5.926 200.0 �14.656

aHere DVIO refers to the total distance violation, EVIO is the corresponding violation, and energy and

EECEPP/3 is the forece field energy at the local minima.

TABLE XXIV

f and c Values for Central Residues (Asp6 and Trp7) for Anticipated b-Turn Regiona

Local Minimum f2 (�) c2 (�) f3 (�) c3 (�)

CompstatinDYANA
1c �180.0 �58.61 �80.00 �47.72

CompstatinDYANA
2c 177.5 �63.77 �82.74 �33.53

CompstatinDYANA
3c 180.0 �63.98 �82.18 �23.32

CompstatinDYANA
4c 163.0 �58.56 �109.2 �4.53

CompstatinDYANA
5c �180.0 �70.46 �92.40 �41.22

aThe subscripts refer to the second and third residues in the Gln5– Gly8 sequence.
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minimum solutions structures (hCompstatiniLocal
i ) and global minimum energy

structure. The RMSD values indicate not only that there is significant structural

difference over the entire structure (Table XXV), but also that the b-turn region

(Table XXVI) is not a structural characteristic of the DYANA local minima.

This is evidenced by the superpositioning of the lowest-energy DYANA

structure and the global minimum energy structure, given in Fig. 31.

7. Global Optimization and Torsion Angle Dynamics

The modified constrained global optimization was also applied to the Compstatin

structure prediction problem using the same constraint function and parameters

[104]. The goal of introducing TAD as a component of the upper bound solution

approach is to increase the number of feasible points available for initialization

of the constrained local minimization. Initially, TAD is used in combination with

simple van der Waals overlap restraints to drive the distance violations to zero.

TABLE XXV

RMSD Values for Full Compstatin Structuresa

Local Minimum Heavy Atoms Backbone Atoms

CompstatinDYANA
1c 4.117 2.812

CompstatinDYANA
2c 4.866 3.893

CompstatinDYANA
3c 5.243 3.943

CompstatinDYANA
4c 4.892 2.654

CompstatinDYANA
5c 4.506 3.180

aColumn 2 reports RMSD using all heavy atoms, while column 3 accounts for only backbone atoms

(N, Ca, C0). Both columns compare the DYANA local minimum structures (CompstatinDYANA
i ) to the

global minimum Compstatin PDB structure (CompstatinGlobal).

TABLE XXVI

RMSD Values for the b-Turn Regions (Residues 5 through 8)a

Local Minimum Heavy Atoms Backbone Atoms

CompstatinDYANA
1c 1.163 0.625

CompstatinDYANA
2c 1.473 0.732

CompstatinDYANA
3c 1.607 0.721

CompstatinDYANA
4c 1.327 0.721

CompstatinDYANA
5c 1.277 0.781

aColumn 2 reports RMSD using all heavy atoms, while column 3 accounts for only backbone atoms

(N, Ca, C0). Both columns compare the DYANA local minimum structures (CompstatinDYANA
i ) to the

global minimum Compstatin PDB structure (CompstatinGlobal).
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Taken independently, this methodology is comparable to the typical implemen-

tation of TAD for NMR structure prediction [94]. Although there are potential

deficiences in the independent TAD algorithm; that is, the simplified force field

term is insufficient for sparse sets of distance restraints.

The use of TAD in the context of the global optimization approach surmounts

this difficulty by using an iterative TAD scheme with two forms of the target

function. The first set of TAD runs focuses on the reduction of the distance

violations, while employing a simplified forcefield in the form of additional

distance restraints to avoid atomic overlaps. This approach mimics the effects of

a typical TAD approach for structure prediction. To ensure that these con-

formers provide low energy, this step is then followed by unconstrained

minimization with a hybrid distance and ECEPP/3 energy objective function.

If the ECEPP/3 energy is acceptably low, the algorithm proceeds to the

constrained local minimization step, otherwise an iterative set of TAD runs

are performed with readjustment of the relative weight of the distance and

ECEPP/3 terms. Fig. 32 shows a typical sequence for both the ECEPP/3 and

distance violations energy during one solution of the upper bounding problem

for Compstatin.

The results of the combined constrained global optimization and TAD

algorithm can be assessed by examining the sequence of ECEPP/3 energies

obtained from the solution of the upper bounding problems, as depicted in

Fig. 33. When compared to the original algorithm, the TAD implementation

augments the number of feasible starting points by more than a factor of

two. This enhancement leads to earlier identification of low-energy conformers.

Figure 31. Superposition of global minimum (in black) and CompstatinDYANA
1c (in gray)

structures. The left panel shows the full (backbone atom) structure, whereas the right panel compares

only the b-turn region.
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Figure 32. Log plot of EECEPP/3 and Edistance during a typical solution to the upper bounding

problem for C3.

Figure 33. Energy values for Compstatin conformers obtained from combined constrained

global optimization and TAD algorithm.
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In particular, conformers with energies less than �70 kcal/mol, and thus lower

in energy than the locally minimized PDB structures, are identified within the

first 10 iterations of the global optimization approach. This property has

important algorithmic implications, including the ability to fathom regions

based on the current estimate of the global minimum. In general, the TAD-

enhanced search provides more consistent and denser population of low-energy

conformers.

Both experimental and theoretical methods exist for the prediction of protein

structures. In both cases, additional restraints on the molecular system can be

derived and used to formulate a nonconvex optimization problem. Here, the

traditional unconstrained problem was recast as a constrained global optimiza-

tion problem and was applied to protein structure prediction using NMR data.

Both the formulation and solution approach of this method differ from

traditional techniques, which generally rely on the optimization of penalty-

type target function using SA/ MD protocols.

As a first step, the penalty-type restraint functions were replaced by nonlinear

constraints, which can be individually enumerated for all or subsets of the

distance restraints. In addition, the objective function was transformed to a full

atom force field potential, a modification that should be particularly useful for

systems possessing sparse set of restraints. To solve this reformulated molecular

structure prediction problem, the concepts of a deterministic global optimization

approach, aBB, were applied. This methodology can be used to develop

theoretical guarantees for convergence to the global minimum of nonconvex

constrained problems. The algorithm was further enhanced by modifying the

upper bounding solution approach to include an iterative scheme involving

TAD.

The approach was applied to the Compstatin structure prediction problem

using both the original TAD approach and the coupled aBB-TAD approach.

When considering basic structural features, such as the formation of a type I

b-turn, the predicted structure was found to agree with results based on X-PLOR

[96]. However, constrained global optimization was able to identify conformers

with significantly lower energies than those obtained from either local mini-

mization or independent TAD algorithms. In particular, the coupled aBB-TAD

implementation consistently produced dense populations of low-energy con-

formers.

C. Perspectives and Future Work

1. Structure Prediction of Polypeptides

In spite of pioneering contributions and decades of effort, the ab initio

prediction of the folded structure of a protein remains a very challenging

problem. The approaches for the structure prediction of polypeptides can be
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classified as (i) homology or comparative modeling methods, (ii) fold recogni-

tion or threading methods, (iii) ab initio methods that utilize knowledge-based

information from structural databases (e.g., secondary and/or tertiary structure

restraints), and (iv) ab initio methods without the aid of knowledge-based

information.

Knowledge-based ab initio methods exploit information available from protein

databases regarding secondary structure, introduce distance constraints, and ex-

tract similar fragments from multiple sequence alignments in an attempt to

simplify the prediction of the folded three-dimensional protein structure.

Significant contributions include the work of Levitt and co-workers [40,105],

Skolnick and co-workers [106,107], Baker and co-workers, [108,109], Dill and

co-workers, [110], and Friesner and co-workers, [93,111,112]. Ab initio methods

that are not guided by knowledge-based information represent the most

challenging category. Important advances include the pioneering work of

Scheraga and co-workers [113–115], Rose and co-workers [116], and Dill and

co-workers [117,118]. Orengo et al. (1999) [119] provide a recent assessment

of the current status of both types of ab initio protein structure prediction

approaches.

We have recently developed the novel ASTRO-FOLD approach for the ab

initio prediction of the three-dimensional structures of proteins [120]. The four

stages of the approach are outlined in Fig. 34. The first stage involves the

identification of helical segments and is accomplished by: partitioning the

amino acid sequence into pentapeptides such that consecutive pentapeptides

possess an overlap of four amino acids; atomistic level modeling using the

selected force field; generating an ensemble of low-energy conformations;

calculating free energies that include entropic, cavity formation, polarization

and ionization contributions for each pentapeptide; and calculating helix

propensities for each residue using equilibrium occupational probabilities of

helical clusters.

In the second stage, b-strands, b-sheets, and disulfide bridges are identified

through a novel superstructure-based mathematical framework originally estab-

lished for chemical process synthesis problems [121]. Two types of super-

structure are introduced, both of which emanate from the principle that

hydrophobic interactions drive the formation of b-structure. The first one,

denoted as hydrophobic residue-based superstructure, encompasses all potential

contacts between pairs of hydrophobic residues (i.e., a contact between two

hydrophobic residues may or may not exist) that are not contained in helices

(except cystines that are allowed to have cystine–cystine contacts even though

they may be in helices). The second one, denoted as b-strand-based super-

structure, includes all possible b-strand arrangements of interest (i.e., a b-strand

may or may not exist) in addition to the potential contacts between hydrophobic

residues. The hydrophobic residue-based and b-strand-based superstructures are
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formulated as mathematical models that feature three types of binary variables:

(i) representing the existence or nonexistence of contacts between pairs of

hydrophobic residues; (ii) denoting the existence or nonexistence of the

postulated b-strands; and (iii) representing the potential connectivity of the

postulated b-strands. Several sets of constraints in the model enforce physically

legitimate configurations for antiparallel or parallel b-strands and disulfide

bridges, while the objective function maximizes the total hydrophobic contact

energy. The resulting mathematical models are Integer Linear Programming

(ILP) problems that not only can be solved to global optimality, but also can

provide a rank ordered list of alternate b-sheet configurations.

The third stage serves as a preparative phase for atomistic-level tertiary

structure prediction, and therefore it focuses on the determination of pertinent

information from the results of the previous two stages. This involves the

Figure 34. Overall flowchart for the ab initio structure prediction using ASTRO-FOLD. The

first stage addresses the prediction of helical segments based on free energy calculations of

overlapping oligopeptides. The second stage introduces a superstructure-based framework coupled

with integer-linear optimization for the prediction of a rank-ordered list of b-sheets and disulfide

bridges. The third stage derives lower and upper bounds on the (f;c) dihedral angles of the

secondary structure residues, the distances between pairs of contacts of hydrophobic residues, and

the (f;c) angles of the loop/turn residues. The fourth stage introduces a constrained formulation for

the tertiary structure prediction and its solution via the aBB global optimization approach enhanced

by torsion angle dynamics. An iterative loop over the final three stages allows for analysis of

multiple b-sheet and disulfide bridge configurations.
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introduction of lower and upper bounds on dihedral angles of residues

belonging to predicted helices or b-strands, as well as restraints between the

Ca atoms for residues of the selected b-sheet and disulfide bridge configuration.

Furthermore, for segments that are not classified as helices or b-strands, free

energy runs of overlapping heptapeptides are conducted to identify tighter

bounds on their dihedral angles.

The fourth and final stage of the approach involves the prediction of the

tertiary structure of the full protein sequence. The problem formulation, which

relies on dihedral angle and atomic distance restraints acquired from the

previous stage, is equivalent to the problem outlined in Section III.B. The

generation of low-energy starting points for constrained minimization is

enhanced by introducing torsion angle dynamics [94] within the context of

the aBB global optimization framework, as described in Section III.B.7.

An important question regarding the prediction of the native folded state

of a protein is how the formation of secondary and tertiary structure proceeds.

Two common viewpoints provide competing explanations to this question. The

classical opinion regards folding as hierarchic, implying that the process

is initiated by rapid formation of secondary structural elements, followed by the

slower arrangement of the tertiary fold. The opposing perspective is based on

the idea of a hydrophobic collapse, and it suggests that tertiary and secondary

features form concurrently. This work bridges the gap between the two view-

points by introducing a novel ab initio approach for tertiary structure prediction

in which helix nucleation is controlled by local interactions, while nonlocal

hydrophobic forces drive the formation of b-structure. The agreement between

the experimental and predicted structures validates the use of the ASTRO-

FOLD method for generic tertiary structure prediction of polypeptides.

2. Parallelization Issues

The extension of our global optimization approaches to larger protein systems

requires the use of distributed computing environments. Such implementations

have been developed independently of system architecture, and the code has been

compiled and optimized using the MPI (message passing interface) standard.

On a fundamental level, these parallel implementations exploit the inherent

branch-and-bound structure of the aBB algorithm. A major characteristic of a

branch and bound framework is that as the size of the domain decreases, the

quality of the representation improves, which implies that finer initial domains

result in better approximations. This is equivalent to simultaneously exploring

multiple domains in order to perform a more efficient search, which is the

rationale behind advocating the development of a parallel algorithm.

Distributed frameworks for branch-and-bound algorithms can rely on two

basic protocols. The most simplistic structure consists of a tree hierarchy in

which a master processor directs the overall flow of the algorithm. In this case,
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global communication constructions can be maintained in order to control

termination and domain processing. The second alternative relies on a ring

structure in which all processors act locally and utilize predetermined commu-

nication patterns to relay information and detect termination.

Initial implementations of the aBB algorithm have employed the tree

hierarchy through a master–slave decomposition approach. This requires the

creation of only one communication group in which a single master processor

maintains the list of lower bounds. The initial domains for the slave nodes are

determined by the master through partitioning of the global domain to the appro-

priate level in the branch-and-bound tree, and these regions are sent to the nodes

for further processing. Once the upper and lower bounding problems have been

solved, the relevant information is returned to the master, which extracts and

sends to the idle node the next region from the lower bound list. The local

processing of each domain can also encompass several levels in the branch-and-

bound tree depending on the computational requirements for solving one node

in the tree. This procedure can be efficient for treating large protein systems

because of low communication time overhead. That is, the time spent in solving

the lower and upper bounding problems for each region is long relative to the

time required for communication.

The overall protein folding solution approach also affords other levels of

parallelism. For example, during the helix prediction phase, the full protein is

decomposed into smaller segments. This decomposition allows us to identify the

major secondary structural components (a-helical, b-sheet) of the protein by

solving smaller global optimization subproblems (using aBB) in parallel. The

extent of parallelism depends on the length of these subsegments and the

parallelism of the underlying aBB algorithm.

IV. DYNAMICS OF PROTEIN FOLDING

A. Background

The protein folding problem is a very important problem in computational

chemistry and molecular biology. The ability of a protein to function properly

within the cell depends on its tertiary structure. Considering how precisely and

reliably a protein shapes itself to perform its specific task, very little is

understood about the mechanism of protein folding. Better understanding and

insight on the mechanism of protein folding are of major importance.

In Section III, we discussed the structure prediction problem, in which the

native conformation is sought. In this section, we pursue the protein-folding

problem further by studying the folding mechanism—that is, the pathways

followed by a protein as it proceeds from its initial (extended) conformation to

its native state, as well as the rates associated with these folding processes.
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1. Studying the Dynamics of Secondary Structure Formation

According to the hierarchic model of protein folding, the time scale of formation

of secondary structures, such as a-helices and b-sheets, within a given protein

occurs on a much shorter time scale than the formation of tertiary structure.

Whether this is true or not, there is much evidence—both theoretical and

experimental—that the folding of large proteins begins with the formation of

these secondary structure elements [122,123]. Therefore, an initial step in

understanding protein folding is understanding the folding process of the

secondary structures such as a-helices and b-sheets. Insights can be gained into

the folding mechanism of these structures by studying short peptides that exhibit

the structure we wish to study.

Alpha helices have been studied for a relatively long time [124,125].

Numerous short peptides have been observed in the lab to form a-helices in

solution, and have been the subject of many experimental and theoretical studies

[4,5,126–131]. Our recent analysis of tetra-alanine, the shortest peptide to form

an a-helix, has provided us with enormous insights into the folding mechanism

of these structures and will be presented in Section IV.C.

The situation is very different for b-sheet structures. Until recently, experi-

mental studies of these structures have been mostly unsuccessful, largely due to

the fact that short peptides which fold into a b-sheet conformation tend to

aggregate in solution [125]. These difficulties have finally been overcome with

the recent discoveries of designed sequences, such as Beta-nova [132] and

others [133,134], as well as the second b-hairpin fragment of Protein G

(residues 41–56) [135], thus opening the door to a proper study of b-hairpin

and b-sheet formation [136–144]. Our ongoing efforts to analyze the Protein G

fragment (41–56) will be discussed in Section IV.E.

2. Searching for Stationary Points

A promising approach to understanding protein folding is the study of its

potential energy surface. The first step in the study of any potential energy

surface is the identification of stationary points (local minima and saddle points),

because these points play a crucial role in defining the topography of the surface.

The local minima represent stable configurations of the protein molecule, and the

first-order saddle points generally correspond to transition states that connect two

such configurations. A protein-folding process can be thought of as a transition

between two local minima through a transition state, or a series of such

transitions.

The problem of finding stationary points of a potential energy surface is an

old one, and numerous methods have been developed to solve it. The most

obvious method is applying the Newton–Raphson method to the equation

rV ¼ 0. The Newton–Raphson method tends to yield a solution whenever
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the initial guess is close to a stationary point and the Hessian matrix has the

appropriate signature for the type of stationary point desired (minima, first-order

saddle, etc). It cannot be used, for example, to walk away from a local minimum

towards a first-order saddle point.

The various ‘‘eigenmode-following’’ methods are sophisticated variants of

the Newton–Raphson method [145–150]. The Hessian is diagonalized, and a

modified Newton–Raphson step is generated by ‘‘shifting’’ some of the

eigenvalues of the Hessian, from positive to negative or vice versa, before

applying its inverse. These methods allow one to step away from local minima

in search of transition states, and vice versa.

There are a number of stochastic methods used to find stationary points [151].

Local minima can be obtained by frequent quenching of a constant energy (or

temperature) trajectory [82]. Simulated annealing by running a constant

temperature trajectory simulation, slowly reducing the temperature to zero in

the process, can sometimes lead to good candidates for the global minimum.

The method of ‘‘slowest slides’’ [152] has been used to search for transition

states connecting two given local minima: A constant energy trajectory is

followed during a transition from one local minimum to the other, and the

maximum along that trajectory is taken as an initial guess for the transition state.

The global minimum can also be found by use of genetic algorithms, in

which new conformations are generated from old conformations by random

mutations in the hope of eventually lowering the potential energy. Of particular

interest to us is the Conformation Space Annealing (CSA) algorithm [115,153,

154], which is a combination of genetic, annealing, and buildup methods. This

algorithm can also be used to generate a variety of low-energy conformations.

Other methods exist for searching for the global minimum of a potential

energy surface. Diffusion equation and distance scaling methods have been

applied to the problem of finding the global minimum of a potential energy sur-

face [155]. Smoothing transformations are applied to the potential energy

surface to eliminate the irrelevant local minima. The remaining minima are

tracked back to the original potential energy surface as the transformations

are gradually removed. Another method involves obtaining a large sample of

local minima and forming a ‘‘convex global underestimator’’ of the potential

energy surface based on those sample points [156]. The global minimum of the

original potential energy surface is sought in the vicinity of the global minimum

of the convex global underestimator.

Many dynamical studies of protein folding are carried out these days by

performing molecular dynamics simulations, in which the time evolution of the

protein’s configuration is determined directly by solving Newton’s equations of

motion. Not only is it possible to obtain numerous low-energy minima in the

vicinity of the starting point, but rate and pathway information can also be

inferred directly from the trajectories generated by these simulations. A major
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drawback of these simulations, however, is their computational expense.

Current limitations on simulations are on the order of a few hundred nanose-

conds of real time (a 1-ms simulation has been reported recently [97]), which is

far too short to enable a full simulation of the folding process of even a modest

sized protein.

All of these methods, good in their own right, share one very important

drawback: There is no guarantee that all (or even the most important) local

minima and first- or higher-order transition states will be found. In this chapter,

we propose a method of finding all stationary points of a given potential energy

surface in which we apply the aBB deterministic branch-and-bound global

optimization algorithm to the system of equations qV=qxi ¼ 0. The general

algorithm is discussed in Section II.B, and its specific application to the

stationary point search is discussed in Section IV.B. We have successfully

applied this method to small systems, such as triatomic molecules, alanine,

alanine dipeptide, and tetra-alanine [130,131]. We will discuss tetra-alanine in

Section IV.C.

3. Analyzing the Potential Energy Surface

Once the minima and first-order saddles are determined, the potential energy

surface can be analyzed. The folding mechanism of the protein can be

understood by enumerating the reaction pathways from the extended conforma-

tions to the native state. The first step in constructing the pathways is to

determine for each transition state which two minima it connects. This is

accomplished by performing a downhill search from the transition state along

each of the two reaction coordinate directions. The result is a list of minimum–

saddle–minimum ‘‘triples.’’ The reaction pathways can then be enumerated by

joining these triples together in chains using graph theory techniques.

Transition rates can be calculated using Rice–Ramsperger–Kassel–Marcus

(RRKM) theory [157]. The basic assumptions of RRKM theory is that the

protein can be treated thermodynamically in the vicinity of the minima as well

as the transition state, and that the transition is completed once the transition

state is crossed (i.e., there are no re-crossings). Once the transition rates have

been determined, the Master equation can be solved for the occupation

probabilities of each state as functions of time. This gives us a direct indication

of how long it takes for a protein prepared in a given unfolded state to reach its

native state. It is also possible to use this information to calculate the time

evolution of other quantities, such as (ensemble-averaged) energies, atomic

distances, and dihedral angles.

Becker and Karplus [4] proposed a graphical representation of the topogra-

phy of a potential energy surface based on the connectivity tree originally

introduced by Czerminiski and Elber [5]. They define a finite energy (tempera-

ture) generalization of the ‘‘catchment region.’’ As the energy (temperature) is
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increased, regions that were once disconnected by high barriers begin to merge.

This coalescence process is described by means of a ‘‘energy (temperature)

disconnectivity graph.’’ The shape of the disconnectivity graph reveals an

enormous wealth of dynamical information. We extended this idea by con-

structing a ‘‘rate disconnectivity graph’’ that is based on transition rates, rather

than energy levels or barrier heights.

We have applied these methods to tetra-alanine (an a-helix), which we

discuss in Section IV.C, and to the 41–56 fragment of Protein G (a b-hairpin),

which we discuss in Section IV.E.

B. The aBB Global Optimization Approach

Stationary points of all orders (i.e., minima, maxima, first-order and higher-order

transition states) of a given potential energy surface VðxÞ are determined by the

constraints

qV

qxi

¼ 0 ; i ¼ 1; . . . ;Nx ð88Þ

where Nx is the number of variables: x ¼ ðx1; . . . ; xNx
Þ. Equation (88) is an

example of a nonlinearly constrained system of algebraic equations. Indeed, (88)

can be obtained from (17) in Section II.B.1 by assigning fiðxÞ ¼ qV=qxi for

i ¼ 1; . . . ;Nf ¼ Nx, and Ng ¼ 0.

In Section II.B., we explained how such systems of equations can be solved

using the aBB global optimization algorithm. This algorithm applies whenever

the constraint functions qV=qxi are twice continuously differentiable (C2)—in

other words, whenever the potential energy function itself is C3. Unlike other

methods of locating stationary points, the aBB provides a rigorous theoretical

guarantee of finding all of the stationary points on a potential energy surface.

According to the aBB algorithm, the original problem (88) is first reex-

pressed as a global optimization problem by introducing a slack variable:

min
x;s

s

subject to qV=qxi � s � 0 ; i ¼ 1; . . . ;Nx

�qV=qxi � s � 0 ; i ¼ 1; . . . ;Nx

xL � x � xU

ð89Þ

The global minima of (89) with s ¼ 0 correspond to solutions to the original

problem (88).

Configuration space is searched for stationary points by subdividing the full

conformational space into smaller and smaller regions. At each stage, the
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current region is tested for possible stationary points by solving the lower

bounding problem:

min
x;s

s

subject to qV=qxi�aþi
X

k

ðxU
k � xkÞðxk � xL

k Þ � s � 0

�qV=qxi�a�i
X

k

ðxU
k � xkÞðxk � xL

k Þ � s � 0

xL � x � xU

ð90Þ

The left-hand side of each constraint in (90) is a convex underestimator of the

corresponding term in (89), and it is obtained by subtracting off a sufficiently

large quadratic term. The lower bounding problem (90) is indeed convex,

provided that the coefficients a�i satisfy

aþi 
 �
1

2
min

x2½xL;xU �
flkðHqV=qxi

ðxÞÞ; 0g

a�i 
 þ
1

2
max

x2½xL;xU �
flkðHqV=qxi

ðxÞÞ; 0g
ð91Þ

Assuming that (91) is satisfied, the lower bounding problem is convex and can be

solved to global optimality by any commercial local optimization package. The

global minimum sLB of (90) provides a valid lower bound of the global minimum

of (89), and thus it can be used to check if a stationary point can exist in the

current region ½xL; xU �. If sLB > 0, no such solution exists, and the region can be

fathomed. If sLB � 0, then a solution may or may not exist in ½xL; xU �, and so that

region will be subdivided and both subregions checked by the same procedure.

The aBB algorithm terminates when all regions have either been fathomed, or

reduced sufficiently in size at which point a solution to (88) is obtained by a local

search.

Calculating values of a�i according to (91) is difficult in general because the

Hessian matrices HqV=qxi
depend on x. A simplified method of calculating a�i is

to start with small values of a�i (e.g., a�i ¼ 5) and increase the values of a�i until

no new solutions are found. This can be a practical solution to many problems

where the correct values of a�i are difficult to determine. However, this method

has the one serious drawback in that it sacrifices the theoretical guarantee of

finding all solutions. In spite of this fact, we were able to identify all minima

and first-order transition states using modest values of a�i for alanine, alanine

dipeptide, and tetra-alanine. Tetra-alanine will be discussed in Section IV.C.

A more robust method involves calculating the Hessian matrices HqV=qxi
at

various grid points to get a sample of required a�i values. First we select a grid,
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fxkg. Then we evaluate the Hessian for each constraint at each grid point,

HqV=qxi
ðxkÞ, and use (91) to determine precomputed values of a�i ðxkÞ at each

grid point. During the aBB run, appropriate values of a�i for a given region are

determined by selecting the maximum a�i over all grid points contained in the

region. This method of generating a�i was used when we studied triatomic

molecules, which is discussed in Ref. 130.

C. Dynamics of Coil-to-Helix Transitions

In this section we attempt to elucidate the formation of a-helices by studying

tetra-alanine, which is one of the smallest peptides that can exhibit a full

a-helical turn. Tetra-alanine is depicted in Fig. 35.

In Sections IV.C.1–IV.C.6, we study tetra-alanine in vacuum. We use the

ECEPP/3 potential energy surface [38] (see Section III.A.1 and Fig. 11), which

is an all-atom potential energy function. In Section IV.C.7, we consider tetra-

alanine in solution by adding a solvation free-energy term to the ECEPP/3

potential energy surface. The solvation free energy is modeled by the volume

method using the Reduced Radius Independent Gaussian Sphere (RRIGS)

approximation (see Section III.A.2). To simplify the calculations, we fix bond

lengths and bond angles, allowing only the eight backbone ðf;cÞ dihedral

angles to vary.

1. Stationary Points for Unsolvated Tetra-Alanine

The first step in elucidating the folding process of tetra-alanine is to determine

the local minima and first-order saddles of its potential energy surface. We first

obtained a testbed of minima and first-order saddles by applying a brute-force

eigenmode-following search (Eigenmode III [145]) using a grid of starting

points. Our search results are summarized in Table XXVII. For our initial attempt

Figure 35. Tetra-alanine.

TABLE XXVII

Eigenmode III Results for Unsolvated Tetra-alanine

48 Grid 68 Grid

Local minima 16,125 62,373

First-order saddles 18,902 212,938

deterministic global optimization and ab initio approaches 369



to analyze tetra-alanine [130], we generated a 48 grid of starting points and

performed minimum and first-order saddle searches from each point. The

transition states were then followed down to the minima they connect, resulting

in additional minima found. Given the relative high percentage of starting points

that resulted in unique stationary points, we decided to increase the grid to 68 and

perform first-order saddle searches from each point. Additional minima were

obtained by following each such transition state down to the minima they

connect. After merging these new results with the results from the 48 grid, we had

generated a total of 62,373 minima and 212,938 first-order saddle points [131].

Tetra-alanine is one of the smallest peptides that can exhibit an a-helical

conformation as well as an extended conformation. These two conformation

types can characterized by their ðf;cÞ angle values. Alpha-helical conforma-

tions tend to have ðf;cÞ angle values in the vicinity of ð300�; 300�Þ. On the

other hand, extended conformations tend to have ðf;cÞ values in the vicinity of

ð300�; 120�Þ.
Therefore, to facilitate the classification of tetra-alanine conformations, we

subdivide the ðf;cÞ plane into regions and classify those regions according to

Table XXVIII. Values of ðf;cÞ corresponding to a-helix formation are

classified as ‘‘a,’’ and values of ðf;cÞ corresponding to b-sheet formation are

classified as ‘‘b.’’ Each conformation of tetra-alanine is characterized by four

ðf;cÞ pairs, and hence can be classified by a concatenation of four symbols.

Of the 62,373 minima, we found one a-helical conformation, min.1 (aaaa),

and one extended conformation, min.1587 (bbbb). Their potential energy and

free energy1 values can be found in Table XXIX. The a-helix conformation is

the lowest energy conformation of tetra-alanine. We will be concentrating on the

folding process from the extended conformation to the ground state.

We checked the aBB algorithm described in Section IV.B against the

Eigenmode III search for stationary points by conducting aBB runs on selected

regions of the potential energy surface. Selected results are given in Table XXX.

TABLE XXVIII

Classification Scheme for ðf;cÞ Pair

Symbol c Decoration f

a 270� � c � 335� No prime 270� � f � 330�

i 335� � c or c � 90� Prime 180� � f � 270�

b 90� � c � 150� Double prime Otherwise

j 150� � c � 270�

1By ‘‘free energy,’’ we mean potential energy plus the contributions from vibrational entropy. Free

energy can be calculated using (93) in Section IV.C.2.
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We started with a constant value of a ¼ 20, and then increased a in subsequent

runs until we found all stationary points located by the Eigenmode III search. In

all cases, modest values of a (less than 100) were sufficient to locate all minima

and first-order saddles found by Eigenmode III. In many cases, additional saddle

points were located.

2. Transition Rates and the Master Equation

Having now identified the local minima and first-order transition states, we are

now in a position to enumerate the reaction pathways between states and

calculate transition rates. The connectivity between the various minima is

determined by following each transition state back to the minima they connect.

TABLE XXIX

Ground State and Extended Conformation of Unsolvated Tetra-alanine

Minimum Classification E (kcal/mol) F (kcal/mol)

min.1 aaaa �6.643 �11.798

min.1587 bbbb 4.916 �5.549

TABLE XXX

Selected Results from aBB Tetra-alanine Runs

Region Saddle Type Eigenmode III aBB a

aaaa min 1 1 25

bbbb min 1 1 20

1st 4 4

2nd 6 6

3rd 4 4

4th 1 1

bibi min 1 1 20

1st 1 2

2nd 0 1

bbbj0 min 2 2 20

1st 8 9

2nd 4 17

3rd 3 16

4th 2 7

5th 0 1

aai0i min 2 2 80

1st 1 1
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This is accomplished by perturbing the transition state in each of the two

directions along the reaction coordinate and then using Eigenmode III to locate a

local minimum from that starting point. This gives us a list of (minimum,

transition state, minimum) triples.

We can then calculate the transition rate matrix using Rice–Ramsperger–

Kassel–Marcus (RRKM) theory. According to RRKM theory [130,157,158], the

transition rate for a single transition is given by

Wj0!ts!j ¼
kT

h

Qts

Qj0
ð92Þ

The partition functions at the minima and first-order saddles are related to the

free energies of those stationary points, and they can be evaluated using the

harmonic approximation

Q ¼ e�F=kT ¼ e�E=kT
Y

i

kT

hni

ð93Þ

where E and F are the potential energy and free energy, respectively, of the

stationary point, and ni are the vibrational frequencies of the molecule around the

stationary point. The product over frequencies takes into account the vibrational

entropy of the system. Substituting (93) into (92) yields

Wj0!ts!j ¼
Q

i n
j0

iQ
i6¼r:c: n

ts
i

e�ðEts�Ej0 Þ=kT

Summing over all transition states connecting two particular minima yields the

transition rate matrix

Wjj0 ¼
X

ts

Wj0!ts!j

The time evolution of occupation probabilities can be calculated by solving the

Master equation

dPj

dt
¼ wjj0Pj0 ðtÞ ð94Þ

where

wjj0 ¼
Wjj0 if j 6¼ j0

�
P

j00Wj00j if j ¼ j0

�
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Coupled differential equations like (94) are solved by diagonalizing the matrix

wjj0 , so that X
j0

wjj0u
ðiÞ
j0 ¼ lðiÞuðiÞj

The general solution to (94) can be written in the form

PjðtÞ ¼
X

i

aie
lðiÞtu

ðiÞ
j ð95Þ

where the coefficients ai are determined by the initial probability distribution at

t ¼ 0.

One of the eigenvalues lð0Þ is zero. The associated eigenvector corresponds

to the equilibrium (t ¼ 1) probability distribution,

u
ð0Þ
j ¼ Pjðþ1Þ ¼ Qj

�X
j0

Qj0

All other eigenvalues are negative, and they correspond to transient probabilities

with a decay time of tðiÞ ¼ �1=lðiÞ.
The time evolution of occupation probabilities for the extended conformation

and the three lowest free energy states of unsolvated tetra-alanine at room

temperature T ¼ 300 K, starting with the extended conformation at t ¼ 0 (i.e.,

Pbbbbð0Þ ¼ 1, all other Pjð0Þ ¼ 0), is given in Fig. 36. It takes tetra-alanine

about 10�10 sec to reach the ground state from the extended conformation.

Figure 36. Time evolution of the extended conformation and the three lowest free energy states

of unsolvated tetra-alanine at T ¼ 300 K.
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3. Pathways

Details of the folding process can be determined by enumerating the pathways

from the extended conformation to the ground state. A pathway is defined as a

sequence of minima joined together by transition states:

initial state! ts! min! ts! min! � � � ! min! ts! final state

Pathways between these two states can be enumerated using graph-theory

techniques. We construct a graph where each node in the graph represents a

minimum and each edge in the graph represents a transition state that connects

two minima. The set of all pathways from one minimum to another can be

generated by an exhaustive search.

If we conduct this exhaustive search without restriction, we would generate

an enormous number of pathways. It is important to restrict the pathways we

generate in a sensible manner. We selected pathways based on two criteria: (1)

We restrict the length of the pathway (i.e., number of minima) to be less than or

equal to some prescribed maximum length, and (2) we also apply a transition

rate cutoff, effectively ignoring transitions whose rates fall below the cutoff

value. The number of pathways from the extended conformation to the ground

state of unsolvated tetra-alanine at T ¼ 300 K for various length and rate cutoffs

is given in Table XXXI. The total number of minima and transition states

involved in such pathways are given in Table XXXII.

These two criteria were applied in an attempt to find the most relevant

pathways. Because the faster pathways are likely to be the most important ones,

it makes sense to eliminate pathways that involve one or more slow transitions

(i.e., transitions which fail to meet the rate cutoff). The length cutoff is chosen

for more practical reasons. Even with a transition rate cutoff, the number of

pathways increases exponentially with the length cutoff (about a factor of 10 for

TABLE XXXI

Number of Pathways from Extended Conformation to Ground State with Given Length Restriction

and Rate Cutoff

Maximum No Rate

Length Cutoff 106 Hz 107 Hz 108 Hz 109 Hz 1010 Hz 1011 Hz

6

7 4

8 38

9 999 421 421 421 421 285 130

10 19963 10836 10828 10828 10733 7443 2099

11 297974 150831 150396 149391 146493 92216 21004

12 4132256 1868821 1859469 1832692 1768736 1002874 221592
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each additional minimum). An exhaustive pathway search would be intractable

if we did not impose a length cutoff. It is assumed that the fastest pathways are

also among the shortest in length. Although we have no proof of this, we will

see evidence later on that suggests that we have found the most relevant

pathways.

We examined in detail the pathways of length 9 and 10 with a transition rate

cutoff of 106 Hz. An example pathway of length 9 is given in Fig. 37. For each

such pathway, we estimated the amount of time it would take for tetra-alanine to

proceed from the extended conformation to the ground state along that

particular pathway by solving the Master equation for a reduced system

consisting only of the minima and transition states involved in the pathway.

The decay time of the longest-lived transient probabilities was used as an

estimate of the overall transition time. The fastest transition times were on the

order of 5� 10�11 sec, and most of the 10; 836 pathways we looked at had

transition times less than 1� 10�9 sec. Clearly, there is no single most

important pathway: there are many pathways which are all equally important.

We also found that the pathways of length 9 tended to be among the fastest of

the pathways of length 10 or less, suggesting that shorter pathways tend to be

faster.

We also studied the pathways of length 10 or less in terms of changes in the

f and c angles. Each ðf;cÞ pair is classified according to Table XXVIII. In

proceeding from the extended conformation to the ground state, each of the four

ðf;cÞ pairs must proceed from ‘‘b’’ to ‘‘a.’’ We observed that this process tends

to follow regular patterns.

We make the following general observations regarding the rotation of the c
angles:

1. Each c angle normally progresses in the sequence b! i! a or

b! j! i! a.

TABLE XXXII

Number of Minima/ Transition States Involved in Pathways from the Extended Conformation to

Ground State with Given Length Restriction and Rate Cutoff

Maximum No Rate

Length Cutoff 106 Hz 107 Hz 108 Hz 109 Hz 1010 Hz 1011 Hz

6

7 12=14

8 26=42

9 236=488 96=183 96=183 96=183 96=183 86=160 65=114

10 886=2339 339=952 339=951 339=951 332=932 287=790 188=466

11 2817=8341 664=2177 663=2173 657=2152 651=2120 526=1696 357=1044

12 6403=21316 943=3405 938=3388 922=3341 913=3291 754=2622 509=1699
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(aaaa, − 6.643)

(biaa, + 1.628)

(bjai′, + 2.975)

(bbi′b, + 5.248)

(bbbb, + 4.916) (bbj′b, + 4.749)

(iaaa, − 2.893)

(bbaa, + 2.875)

(bbai, + 2.719)

Figure 37. One possible pathway from the extended conformation to the ground state of

unsolvated tetra-alanine.
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2. No direct b! a transitions are observed,2 indicating that a rotation of c
from b-sheet to a-helical values is too large for a single transition.

3. Most pathways of length 10 or less involve at least one transition where

more than one c angle changes (cooperative motion).

4. A wide variety of cooperative motion is possible, but the two most

common types are as follows:

bi! ia 36%

bj! ii 14%

5. There is a tendency for one-half of the molecule to fold (nearly)

completely followed by the other half (e.g., bbbb! bbaa! aaaa).

We can analyze the pathway given in Fig. 37 in terms of these observations.

The individual c angles proceed as follows:

c1: b! i! a

c2: b! j! b! i! a

c3: b! j! i! a

c4: b! i! a

Except for a slight backtrack in c2, this pathway is consistent with (1) and (2).

This pathway also exhibits three transitions that involve cooperative motion. Two

of them are in the form bi! ia, which is the most common form observed. The

other cooperative motion, ji! ba (nonadjacent alanines), has also been

observed but is not nearly as common as the two forms listed above. Finally,

it should be remarked that this pathway does pass through a bbaa minimum. In

other words, the right side (the carboxyl terminus) folds completely before the

left side (the amino terminus) folds at all. Not all pathways follow this rule

strictly, although we have found that tetra-alanine tends to fold its right side most

of the way before its left side makes significant progress.

The rotation of the f angles plays less of a role in the folding process than

rotation of c angles. f takes on similar values for a-helical and b-sheet

conformations. We found that the very slowest transitions (on the order of

100 Hz or less) tend to involve rotations of the f angles from inside to outside of

the range 180� � f � 330� and vice versa. In fact, none of the minima involved

2This has been checked rigorously for all pathways length 11 or less with a rate cutoff of 106 Hz.

What we have in fact found is that there are transition states that connect two minima b! a, but

either the transition itself is very slow or else the minima are so high in energy that it seems unlikely

that a fast pathway (of any length) could pass through it. Our conclusion is that b! a is not

observed for all but the very slow pathways.

deterministic global optimization and ab initio approaches 377



in pathways of any length with a rate cutoff of 106 Hz involves f angles outside

this range (they would be indicated in our classification scheme by a double-

prime). This can be proved rigorously by examination of the rate disconnectivity

graph, which we will discuss next.

4. Rate Disconnectivity Graph

We constructed the rate disconnectivity graph for tetra-alanine at T ¼ 300 K. It is

shown in Fig. 38. The rate disconnectivity graph provides us with the rate-

dependent connectivity of the potential energy surface [4,5,130,131]. If we begin

at the top of the graph, with a very small rate cutoff, all of the minima fall into

one group that is represented by a single node. As we increase the rate cutoff,

transitions get eliminated. At some point, a critical transition gets eliminated

which disconnects the minima into two groups. This is represented by the node

splitting into two at the rate cutoff value. As the rate cutoff is increased further,

more and more transitions are eliminated and the graph continues to bifurcate as

bbbb aaaa

1010

105

100

10−5

10−10

Transitionrate (Hz)

Figure 38. Complete rate disconnectivity graph for unsolvated tetra-alanine at T ¼ 300 K. The

a-helical ground state and the extended conformation both lie in the highlighted subtree.
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the groups of minima further subdivide. At the base of the graph, no transitions

remain, and each minimum falls into its own group. The minima can be identified

at the base of the graph.

The rate disconnectivity graph for tetra-alanine shown in Fig. 38 covers 23

orders of magnitude in transition rates and contains 62,357 minima.3 Starting at

the top, we see that a relatively small number of minima break away as the rate

cutoff is increased to around 10 Hz. Between 10 Hz and 100 Hz, a number of

large groups of minima (several thousand minima each) break away from the

main branch, indicating a great deal of interesting dynamics occurring on a time

scale of about 0:1 sec. Between 102 Hz and 1010 Hz, relatively little happens.

There seems to be two well-separated time scales with characteristic times

roughly 0:1 sec and 10�10 sec.

The highlighted section of the rate disconnectivity graph contains a total

of 3713 minima, including the extended conformation and the a-helical

ground state. If we apply a transition rate cutoff anywhere between 102 Hz

and 1010 Hz, we would find that all of the minima in the highlighted region

would be connected to one another and disconnected from all of the rest. In

other words, it would take about 10�10 sec to make transitions between two

minima within this group and would take about 10�2 sec to make transitions

out of this group. This is consistent with our solution of the Master equation (see

Fig. 36).

We looked for a distinguishing characteristic of the minima within this

group. We found that all 3713 minima in this group satisfy the constraints

180� � fi � 330�

for all four f angles. Conversely, we found that all except for one minimum

which satisfies these constraints on all four f angles lies within this group. This

leads us to the following conclusions:

1. Transitions involving large changes in f (from within ½180�; 330�� to

outside this range, or vice versa) tend to be very slow, requiring longer

than 0:01 sec (sometimes much longer). This is no doubt a result of very

high barriers separating these two regions of configuration space.

2. Transitions involving small changes in f (i.e., those that stay within the

range ½180�; 330��) and arbitrary changes in c tend to be much faster,

typically on the order of 10�10 sec. The folding of tetra-alanine from its

extended conformation (bbbb) to the ground state (aaaa) falls into this

catagory.

3The remaining 16 minima are not connected to the main group by any transition states.
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5. Time Evolution of Quantities

Another way of obtaining an overall picture of the folding process of tetra-

alanine is to study the time-evolution of averages of certain quantities, such as

energy, dihedral angles, or distances between specific atoms. If qj is the value of

some quantity at minimum j, then hqi, the average value of q, and sq, the

standard deviation, can be calculated as a function of time with the help of the

Master equation:

hqiðtÞ ¼
X

j

PjðtÞqj ¼
X

i; j

aie
lðiÞtu

ðiÞ
j qj

¼
X

i

ai

�X
j

u
ðiÞ
j qj

�
el
ðiÞt ð96Þ

hq2iðtÞ ¼
X

i

ai

�X
j

u
ðiÞ
j q2

j

�
el
ðiÞt ð97Þ

sqðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq2iðtÞ � hqi2ðtÞ

q
ð98Þ

Plots of hqi and hqi � sq as functions of time for q ¼ E;f1, and c1 are given in

Figs. 39–41.

To obtain the correct time evolution of hqi and sq, it is necessary to solve the

Master equation over all of the minima.4 We can also calculate the approximate

time evolution of hqi and sq by restricting our attention to only a certain subset

of pathways. This is accomplished by restricting the minima and transition

states we use to solve the Master equation to those which are visited by the

selected pathways.

In Figs. 39–41, we compare the overall time evolution of E, f1, and c1 with

the time evolution obtained by restricting our attention to pathways with various

length restrictions. The deviations are rather large for a length cutoff of 10, but

are much smaller for a length cutoff of 11 or 12 (the same holds true for the

other ci and fi angles, not shown). It appears that applying a length cutoff of 11

will yield most of the relevant pathways.

We can also determine the effect of various transition rate cutoffs on the time

evolution of E, fi, and ci. In Fig. 42, we compare the overall time evolution of

E with that obtained by restricting our attention to pathways with a length cutoff

4Actually, we only solve the Master equation over the 3713 minima in the highlighted region of the

rate disconnectivity graph shown in Fig. 38. This is necessary because solving the Master equation

for all 62,373 minima would require diagonalizing a 62; 373� 62; 373 matrix which does not fit in

computer memory. Fortunately, it is also sufficient because the other minima are unreachable during

times on the order of 10�9 sec.
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of 11 and various transition rate cutoffs. We find significant deviation from the

overall time evolution only when the transition rate cutoff is increased to

1011 Hz (the same holds for fi and ci, not shown). It appears that the most

significant pathways are those of length 11 or less which satisfy a transition rate

cutoff of 1010 Hz. There are 92,216 such pathways, and they involve only 526

minima and 1696 transition states. This is significantly less than the 62,373

minima and 212,938 transition states that we started with.

10−13 10−12 10−11 10−10 10−9
t (s)

−8

−6

−4

−2

2

4

E (kcal/mole)

Overall
Length � 10
Length � 11
Length � 12

Figure 39. Time evolution of E as a function of time (average � one standard deviation), given

that the system occupies the extended conformation at t ¼ 0 sec. Various pathway length cutoffs are

employed.

−120

−100

−60

10−13 10−12 10−11 10−10 10−9
t (s)

φ1

Figure 40. Time evolution of f1 as a function of time (average � one standard deviation),

given that the system occupies the extended conformation at t ¼ 0 sec. Various pathway length

cutoffs are employed.
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6. Reaction Coordinates

It would be useful to characterize the folding process by means of determining a

viable reaction coordinate. A reaction coordinate is a quantity that accurately

measures the progress from the initial state to the final state. Ideally, it should be

monotonic and proceed at a uniform rate along each individual pathway. If we

examine the time evolution of E, fi, and ci (Fig. 39–41), we see that the energy

and the c angles seem to make reasonable reaction coordinates, but the f angles

−50

50

100

150

10−13 10−12 10−11 10−10 10−9
t (s)

ψ1

Figure 41. Time evolution of c1 as a function of time (average�one standard deviation),

given that the system occupies the extended conformation at t ¼ 0 sec. Various pathway length

cutoffs are employed.

Overall
Len � 11, rate � 106 Hz
Len � 11, rate � 107 Hz
Len � 11, rate � 108 Hz
Len � 11, rate � 109 Hz
Len � 11, rate � 1010 Hz
Len � 11, rate � 1011 Hz
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−8

−6

−4

−2

2

4

E (kcal/mole)

Figure 42. Time evolution of E as a function of time (average�one standard deviation), given

that the system occupies the extended conformation at t ¼ 0 sec. A pathway length limit of 11, along

with various transition rate cutoffs, are employed.
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definitely do not. However, these plots only reveal the average progress of these

quantities. What we would really like to know is which, if any, of these quantities

proceeds monotonically and uniformly for each pathway.

To help answer this question, we developed two ‘‘reaction coordinate

indicators’’—one that measures the monotonicity of the reaction coordinate,

and the other that measures the uniformity of the reaction coordinate. For a

given pathway of length N

min1 ! min2 ! � � � ! minN

a certain quantity q takes on values

q1 ! q2 ! � � � ! qN

The two reaction coordinate indicators are d=D and D2=S, where

d ¼
���XN�1

i¼1

ðqiþ1 � qiÞ
��� (displacement)

D ¼
XN�1

i¼1

jqiþ1 � qij (distance)

S ¼ ðN � 1Þ
XN�1

i¼1

jqiþ1 � qij2 (squared distance)

d=D measures the monotonicity of q along the given pathway, and D2=S

measures the uniformity of q along the given pathway. Both indicators take the

value 1 in the ideal case.

For each of the quantities E, fi and ci, we tabulated the average value and

standard deviation of these two reaction coordinate indicators over the 92,216

relevant pathways in Table XXXIII. As expected, the f angles perform poorly

on the monotonicity test (d=D is very small), whereas the energy and the c
angles perform reasonably well on the monotonicity test. However, none of the

quantities do very well on the uniformity test: the average value of D2=S is

around 0:30 for each of the dihedral angles and around 0:48 for the energy. This

suggests that changes in a given dihedral angle tend to occur in a small number

of big steps, rather than in a large number of small steps. This is consistent with

our earlier pathway analysis, where we found that the c angles tend to change

one or two at a time.

It is clear that progress toward the a-helical ground state should not be

measured in terms of a single c angle, but should reflect the progress of all c
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angles. This suggests that we might look at
P

i ci as a reaction coordinate. The

time evolution of
P

i ci is plotted in Fig. 43, and the average value and standard

deviation of the reaction coordinate indicators are given in Table XXXIII. The

average value of the reaction coordinate indicators, d=D ¼ 0:927 and

D2=S ¼ 0:749, both indicate very strongly that
P

i ci makes a good reaction

coordinate. To confirm this, we constructed a scatter plot of D2=S vs. d=D for

each of the 92,216 pathways, shown in Fig. 44. For most of the pathways, the

reaction coordinate indicators are both near 1, further suggesting that
P

i ci

makes a good reaction coordinate.

Further insight into the folding process may be gained by looking for a more

physically significant reaction coordinate. An a-helix is stabilized by the forma-

tion of hydrogen bonds between the i and iþ 3 residues. Because these residues

tend to be farthest apart in the extended conformation, and must be brought

close together to form the hydrogen bond, it makes sense to use the hydrogen

bonding distance as a reaction coordinate.

We first tried da1;a4
, the distance between the first and fourth a-carbons. This

distance is indicated in Fig. 45. This distance varies from 9:079 Å in the

extended conformation to 4:998 Å in the ground state. The a-helical ground

state is not the only conformation with da1;a4
< 5:0 Å. Of the 526 minima

involved in the 92,216 relevant pathways, 26 of them satisfy this inequality.

TABLE XXXIII

Average and Standard Deviation Values of the Reaction Coordinate Indicators d/D and D2/S for

Various Quantities Over All Pathways of Length 11 or Less with Transition Rates Exceeding 1010 Hz

from the Extended Conformation to the Ground State of Unsolvated Tetra-alanine

d=D D2=S

————————————— ———————————

Quantity Average Standard Average Standard

E 0.796 0.099 0.482 0.144

f1 0.224 0.138 0.291 0.080

c1 0.899 0.120 0.256 0.060

f2 0.032 0.034 0.304 0.077

c2 0.850 0.100 0.283 0.051

f3 0.081 0.081 0.332 0.084

c3 0.867 0.129 0.298 0.071

f4 0.046 0.038 0.302 0.075

c4 0.849 0.132 0.293 0.059P
i ci 0.927 0.066 0.749 0.066

da1, a4 0.674 0.138 0.355 0.115

d1 0.762 0.129 0.467 0.098

d2 0.712 0.111 0.523 0.142

d1 þ d2 0.818 0.103 0.587 0.133
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Figure 43. Time evolution of
P

i ci as a function of time (average�one standard deviation),

given that the system occupies the extended conformation at t ¼ 0 sec. Solid curve shows the overall

time evolution, and dotted line shows time evolution with a pathway length limit of 11 and a

transition rate cutoff of 1010 Hz.
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Figure 44. Scatter plot of reaction coordinate indicators for
P

i ci for each pathway. Only

pathways of length 11 or less with all transition rates exceeding 1010 Hz are used (92,216 pathways).
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The distance between a-carbons is only a crude measure of hydrogen

bonding. A more direct measure is the distance between the nitrogen-bonded

hydrogen atom and the oxygen atom that shares it. It turns out there are two

candidate hydrogen bonding distances, as indicated in Fig. 45. These distances

in the ground state are d1 ¼ 1:934 Å and d2 ¼ 1:921 Å. It turns out that neither

distance alone uniquely determines the ground state. Of the 526 relevant

minima, 9 of them satisfy d1 < 2 Å and 7 of them satisfy d2 < 2 Å. However,

only the ground state satisfies both inequalities. Apparently there are two

hydrogen bonds which stabilize the a-helix in tetra-alanine.

We tabulated the average value and standard deviation of the reaction

coordinate indicators for da1;a4
, d1, d2, and d1 þ d2 in Table XXXIII. The

motivation of including d1 þ d2 among the distance parameters is similar to that

of including
P

i ci. Because there are two hydrogen bonds to form, it makes

sense that reaction progress should be measured by both hydrogen bond

distances. Any of the four distance parameters would make a reasonable

reaction coordinate, but d1 þ d2 is clearly the best with d=D ¼ 0:818 and

D2=S ¼ 0:587. A scatter plot of D2=S vs. d=D for d1 þ d2 is given in Fig. 46.

7. Solvated Tetra-Alanine

We next studied tetra-alanine in solvation. We used the ECEPP/3 potential

energy surface coupled with the volume method for calculating solvation

energies using the Reduced Radius Independent Gaussian Sphere (RRIGS)

approximation.

d1

d2

dα1,α4

Figure 45. Alpha-helical ground state of unsolvated tetra-alanine, with the hydrogen bonds

indicated.
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We determined the minima and first-order saddles by applying a brute force

eigenmode-following search (Eigenmode III) with a 68 grid of start points, just

as we did for unsolvated tetra-alanine. The results of this search can be found in

Table XXXIV.

Of the 66,228 minima, we found one a-helical conformation, min.1 (aaaa),

and one extended conformation, min.874 (bbbb). The potential energy

(which includes the solvation energy) and free energy (which includes

contributions from the vibrational entropy) of these two states can be found

in Table XXXV.

0.2

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1

D
 2 /S

d /D

Figure 46. Scatter plot of reaction coordinate indicators for d1 þ d2 for each pathway. Only

pathways of length 11 or less with all transition rates exceeding 1010 Hz are used (92,216 pathways).

TABLE XXXIV

Eigenmode III Results for Solvated Tetra-alanine

68 Grid

Local minima 66,228

First-order saddles 195,639
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The first thing to notice is that, although the a-helical conformation has the

lowest potential energy (and hence the lowest free energy at T ¼ 0 K), the

extended conformation has a lower free energy at room temperature

(T ¼ 300 K) than the ground state. The result of adding solvation energy

reduces the energy gap from 11:6 kcal/mol to 4:4 kcal/mol. The entropic term

in the free energy is more than enough to overpower this energy gap and reduce

the free energy of the extended conformation below that of the a-helical ground

state. This has significant implications.

We calculated the free energies of all the minima in order to determine the

equilibrium probability distribution (see Section IV.C.2). We found that the

several hundred lowest free energy minima have about the same free energy,

and that no single minimum has an equilibrium occupation probability which

exceeds 0:004. This is in stark contrast with unsolvated tetra-alanine, where the

ground state had an equilibrium occupation probability of 0:748, and the lowest

three potential energy states accounted for 0:936 of the total equilibrium

probability.

As a check, we calculated the transition rate matrix for solvated tetra-alanine

at T ¼ 300 K, and we also solved the Master equation starting with the extended

conformation at t ¼ 0 sec. We plotted the time evolution of the occupation

probabilities of the 300 lowest free energy states. That plot is given in Fig. 47.

The equilibrium probability distribution is achieved in about 10�10 sec.

It seems likely that solvated tetra-alanine exhibits liquid-like behavior at

T ¼ 300 K. To be sure, we need to verify that the several hundred minima

that share the equilibrium probability distribution do not occupy the same

region of configuration space. If that were the case, the potential energy

surface would have one deep basin with a rough bottom. The true characteristics

of a liquid-like molecule is that it randomly (and quickly) samples widely

distinct configurations. By plotting the distribution of minima on four ðf;cÞ
plots (not shown), we reached the conclusion that the minima that share the

equilibrium probability distribution do occupy distinct regions of configuration

space.

If solvated tetra-alanine is to be liquid-like at T ¼ 300 K, then there must be

a phase transition. This should show up as a peak in the heat capacity versus

temperature plot. The heat capacity can be calculated by calculating energy

TABLE XXXV

Ground State and Extended Conformation of Solvated Tetra-alanine

Minimum Classification E (kcal/mol) F (kcal/mol)

min.1 aaaa �35.249 �40.741

min.874 bbbb �30.823 �41.194
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fluctuations at equilibrium

Cv ¼
d

dT
hEieq ¼

hE2ieq � hEi
2
eq

kT2

where equilibrium averages may be calculated from free energies

hqieq ¼
P

i qie
�Fi=kTP

i e�Fi=kT

We calculated Cv as a function of T for temperatures ranging from (just

above) 0 K to 1000 K for both solvated and unsolvated tetra-alanine. The plots

are given in Figs. 48 and 49. The transition temperatures are given by

Tsolv
sol�liq ¼ 130 K Tunsolv

sol�liq ¼ 395 K

The lower transition temperature for solvated tetra-alanine can be traced back to

the reduction in the energy gap between the a-helical ground-state conformation

and the other higher-energy states, including the extended conformation, and

Figure 47. Time evolution of the extended conformation and the 300 lowest free energy states

of solvated tetra-alanine at T ¼ 300 K. No single state has an equilibrium probability that exceeds

0.004.
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indeed does explain the appearance of liquid-like behavior for solvated tetra-

alanine (but not for unsolvated tetra-alanine) at T ¼ 300 K.

D. Overall Framework and Implementation

In this section we present the methods involved in the dynamical study of a

particular peptide sequence, and we discuss the implementation details of those

methods. The overall framework is summarized in Fig. 50. The dynamical study

of a particular potential energy surface divides into two major parts: (1) the

search for stationary points (minima and first- and higher-order transition states)

and (2) the dynamics analysis.
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Figure 48. Heat capacity as a function of temperature for solvated tetra-alanine.
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Figure 49. Heat capacity as a function of temperature for unsolvated tetra-alanine.
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The stationary point search generally proceeds as follows. First, an initial

sample of minima and or transition states is generated using one of the global

optimization methods (aBB, CSA, or grid search). Additional stationary points

can be generated, if needed, by performing uphill searches from minima to

saddle points, or downhill searches from saddle points to minima, or by

interpolating widely separated minima to locate new minima in between

Figure 50. Overall framework for the dynamical study of a given peptide sequence.
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(‘‘fill’’). Similar minima and transition states may be combined by clustering, if

desired.

Once an adequate sample of minima and transition states has been found, we

begin the dynamical analysis. Connectivity between minima and transition

states has already been determined by the triples calculation (i.e., downhill

searches). The free energy of each stationary point is calculated (using the

vibrational frequencies), and from that the transition rates may be calculated.

Then we can construct a Cv vs. T plot, determine equilibrium probability distri-

butions, solve the Master equation, construct the rate disconnectivity graph, and

perform a full pathway analysis.

1. Local Stationary Point Search Methods

Eigenmode-Following Search. Eigenmode-following search algorithms are

essentially sophisticated variations of the Newton–Raphson method applied to

the equations qV=qxi ¼ 0. We employ the version introduced by Tsai and

Jordan [145]. At each iteration, the Hessian may be updated by direct calcula-

tion, or by BFGS (minimum search only) or Powell updating (with occasional

direct calculation) [159–161]. We generally used the Powell updating for the

uphill searches and a full Hessian calculation for the downhill searches, so as to

ensure that the correct connectivity is determined.

The Newton–Raphson step is given by

�x ¼ �H�1g ¼ �
X

i

gi

bi

ei

where g and H are the gradient and Hessian, respectively, bi and ei are

eigenvalues and eigenvectors of H, respectively, and gi is the component of the

gradient in the direction of ei. The Newton–Raphson algorithm tends to locate

stationary points that have the same signature (i.e., number of negative

eigenvalues) as the Hessian matrix at the starting point. More specifically,

potential energy tends to be minimized along modes for which bi > 0, and it

tends to be maximized along modes for which bi < 0. Eigenmode-following

algorithms circumvent this limitation by ‘‘shifting’’ some of the eigenvalues to

change their sign, so that the ‘‘eigenvalues’’ used to construct the step have the

desired signature. Thus, if a minimum is sought, then all eigenvalues are

rendered positive by shifting the negative bi’s to positive values. If a first-order

saddle is desired, then eigenvalues are shifted as needed so that one specific

eigenvalue is negative. If the Hessian already has the required signature, no

shifting takes place—the search essentially becomes a Newton–Raphson search

in the vicinity of the saddle point. Eigenmode-following searches, when they

converge, virtually always converge to a saddle point of the correct saddle order.
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When searching for a first-order saddle from a starting point in the vicinity of

a minimum, there is some question as to which eigenvalue should be shifted to a

negative value (i.e., which eigenmode to follow ‘‘uphill’’). There are two

possible answers:

1. At each iteration, follow the mode with the smallest eigenvalue.

2. Choose a specific mode at the starting point, and continue to follow that

‘‘same’’ mode as each step is taken. Eigenmodes at each subsequent step

are identified with eigenmodes at previous steps by maximum overlap.

In the first case, it is automatically the case that at any point where the Hessian

has the correct signature, no eigenvalue shifting takes place at all, and the

Newton–Raphson step is taken. In the second case, a specific mode is selected,

which often does not start out as the lowest eigenvalue mode. However, as the

selected mode is driven uphill, its eigenvalue decreases, eventually causing that

mode to overtake the other modes in becoming the lowest eigenvalue mode.

Eventually the eigenvalue is driven to a negative value, after which the first-order

saddle will be found.

SUMSL. The SUMSL algorithm [162], which is made available as part of

ECEPP/3 [38], is designed to find local minima in the vicinity of a starting

point. It employs the BFGS updating method for the Hessian. It is specifically

designed for minimum searches and, as such, is generally much more efficient

than the eigenmode-following algorithm.

2. Methods for Finding Minima and First-Order and

Higher-Order Transition States

aBB Stationary points of all orders are generated by solving the stationary

conditions

qV

qxi

¼ 0 i ¼ 1; . . . ;Nx

using the aBB method described in Sections II.B and IV.B. This algorithm offers

a theoretical guarantee of enclosing all solutions within the starting region in a

finite amount of time.

CSA. The Conformational Space Annealing (CSA) algorithm attempts to reach

the global minimum (free) energy conformation by a combination of genetic,

annealing, and buildup algorithms [115,153,154]. The user provides an initial

bank of minima (usually by locally minimizing randomly selected points). Seed

points are selected from the bank and modified according to prespecified rules.

The modified points are then minimized by local search, and then considered for
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introduction into the bank, possibly replacing a point which is already there. If

the candidate point falls within a certain ‘‘cutoff distance’’ from any other point

in the bank, the candidate point and the bank point closest to it are compared.

Otherwise, the candidate point is considered to be in its own ‘‘class,’’ and it is

compared with all other points in the bank. In either case, the highest (free)

energy point is discarded. The ‘‘cutoff distance’’ is initialized to one-half the

average distance between points in the initial bank, and it is annealed down by a

fixed factor every iteration.

Termination conditions include one or more of the following:

1. Iteration count limit.

2. Round limit. Each round ends after every point in the current bank has

been used as a seed point.

3. (Free) energy lower limit.

4. Update counter limit. The ‘‘update counter’’ is incremented whenever the

fraction of candidate points which actually make it into the bank is

sufficiently small for a given number of minimizations.

5. Stop file. The user can stop the algorithm by creating a special file whose

existence is checked each iteration.

Virtually all of the effort is spent performing the local minimizations of the

modified seed points. The parallel version of this algorithm divides the modified

seed points among all of the processes (including the master process) to be

minimized in parallel. The master process handles the rest of the algorithm.

Grid Search. A sampling of stationary points of a specified order (first-order

saddle or minima, generally) is found by initiating an eigenmode-following

search from each point on a specified grid to a saddle point of the specified

order. After the searches are completed, duplicate points are thrown out. This

algorithm requires one search for each grid point, and thus the time requirements

depend exponentially on the number of variables for which alternative values

are provided for the grid. It is therefore unsuited for large problems, but yields

good results for small problems (e.g., tetra-alanine, discussed in Section IV.C).

The parallel version of this algorithm divides the gridpoints among all of the

processes (including the master process), which then perform the searches. The

results are sent back to the master process.

Uphill Search. First-order saddle points are found by performing eigenmode-

following searches ‘‘uphill’’ from each minimum. For every minimum and

every choice of eigenmode, an initial step is taken along that mode (in each of

the two possible directions), followed by an eigenmode-following search along

that mode to a first-order saddle. A total of 2N searches are required for each

minimum, where N is the number of eigenmodes. One may alternatively restrict
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the number of modes followed for each minimum. The resulting saddles are

collected and duplicates are removed.

The parallel version of this algorithm divides the minima among all of the

processes (including the master process), which then perform all of the required

searches. The results are sent back to the master process.

Triples Calculation. The connection between first-order saddles and the

minima they connect are found by performing a minimization on each side of

the saddle point. An initial step from the saddle point is taken in each of the two

directions along the eigenmode corresponding to the negative eigenvalue, each

followed by a minimization. Minima found this way are compared with minima

that have been found previously, and duplicates are discarded in favor of the

previously found minima. This algorithm may also be used to locate previously

unknown minima by downhill search from a saddle point, in which case the new

minima are retained.

The parallel version of this algorithm divides the saddle points among all of

the processes, which then perform the necessary minimizations. As the saddles

and minima are sent back to the master process, duplicate minima are discarded

in favor of previously determined minima.

Fill. ‘‘Fill’’ refers to the act of filling in a ‘‘scaffolding’’ of minima (such as

might be obtained by a CSA run) by searching for additional minima between

pairs of minima found in the initial set. The reason why this may be necessary is

because the minima generated by the CSA algorithm are often too far apart for

connections between them to develop after a single uphill/downhill search (this

is practically by design of the CSA algorithm, which spreads itself thin so as to

sample a large portion of the conformational space).

A ‘‘distance cutoff’’ and a ‘‘coordination number’’ are provided, along with

an initial set of minima. Ideally, this algorithm will first cluster the points

according to the distance cutoff (i.e., split the points into equivalence classes,

where two points are equivalent if they can be connected to one another by a

‘‘path’’ involving points which are within the cutoff distance from each other).

Then each cluster will be paired with the N clusters closest to it in distance,

where N is the coordination number. For every pair of clusters generated this

way, additional points will be added along the line joining the two clusters

(more specifically, along the line joining the two representative points in the two

clusters which are the least distance apart). The points will be uniformly spaced,

and the number of points chosen is the least number which results in each point

being within the cutoff distance from its nearest neighbor. The new points can

then be used as starting points for minimization.

For practical reasons, the algorithm actually proceeds as follows. Every point

is considered in turn. Distances from that point to every other point are first
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determined and then sorted. Connections between this point and all points

which are within the cutoff distance are noted, so that equivalence classes may

be determined. Then the pairs consisting of this point and each of the next N

points (N is the coordination number), along with their mutual distances, are

added to a ‘‘pairs’’ list. After all points have been considered and the

equivalence classes are determined (class-wise), duplicate pairs are discarded

from the ‘‘pairs’’ list, and then the points are generated as described above.

The most CPU-intensive part of the algorithm is the generation of a list of

distances between a given point and every other point, along with the sorting

of that list. In the parallel version of this algorithm, the master process sends

the set of points to each slave process so that they will know what to do. While

the master process is carrying out the remainder of the algorithm, each slave

process calculates the distances between a given point and every other point and

then sorts the list. As each point is considered in turn, the master process cycles

through the slave processes, receiving the needed distances from each one.

Clustering. The number of minima and transition states can be reduced by

‘‘clustering’’ them—that is, by identifying points that lie within a specified

distance of one another with a single point. The first point in the set of points to

be clustered is selected as a cluster center and compared with every other point.

Points within a certain cutoff distance from the selected cluster center are

identified as belonging to that cluster and taken out of circulation. The next

point in the set that is not yet part of any cluster is selected as the next cluster

center, and it is compared with all other points not yet part of any cluster. The

algorithm continues this way until all points have been assigned to a cluster.

Note that the clusters generated by this algorithm have the property that the

cluster centers used to generate them appear earlier than all of the other points

in the cluster. Thus, by first sorting the set in increasing order of potential

energy, we can guarantee that each cluster will be represented by its lowest-

energy member and, in particular, that the global minimum energy point will be

among the cluster centers.

Minima should be clustered first using the algorithm as described above. The

connectivities between the transition states and the minima they connect should

then be redefined so that transition states connect the cluster centers associated

with the minima they actually connect. Then the transition states can be

clustered using the algorithm as described above with one additional caveat:

One transition state cannot be identified as belonging to a cluster centered by

another transition state unless they connect the same two minima (clusters).

The most CPU intensive part of the algorithm is the calculation of distances

between selected cluster centers and all other nonclustered points. The parallel

version of this algorithm runs as follows. The points are first sorted, and then

they are shipped from the master process to each slave process. The master
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process sends the first cluster center to one of the slave processes which begins

comparing that point to all of the remaining points in the set. As cluster matches

occur, results are reported back to the master process that records the clustering

information. The master process continues sending cluster centers to available

slave processes and awaits reports of clustering until all points have been

clustered.

The situation is complicated by the fact that the master process cannot send a

new cluster center to another slave process until it is established that the

potential cluster center does not belong to a cluster defined by a previous cluster

center. As long as each slave process performs the comparisons in order, the

master process will be able to deduce that the next unclustered point should

be regarded as a new cluster center as soon as all active slave processes have

reported progress beyond that point. To facilitate this process, each slave

process reports its progress back to the master process at well-defined intervals,5

in addition to those instances where a cluster match is found.

3. Methods for Analyzing the Potential Energy Surface

Vibrational Frequencies Calculation. The vibrational frequencies are deter-

mined by solving the generalized eigenvalue problem

ðH � ð2pnÞ2IÞx ¼ 0

where H is the Hessian and I is the generalized inertia tensor, defined so that the

kinetic energy of the system is given by

K ¼ 1

2

X
i; j

dxi

dt
Iij

dxj

dt

The inertia tensor is calculated by first calculating drj=dxi for j ¼ 1; . . . ; 3Na and

i ¼ 1; . . . ;Nx by finite differencing and then using the following formula:

Iii0 ¼
X3Na

j¼1

mj

drj

dxi

drj

dxi0

where mj is the mass of the j=3-th atom.

This makes use of the Cartesian coordinate functions rðxÞ. The form-

ulae above depend on the Cartesian coordinates being physically correct.

5A geometric sequence is used so as to generate a number of early reports without generated an

enormous number of total reports. Thus, reports are sent back after comparing the cluster center to

the next 1, 5, 52, 53, . . . points.
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Unfortunately, most methods of generating Cartesian coordinates from general-

ized coordinates (in our case, dihedral angles) involve fixing the positions and

orientations of specific atoms, which leads to the introduction of unphysical

forces and torques being applied to the molecule. We eliminate these unphysi-

cal forces by augmenting the set of generalized coordinates to include overall

translation and rotation coordinates, calculating the vibrational frequencies

using the above methods, and then discarding the six zero-mode frequencies

(which must exist). The resulting vibrational frequencies are physically correct.

Vibrational frequencies can be computed at the end of an eigenmode-

following search at little cost, because the Hessian has already been generated.

Alternatively, the vibrational frequencies can be calculated all at once after the

minima and saddles have all been found. In the latter case, the calculation can

be run in parallel by distributing the work to each process, having them

calculate the frequencies, and then having them pass the results back to the

master process.

Free Energy Calculation. The free energy for a given stationary point is

defined as follows:

F ¼ E � TSvib

The vibrational entropy is calculated from the vibrational frequencies by

employing the Classical Harmonic Oscillator approximation

Svib ¼ �k ln
Y

i

hni

kT

where the product is taken over all vibrational frequencies. For saddle points of

order 1 or higher, the negative eigenvalue modes are not counted as ‘‘vibrational

modes.’’

Other methods of calculating the vibrational entropy exist, but are not

currently implemented. Perhaps the simplest is the Quantum Harmonic Oscil-

lator approximation:

Svib ¼ �k ln
Y

i

2 sinh
hni

2kT

Anharmonic methods exist in the literature [163,164].

Equilibrium Probabilities. Equilibrium probabilities are calculated from the

contribution to the partition function from each minimum, which can be

expressed in terms of its free energy:

Pi ¼
e�Fi=kTP
j e�Fj=kT
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The minimum free energy over the entire system is first subtracted off in order to

prevent overflow/underflow problems that could arise from modest nonzero free

energies (positive or negative).

Average values (as well as standard deviations) of any quantity can now be

computed at equilibrium:

hqi ¼
X

i

qiPi

sq ¼ ðhq2i � hqi2Þ1=2

Temperature derivatives are also possible:

dhqi
dT
¼ hqEi � hqihEi

kT2

assuming that qi does not depend explicitly on temperature. In particular, the

specific heat Cv ¼ dhEi=dT can be calculated.

Transition Rates. Transition rates are computed by Rice–Ramsperger–Kassel–

Marcus (RRKM) theory. Each transition state is associated with two rates:

Wi!ts!j ¼
kT

h
e�ðFts�FiÞ=kT

Wj!ts!i ¼
kT

h
e�ðFts�FjÞ=kT

These rates are collected together in a (sparse) matrix:

Wij ¼
X

ts

Wj!ts!i

Time-Dependent Probabilities (Master Equation). The time development of

occupation probabilities can be determined by solving the Master equation:

dPi

dt
¼
X

j

WijPj � ð
X

j

WjiÞPi ¼
X

j

wijPj

where

wij ¼
Wij ðif i 6¼ jÞ
�
P

i0 Wi0i ðif i ¼ jÞ

�
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Solving the Master equation involves determining the eigenvalues and

eigenvectors of the (nonsymmetric, but easily symmetrizable) matrix w:

X
j

wiju
ðkÞ
j ¼ lðkÞuðkÞi

The occupation probabilities as a function of time can be computed (and, e.g.,

plotted):

PjðtÞ ¼
X

k

akel
ðkÞtu

ðkÞ
j

where the coefficients ak are determined from the initial conditions Pjð0Þ. The

time constants are determined from the eigenvalues

tk ¼ �1=lðkÞ

One of the eigenvalues is zero, which corresponds to the equilibrium probability

distribution (t ¼ 1). The remaining eigenvalues will be negative.

Average values (as well as standard deviations) of any quantity can now be

computed as a function of time (and, e.g., plotted):

hqiðtÞ ¼
X

j

qjPjðtÞ ¼
X

k

akð
X

j

qju
ðkÞ
j Þel

ðkÞt

sqðtÞ ¼ ðhq2iðtÞ � hqiðtÞ2Þ1=2

Solving the Master equation requires the diagonalization of a matrix whose

size is the number of minima in the system. This is an extraordinarily expensive

operation and may be prohibitive in both space and time resources required. A

4000� 4000 matrix requires 128 megabytes of storage and generally requires

about a day of CPU time to diagonalize. There is no parallel algorithm available

for this operation.

Pathways. Each transition state connects two minima on the potential energy

surface. A pathway between two minima is defined as a series of such

connections:

initial state! ts! min! ts! � � � ! ts! min! ts! final state

The set of all (nonlooping) pathways from one minimum to another can be found

by an exhaustive search. We begin at the initial state and move to each minimum

that is connected to the initial state. For each such minimum, we recursively
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explore all minima connected to that minimum, taking care not to visit a given

minimum more than once along the same pathway. When the final state is

reached, the pathway is reported. When all possible routes have been explored,

the algorithm terminates.

For any reasonably sized system of minima and transition states, the number

of possible nonlooping pathways between any two minima is likely to be

prohibitively large. There are several criteria that can be applied to reduce the

number of pathways:

1. Monotonicity in any specified quantity (such as energy or free energy).

Transitions are ignored if they violate the proposed monotonicity.

2. Maximum length (i.e., maximum number of minima, including the initial

and final state, visited along the pathway).

3. Minimum transition rate. Transitions are ignored if they are slower than

this cutoff rate.

The following information is available during a pathway calculation:

1. The set of minima and/or transition states visited along the way by at least

one of the pathways.

2. Transition rates for each transition taken along a given pathway.

3. An overall ‘‘transition time’’ for a given pathway. This is determined by

(a) solving the Master equation over the minima and transition states

involved in that one pathway alone and (b) using the lifetime of the

longest-lived transient probability eigenvector.

4. Values of any number of quantities for each minimum visited along a

given pathway.

5. The two reaction coordinate indicator values associated with any number

of quantities along each given pathway (explained below).

6. The average value and standard deviation of any number of quantities

over all pathways, at a fixed position along the pathways.

7. The average value and standard deviation of the two reaction coordinate

indicators over all the pathways (explained below).

For a given pathway

min1 ! min2 ! � � � ! minN

a certain quantity q takes on values

q1 ! q2 ! � � � ! qN

To help determine if q would make a good reaction coordinate, we developed

two ‘‘reaction coordinate indicators’’. They are d=D (monotonicity) and D2=S
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(uniformity), where

d ¼
���XN�1

i¼1

ðqiþ1 � qiÞ
���

D ¼
XN�1

i¼1

jqiþ1 � qij

S ¼ ðN � 1Þ
XN�1

i¼1

ðqiþ1 � qiÞ2

An ideal reaction coordinate varies both monotonically (same direction) and

uniformly (in equal steps) from its initial value to its final value. Both reaction

coordinate indicators take on the value of 1 in this ideal case. Values less than 1

indicate nonideality.

Less detailed information about the connectivity of the minima is also

available. The level of connection between two minima is defined as the

minimum-length pathway that connects them. The level of connection between

a given minimum and all other minima can be generated iteratively as follows.

First, start off by marking the given minimum as level 1 with all other minima

marked (temporarily) as unreachable. For each level n, starting with n ¼ 1, we

follow each minimum marked as level n to all the minima they are connected to.

For each such connected minimum, if it is yet to be marked as reachable, it is

marked as level nþ 1 (if it is marked already, then a shorter pathway has

already reached it). We continue on with level nþ 1, stopping whenever no

additional minima are marked for a given level.

This procedure may be used to determine the connection component which

contains a given minimum (i.e., the set of minima connected to the given

minimum by any length pathway). By iteratively applying this procedure, the

minima can be divided into connection components.

It should be noted that pathway traversal can be substantially optimized

when a length restriction is given. First, the level of connection between the

final state and all other minima is determined. Then, for every transition consi-

dered during the pathway search, it is determined whether or not the final state

could possibly be reached in the proper number of steps. If it is not possible

according to the precalculated level of connection, the transition is avoided.

Rate Disconnectivity Graph. Minima can be classified into connection

components. If a transition rate cutoff is applied, transition states may be

eliminated if the transitions they represent occur too slowly. In this case, the

number of connection components may increase. The rate-dependent con-

nectivity information can be summarized by drawing a rate disconnectivity
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graph. One starts off at the top of the graph with a low rate cutoff, in which case

the minima are separated into their connection components. As the rate cutoff is

increased, transition states get eliminated from consideration. At some critical

value of the transition rate cutoff, a critical transition state gets eliminated,

causing one of the connection components to divide in two. As the rate cutoff is

increased further, more and more transition states are eliminated from

consideration, causing further bifurcation of connection components. At the

highest rate cutoffs, no transition states remain, and all minima occupy their

own connection component. Minima can be identified at the base of the graph.

The rate disconnectivity graph is built from the bottom up. Each minimum

starts off by occupying the leaf node of its own tree. Connectivities between

pairs of minima are sorted in decreasing order of transition rate, so that the

highest transition rates will be considered first.6 For each such pair of minima,

we locate the subtrees generated so far which contain each of the two minima. If

the two minima already belong to the same subtree, nothing happens. If the two

minima belong to different subtrees, those two subtrees are joined by a

bifurcation node, which is labeled with the transition rate. The rate disconnec-

tivity graph will be completed after each transition has been considered, at

which point there will be one tree for each connection component.

Once the rate disconnectivity graph is constructed, one can walk along the

nodes in the tree, print a subtree in text format, or write Mathematica code

which plots the rate disconnectivity graph in graphical form.

E. Perspectives and Future Work

In this section, we discuss our ongoing efforts to elucidate the folding

mechanism of b-hairpin and b-sheet structures by studying one of the short

peptides that has been recently discovered to form such structures in the native

state.

Our first task centered on the selection of an appropriate peptide sequence

and a potential energy surface. Our initial efforts were focused on a 12-residue

designed sequence using the ECEPP/3 potential energy surface with an addi-

tional solvation term using the volume method. Unfortunately, we were unable

to locate a low-energy hairpin structure and, upon further investigation,

discovered that the lowest-energy state of this system was an a-helix. It seems

that ECEPP/3 is unable to predict the b-hairpin structure of this peptide

sequence. So we checked other peptide sequences as well as other potential

energy surfaces to see if we could predict a b-hairpin fold. We eventually found

success with the second b-hairpin segment of Protein G (residues 41–56) using

6The transition rate associated with a given pair of connected minima is by default the maximum of

the two transition rates associated with that connection. The minimum transition rate can be selected

instead.
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the Effective Energy Function (EEF1) [165], which is the CHARMM potential

plus a solvation term based on a Gaussian solvent exclusion model.

Segment 41–56 of Protein G is a 16-residue peptide that has been determined

experimentally to fold into a b-hairpin in aqueous solution [135]. A schematic

of this hairpin structure is depicted in Fig. 51. The hairpin structure is stabilized

by the formation of three pairs of hydrogen bonds as indicated in Fig. 51. The

corresponding distances between the Ca atoms are designated d1, d2, and d3 and

will play an important role in our analysis of this molecule.

The potential energy surface we employ for this peptide in aqueous solution

is split into two terms:

E ¼ Epep þ Esolv

where Epep includes the peptide intramolecular interactions, and Esolv includes

the peptide–solvent and solvent–solvent interactions.

The intramolecular interaction term, Epep, is modeled with the CHARMM22

potential energy function, an all-atom potential that takes the general form

[32,166]

Epep ¼
X
bonds

Kbðb� b0Þ2 þ
X

Urey�Bradley

KUBðS� S0Þ2 þ
X

angles

Kyðy� y0Þ2

þ
X

dihedrals

Kfð1þ cosðnf� dÞÞ þ
X

improper
dihedrals

Koðo� o0Þ2

þ
X

nonbond

Eij½ðRmin
ij =rijÞ12 � 2ðRmin

ij =rijÞ6� þ ðqiqjÞ=rij

n o
ð99Þ

The quantities b, S, y, f, o are the bond length, Urey–Bradley distance, bond

angle, dihedral angle, and improper dihedral angle, respectively, with the zero

subscript representing equilibrium values. The parameters have been determined

empirically and are given in Ref. [166].

Figure 51. A schematic of Protein G (41–56) in its hairpin conformation. The dotted lines

indicate hydrogen bonds, and the distances d1; d2, and d3 refer to the distances between the Ca

atoms.
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The solvation term, Esolv, is based on the Gaussian solvent exclusion model,

which takes the general form [165]

Esolv ¼
X

i

�Gsolv
i

¼
X

i

�Gref
i �

X
j 6¼i

aie
�ððrij�RiÞ=liÞ2

4pr2
ij

Vi

( )
ð100Þ

where rij is the distance between atoms i and j. The parameters �Gref , ai, Ri, li,

and Vi can be found in Ref. [165]. In addition, partial charges for several atoms in

charged residues have been modified, effectively neutralizing the side chains in

the CHARMM22 potential.

To simplify calculations, we fix the bond lengths and bond angles to their

equilibrium values according to the CHARMM22 parameters, allowing only the

f, c, o, and w dihedral angles to vary. This reduces the number of degrees of

freedom from 3Na � 6 ¼ 735 to Nh ¼ 88. Energy values, as well as the

Cartesian gradient and Hessian matrix, were computed by the TINKER soft-

ware package [167]. The Cartesian gradients and Hessians were converted to

torsional gradients and Hessians by methods developed in our computer lab. All

in all, one Hessian evaluation requires approximately 0:50 sec of CPU time on a

600-MHz pentium machine running linux, where the bulk of the calculations

were performed.

In order to study the folding pathways of Protein G (41–56), we need to

generate an adequate sample of stationary points of the potential energy surface.

Not only do we need to generate conformations that resemble the hairpin native

state, as well as extended conformations, but we also need to find conformations

that lie along the low-lying pathways connecting these two regions of con-

formation space. Thus, we need to find low-lying conformations, as well as

transition states, over a large region of conformation space.

The approach we have chosen to follow is to first generate an initial sampling

of minima, forming a ‘‘scaffolding,’’ and then building upon that scaffolding by

performing uphill and downhill searches using an eigenmode-following algo-

rithm. Before carrying out this search, however, we first want to identify the

global minimum energy conformation on the potential energy surface, which

will serve as the native structure. The results of the global minimum search are

given in Fig. 52. The study of the pathways for the transitions from extended to

b-sheet conformations is currently in progress.

V. PROTEIN–PROTEIN INTERACTIONS

Understanding protein–protein interactions, also known as peptide docking, is

critically important for rational protein engineering and pharmaceutical design.
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Peptide docking is the binding of one protein to another protein, and such

binding is essential to processes ranging from chemotherapy to the communica-

tions between cells. Advances in understanding and predicting how solvation,

electrostatics, and other forces affect the strength, specificity, and kinetics of

peptide docking interactions is vital for discovering new drugs, for developing

tools for characterizing and treating disease, and for designing sensors and other

molecular recognition devices. No comprehensive peptide docking prediction

method yet exists. In this section we review the state of the art in peptide docking

prediction methods.

A. Background

Predicting peptide docking and protein–protein interactions computationally

involves predicting the shapes, characteristics, and interactions of ‘‘target’’

molecules and the ‘‘docking’’ ligand molecules that bind to them. One part

of the prediction challenge involves determining the conformation or structure of

the binding sites in the target molecule. The other part of the prediction challenge

involves determining the binding affinity of different docking molecules for the

target molecule. This includes identifying a set of equilibrium structures for

complexes between different docking molecules and the target molecule and

Figure 52. (a) Overall minimum energy conformation (E ¼ 653:020;F ¼ 602:768). (b)

Overall minimum free energy conformation (E ¼ 654:139;F ¼ 602:647). (c) Minimum energy

extended conformation (E ¼ 673:439;F ¼ 605:342). (d) Minimum free energy extended conforma-

tion (E ¼ 675:854;F ¼ 604:347). Energy and free energy values are expressed in kcal/mol. Free

energy values are at T ¼ 300 K.
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then quantifying and comparing, or ‘‘scoring,’’ the binding affinity of docking

molecule structures. The following two sections discuss methods used for

binding site structure prediction and binding affinity prediction.

1. Prediction of Binding Site Structure

The identification of binding site conformations in target molecules usually

requires experimental structure determination of the binding site. One class of

protiens that has received particular attention is the class of proteins derived from

the major histocompatibility complex (MHC), a set of genes critical in the

immune response [168]. Crystallographic studies have been performed for the

two major classes of MHC molecules, class I [169,170] and Class II [171]. Such

crystallographic information is invaluable. For instance, it can define rigid

binding sites for docking molecules and thus greatly reduce the conformational

space being searched in computational searches for structures of target /docking

molecule complexes.

The determination of high-quality models of protein structure for which no

experimentally determined coordinates exist has received considerable attention

in the literature. A commonly used approach is based on homology modeling, in

which a model for a target protein is generated using the known structure of a

homologous protein. Typically, a backbone model first is constructed for the

structurally conserved regions, and then loops and side chains are added

[172,173]. For the prediction of side-chain conformations, many approaches

based on homology modeling are available. These approaches differ from each

other in (a) the rotamer libraries used, (b) the energy function chosen, and (c)

the search strategy employed. In sampling conformational space through

rotamer libraries, many different approaches have been used, including back-

bone-independent rotamer libraries [174] or rotamer sets that incorporate

backbone–side-chain interactions [175]. Also employed are extended rotamer

libraries derived from cluster analyses of experimentally determined databases

[176], as well as augmented libraries that use discrete values around observed w
angle values �10� [177]. Regarding the energy function used, simplistic local

interactions typically are limited to van der Waals or hard-sphere energies

[178,179]. Finally, the employed search strategies are mainly heuristic methods

involving Monte Carlo techniques [180], genetic algorithms [181], neural

networks [182], mean-field optimization [179], and combinatorial searches

[175].

Recently, a novel decomposition-based approach has been proposed for

predicting binding site structures in the MHC II HLA-DR1 protein [183]. In

this approach, existing MHC II crystal structures are used to predict the binding

site conformations of other MHC II molecules. The approach uses the detailed

potential energy force field ECEPP/3 and an area-based solvation method. A
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global optimization search, based on the aBB algorithm, is used to identify the

global minimum energy conformation of the binding sites. As discussed further

in later sections, the predicted binding sites agree with available crystallo-

graphic data with only small rms deviations.

2. Prediction of Binding Affinity

The development of accurate ‘‘scoring’’ functions to identify and compare

equilibrium structures of target /docking molecule complexes is a challenging

and unsolved problem. A general scoring function is represented in Eq. (101):

�G ¼ �Gcomplex ��Gligand ��Gpocket ð101Þ

Here �Gcomplex, �Gbinder and �Gpocket are the free energies of the target /docking

molecule complex, the free docking ligand molecule, and the free target pocket

or binding site, respectively. �G is then the free energy of binding or binding

affinity.

Due to the computational complexity of rigorous energy calculations, many

methods have relied on qualitative modeling of peptide docking interactions. As

a first approximation, models have been developed which assume that the

docking and target molecules are rigid. In this rigid binding approximation case,

the use of shape complementarity has had some limited success [184]. Such

algorithms model the ligand and target macromolecule according to their

surface topology and attempt to identify which complexes exhibit the best

‘‘fit.’’ Here, scoring functions are based on the complementarity of the

molecules, which, in most cases, is related to their solvent accessible surface

areas [54,185,186]. The strength of these methods is that they can be made

computationally efficient and used to screen large databases of potential ligands.

However, studies comparing the computational results of these methods to

experimentally determined native complexes indicate that rigid models identify

many non-native low-energy structures. The rigid-docking scoring function can

be refined by adding additional components, such as conformational energy and

solvation energy.

On the other end of the flexibility spectrum are fully flexibile, exact models.

It has been demonstrated that exact modeling of binding free energies provides

results in nearly exact quantitative agreement with experimental results

[29,187,188]. In contrast to the rigid description of docking, these methods

allow for flexibility of both the ligand and receptor molecules. However, for

general peptide docking problems, these thermodynamic integration and free

energy perturbation methods are computationally infeasible with current com-

puting power. These problems are only tractable when approximate structures

are known and relatively small. More detail on these methods can be found
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elsewhere [189,190]. A comprehensive theoretical treatment of the thermo-

dynamics of binding processes in macromolecules is also available [191].

More computationally feasible methods are based on calculating binding free

energies using empirically derived free energy functions. Some methods of

approximating free energy functions involve structure-based potentials [192].

Other approximations utilize parameterization of experimental data to construct

scoring functions based on conformational energy, hydrophobic and hydrophilic

surface areas, and hydrogen bonding geometries [193,194]. However, these

methods are generally not transferable from one docking system to another.

A more universal approach, applicable to flexible ligands, is to base

free energy calculations on general force field models, which involve potential

energy functions similar to those described in the preceding sections. This free

energy function must also account for solvation energy, which can be calculated

from structure-based solvation terms or continuum-based models of solvation.

Rigorously, entropic effects of side-chain rotations should also be considered.

Reviews of methods used to evaluate binding free energies can be found

elsewhere [195,196].

Once a method for ‘‘scoring’’ the binding affinity has been selected, the exact

form of the approach for determining and optimizing the target /docking

molecule complex must be developed. Several general approaches have been

employed. The most obvious and most difficult approach would be to optimize

the entire system of the two interacting peptides. To accomplish this, the relative

position of the two peptides, which is defined by six degrees of freedom (three

translation and three rotation), along with the total number of internal degrees of

freedom for the two molecules, must be considered. This problem becomes

intractable for all but the smallest systems. Alternative approaches have

decomposed the problem by considering the binding affinities of shorter

subsequences at different binding sites of the target macromolecule. The

full binding ligand can then be constructed based on the optimally docked

subsequences. This approach relies on the ability to build a suitable ligand.

Another alternative method is based on independently generating conformations

of the isolated ligand. Binding affinities for a number of these rigid conforma-

tions then can be calculated and compared, with the drawback that conforma-

tions with higher binding affinities may be overlooked.

The following discussion classifies peptide docking approaches according to

their treatment of the internal flexibility of the docking ligand molecule. Some

approaches combine aspects of both rigid and flexible methods, and the choice

of scoring function is often closely related to these classifications. For example,

it is implicitly difficult for shape-based approaches to capture internal flexibility

due to their simplified description of the molecular surface. Detailed energy-

based approaches better represent the free energy of the system and can

represent internal conformational changes, but their increased dimensionality
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makes these methods more computationally expensive. The complexity of these

approaches indicates that rigorous global optimization methods are needed to

address the peptide docking prediction challenge.

Rigid Models. The first, and most common, methods used to address the

peptide docking problems were based on the concept of shape complementarity.

These methods employ, at least initially, rigid approximations for both the

docking ligand and target receptor molecules. In the most general case, six

degrees of freedom—three translational and three rotational—must be

optimized to determine the best ‘‘fit’’ for the receptor–ligand complex.

Approximations often are used in practice to reduce the number of degrees of

freedom. In addition, the alignment of each ligand must be optimized within the

binding site. Typically, several screening stages are used to reduce these

optimizations to a manageable number.

One shape-based method utilizes a simplified protein model, which is

generated by representing each amino acid by a single sphere. The scoring

function is based on interfacial areas and a simplified nonbonded potential

energy term. Potential ligand structures are screened by systematically rotating

the ligand and then translating the structure, along only one dimension, into the

pocket [197–199]. These approximations and simplifications are necessary in

order to make the problem tractable, especially in the context of a systematic

search. A recent modification attempts to overcome these computational

limitations by using a simulated annealing, rather than a systematic search, to

screen the ligand structures [200].

Distinctive characteristics of molecular surfaces also have been used to

reduce the number of degrees of freedom for shape-based docking problems.

One study considers local shape functions, which are generated by placing

spheres at surface points along the docking ligand and target receptor surfaces.

The volume within the surface and the unit vector that extends from the center

of the sphere to the surface characterize these functions. A combinatorial

algorithm can then be used to compare these local shape functions at ‘‘knobs

and holes’’ [201] on the ligand and receptor surfaces so that the best alignments

of the two molecules can be identified [202].

More detailed descriptions of molecular surfaces also have been used in

determining shape complementarity. One procedure creates a webbed surface

for the ligand and receptor by using a local coordinate system to define the

surface points for each molecule. After setting the ligand position, a least-

squares method is used to align the surface points of the two molecules. The

method also screens ligands according to a Coulombic scoring function [203].

An alternative approach transforms the problem from identifying comple-

mentary shapes for the receptor and ligand proteins into one of matching similar

shapes for these two molecules. This is accomplished by (a) describing the
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binding site as a collection of spheres that lie on the outside of the receptor

surface and (b) characterizing the ligand as a collection of spheres that lie on the

inside of the ligand surface [84,204,205]. Potential matches are identified by

grouping and comparing distances between the center of spheres for each

molecule. Local refinement of translation and rotation vectors is used for the

highest-ranking matches. The complexity of the problem is to some degree

obscured, because it also depends on the choice of location, size, and number of

spheres used to model the receptor molecule. Other modifications of this

procedure include the addition of hydrogen bonding criteria and the use of

local minimization of the potential energy in order to relax the rigidity of the

ligand molecule [206,207].

The ‘‘soft docking’’ model represents the target and docking molecules as a

collection of cubes rather than spheres. This method combines aspects of

surface complementarity, grid search, and soft potential modeling. The ‘‘cubic’’

representation along with a grid search makes the translational and rotational

searches much more efficient. In addition, the cubes implicitly allow for some

volume overlap, which can be used in combination with surface complemen-

tarity to screen docked complexes [208].

In general, when considering a rigid receptor, the concept of a grid search

can be used to reduce the computational requirements of evaluating scoring

functions. This is accomplished by precomputing values for the receptor based

on points of a three-dimensional grid [209]. The concept is similar to cubic

lattice model approaches in molecular conformation problems, for which a

recently proposed algorithm using a tabu search has been highly effective [210].

This approach has been the basis of a number of recent studies [211,212],

including one that employs a Monte Carlo search in the context of ‘‘knobs and

holes’’ docking [212].

Flexible Models. In the most general case, flexible docking approaches

attempt to optimize the free energy of the entire target /docking molecule

complex, which is described by translational, rotational, and internal variables

of the system. In contrast to most rigid modeling approaches, these methods

typically do not require prior knowledge of ligand conformations. As a result,

their success in predicting ligand binding is highly dependent on the use of

detailed scoring functions to evaluate free energy changes. In addition, although

some studies have considered full macromolecular–ligand systems, most

approaches also depend on effective decomposition strategies of the overall

docking problem.

Several simple approaches have been implemented in an attempt to model

flexible docking. For example, a number of methods have incorporated ligand

flexibility by considering databases of multiple ligand conformations [213,214].

However, these methods require reliable databases and methods for developing
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appropriate ligand conformations, and these typically are not available. On the

other hand, thermodynamic integration and free energy perturbation methods

allow for full flexibility and detailed modeling of binding free energies.

However, these simulations, usually accomplished by molecular dynamics,

effectively explore only a single low-energy minimum. This has led to the

need for global optimization methods that efficiently search the conformational

energy hypersurface associated with peptide docking problems.

One of the most common approaches is based on Monte Carlo (MC)

simulated annealing algorithms. This method was first applied to flexible ligand

docking using molecular affinity potentials [215]. Molecular affinity potentials

increase the computational efficiency of the search by employing precomputed

energy grids [209]. In this case, flexibility is introduced by allowing internal

rotations of torsion angles, along with translational and rotational movement.

However, for each docking example, a set of simulated annealing runs is

necessary in order to increase the confidence of the reported structures.

A second method, also based on simulated annealing, involves a two-step

procedure to dock flexible oligopeptide ligands [216]. In the first step, a

modified potential energy force field is used to reduce unfavorable intermole-

cular contacts. This energy model is employed in local energy minimizations of

arbitrarily docked ligands, which are needed in order to generate an initial set of

ligand conformations. The scoring function for the second step describes energy

interactions between the flexible ligand and rigid receptor molecules. The set of

minimized conformations is then used to generate starting points for a

Monte Carlo minimization procedure. Although experimental results were not

initially available, later comparison has shown that this method does not

correctly predict MHC binding. These discrepancies are most likely attributable

to incorrect energy modeling (e.g., no inclusion of solvation), along with the

inherent inefficiencies associated with simulated annealing searches.

Another MC-based method employs a multiple-start technique in an attempt

to reproduce the results of a systematic search. The first step involves a

Monte Carlo search with a grid-based scoring function in order to limit steric

overlaps of the ligand and receptor molecules. A second, energy-directed,

simulated annealing search uses a pairwise potential energy function. Rather

than rely on a single search, this method employs a large number of short

simulated annealing runs. Although initial results were based on both rigid

receptor and ligand conformations [217], more recent work has addressed the

issue of flexible ligand docking [218].

Another type of MC method is the scaled collective variable Monte Carlo

method used in the software package PRODOCK [219]. This method performs

energy minimizations after each MC step, which helps to distinguish native

conformations from low-energy non-native conformations. Bezier splines and

other techniques have been incorporated into the method to improve its
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efficiency. In addition, PRODOCK allows different amino acids in the docking

complex to be defined as rigid or flexible.

In a similar way, genetic algorithms recently have been used to dock flexible

ligands. In some cases, scoring functions have been based on potential energy

force fields [220], although some modified potentials also have been used [221].

The results of one method [222], which includes solvation effects, emphasize

the need for developing reliable scoring functions. In general, as with simulated

annealing, the ability to model flexibility is limited as ligand size increases. The

coupling of these effects with the implicit unreliability of both the genetic

algorithm and simulated annealing search techniques must be closely consid-

ered when approaching large-scale docking problems such as de novo drug

design.

Combinatorial methods also have been used to address the difficulties of

modeling full ligand flexibility. In theory, these methods are similar to buildup

methods used for the protein folding problem, although peptide docking also

includes intermolecular interactions. An initial application to the peptide

docking problem was based on rigid ligand models generated from a database

of chemical structures [205]. A more detailed implementation uses libraries of

low-energy conformations for single amino acid residues. These conformations

subsequently are joined and grouped according to scoring functions based on

the intra- and intermolecular energies of the target/docking ligand complex

[223]. More recent methods have employed databases developed for smaller

ligand fragments such as functional groups [224] or even atoms [225]. In

general, these ligand buildups are initialized by selecting a starting point within

the target binding site pocket. As with the protein folding approaches, such

combinatorial techniques must employ effective reduction schemes in order to

limit the number of generated conformations.

Similar approaches combine the ideas of fragment assembly and site

mapping. In contrast to the single anchor requirement of simple buildup

methods, these techniques attempt to identify a number of anchor fragments

or residues that can be joined through a process of fragment assembly. The first

step, site mapping, is equivalent to docking probe fragments at specific sites of

the target macromolecule. Some methods have screened the binding affinities of

these probes using shape-based modeling [226], whereas others have relied on

other energy-based descriptions, such as hydrogen bonding interactions

[227,228]. In general, these site maps are constructed by local minimization,

grid, or library searches of the probe conformations. Other techniques employ a

multiple copy simultaneous search [229,230]. Once anchor positions have been

determined using one of these methods, the resulting segments must be joined

by fragment assembly. Bridges can be formed by searching through molecular

libraries, or in some cases using an exhaustive search over all connections [231].

A recently proposed technique applies a dynamic programming approach, as

deterministic global optimization and ab initio approaches 413



discussed above, to the fragment assembly phase of a nonameric ligand in an

MHC HLA-A2 complex [232]. A molecular dynamics simulation also has been

utilized for studying the binding afinity of the HLA-B*2705 protein [233].

Recently, a novel decomposition-based approach has been proposed for

predicting the binding site structure of and peptide docking to the MHC II

HLA-DR1 protein [234]. The approach performs site mappings of the five

polymorphic pockets of MHC II molecules that accommodate peptide docking

[171]. In one part of the approach, existing MHC II crystal structures are used to

predict the binding site conformations of other MHC II molecules. In another

part of the approach, each naturally occurring amino acid is treated as a probe

molecule for each of the five pockets. The approach uses a deterministic global

optimization search technique to identify the best conformation for each pocket

or residue. The scoring function accounts for both intra- and intermolecular

interactions using the detailed potential energy force field ECEPP/3 along with

several solvation model approaches. The global optimization search, based on

the aBB algorithm, is used to identify the global minimum energy conformation

for the pockets and for both the bound and free residues. The corresponding

energy differences are then used to provide rank-ordered lists of the best binders

for each pocket. As discussed in later sections, results for pocket 1 of the HLA-

DRB1 macromolecule have exhibited good agreement with experimental

binding assays [234].

A recent review of approaches for peptide docking can be found in Floudas

et al. [235]. The main disadvantages of most of these approaches are as follows:

(a) Only a very limited conformational space is considered because usually

fewer than 10 rotamers are used for each residue.

(b) The simplicity of the energy functions is not able to give a realistic

description of the molecular system.

(c) No systematic search methodology exists to guarantee the determination

of the global optimal solution, even in methods using simplified energy

functions.

Thus many current models of binding site structure prediction and binding

affinity prediction in peptide docking are not able to guarantee that they have

found the optimum docking solution because they consider only a few of the

many conformations two docking partners may adopt, because they are not

quantitative, or because they do not fully consider entropic, electrostatic, or other

energetic effects.

B. Prediction of Binding Site Structure

We have developed a theoretical approach that, based on crystallographic data

from MHC II molecules, determines the three-dimensional structure of MHC II

molecule binding sites for which crystallographic data are not available. Class II

histocompatibility molecules are cell surface molecules that form complexes
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with self and nonself peptides and then present them to T cells as part of the

immune response. A number of class II histocompatibility molecules have been

analyzed by crystallography, including HLA-DR1 [171], HLA-DR3 [236], and

I-Ek [237]. Crystal structures are not available, however, for the vast majority of

class II MHC molecules. MHC II molecules for which crystal structures are not

available are important in autoimmune diseases such as diabetes and rheumatoid

arthritis, and being able to predict such structures would advance the

understanding and treatment of these diseases.

Our approach to binding site structure prediction uses the ECEPP/3 potential

energy model for describing the energetics of atomic interactions (as described

in Section III.A.1 above) and employs the rigorous deterministic global

optimization algorithm aBB (as described in Section II.A.6 above) to obtain

the global minimum energy conformation of the binding site. With this

approach, we predicted the binding sites of HLA-DR3 and I-Ek based on the

crystallographic structure of HLA-DR1 [171]. The root mean square differences

(based on all atoms) between the structures we predicted and the actual crystal

structures of the two molecules [236,237] are between 1.09 and 2.03Å. We also

calculated the binding affinity of our predicted structures using the decomposi-

tion approach discussed in Section V.C.2. These binding affinities are in good

agreement with the results obtained by applying the decomposition approach to

the actual crystal structures.

1. Definition of Problem

The recent crystallographic studies of class II HLA molecules [171,236,237]

suggest an overall similarity in their structures. The conformation of HLA-DR3

in the HLA-DR3-CLIP complex is only slightly different from that of HLA-DR1

in HLA-DR1-HA [236], and a comparison of two I-Ek structures with HLA-DR1

identifies that only a few differences in b-chain amino acids exist between I-Ek

and both the HLA-DR1 and HLA-DR3 sequences. However, these few variable

residues are sufficient to explain antigenic differences without recourse to

allosteric transitions or novel conformations.

Consequently, specific information about the structure of the histocompat-

ibility molecules is needed in order to be able to analyze their specificity.

Because crystal structures of class II molecules are not available except for the

human crystals of HLA-DR1-HA and HLA-DR3-CLIP and the murine crystals

I-Ek-HB and I-Ek-Hsp, we propose a novel approach based on decomposition

and deterministic global optimization that enables the prediction of the three-

dimensional structure of the binding sites of class II molecules and can be used

efficiently for the qualitative assessment of their binding affinities.

The question that is addressed is stated as follows: Given the (x, y, z)

coordinates of the atoms in pockets 1, 4, 6, 7, and 9 of HLA-DR1 [171], can we

predict the three-dimensional structures of the corresponding pockets of HLA-

DR3 and I-Ek?
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2. Approach

A systematic approach is presented below for the structure prediction of an

antigen binding site based on the crystallographic data of the HLA-DR1

molecule [171]. The approach examines each of the binding sites separately and

involves the following steps:

1. The binding sites of HLA-DR1 molecule are evaluated. All amino acids

within a radius of R ¼ 5:0 Å of the atoms of the binding amino acid in the

crystallographic studies [171] are identified as shown in Table XXXVI.

The Program for Pocket Definition, as described in Ref. 234 and Section

V.C.3, constructs these pockets through the selection of all residues that

are within a radius R of the atoms of the crystallographic binder.

2. The amino acid substitutions between HLA-DR1 and the HLA-II molecule

(e.g., HLA-DR3, I-Ek) are identified and are shown in Table XXXVII.

Note that pocket 1 of HLA-DR1 requires only one substitution (Gly !
Val in position b86) to give pocket 1 of HLA-DR3. Pockets 4, 6, and 7

involve three substitutions, whereas pocket 9 features only one

substitution, in the representation of the corresponding pockets of HLA-

DR3. Note also that all pockets of HLA-DR1 require three or four

substitutions in order to give the corresponding pockets of I-Ek.

3. For each one of the substituted residues, the intra- and intermolecular

energy interactions are modeled. Specifically, the electrostatic, nonbonded,

torsional, and hydrogen bonding contributions [38] are considered for each

TABLE XXXVI

HLA-DR1 Pocket Compositions for R ¼ 5:0 Å

Pocket

—————————————————————————————————————————

1 4 6 7 9

phea24 glna09 glua11 vala65 asna69

ilea31 glua11 asna62 asna69 leua70

phea32 asna62 vala65 glub28 ilea72

trpa43 pheb13 aspa66 tyrb47 meta73

alaa52 leub26 leub11 trpb61 arga76

sera53 glnb70 pheb13 leub67 trpb09

phea54 argb71 argb71 argb71 aspb57

glua55 alab74 tyrb60

asnb82 tyrb78 trpb61

valb85

glyb86

pheb89

thrb90
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substituted residue, as well as the interactions of the substituted residues

with the rest of the amino acids that constitute the examined binding site.

The solvation energy also is considered through solvent-accessible areas

[52,238] as explained in Section III.A.2. The dihedral angles that define

the three-dimensional structure of the substituted residues are considered

explicitly as variables. The relative position of each amino acid also must

be determined, and this is done through the determination of each amino

acid’s translation vector and Euler angles. Lower and upper bounds are

considered for the N and C0 coordinates of the substituted amino acids,

based on the available crystallographic data [171,236,237].

4. Having the mathematical model that includes the intra- and intermole-

cular energetic interactions and the solvation energy, and which has as

variables the dihedral angles of the substituted amino acids as well as their

translation vectors and Euler angles, we minimize the total potential

energy by employing the aBB deterministic global optimization approach

[14–18] as described in later sections below.

5. The resulting global minimum energy conformer provides information on

the predicted (x; y; z) coordinates of the atoms of the substituted residues.

Structure verification is made by superposition of all atoms of the

predicted structure and the ones derived from crystallographic data. The

superposition is based on the global minimization of the root mean square

TABLE XXXVII

Substitutions for HLA-DR3 and I-Ek Binding Sites

Pocket Substitutions for HLA-DR3 Substitutions for I-Ek

b85: Val ! Ile

1 b86: Gly !Val b86: Gly ! Phe

b90: Thr ! Leu

b13: Phe ! Ser b13: Phe ! Ser

4 b26: Leu ! Tyr b74: Ala ! Glu

b74: Ala ! Arg b78: Tyr ! Val

b71: Arg ! Lys

b11: Leu ! Ser b11: Leu ! Ser

6 b13: Phe ! Ser b13: Phe ! Cys

b71: Arg ! Lys b71: Arg ! Lys

b28: Glu ! Asp b28: Glu ! Val

7 b47: Tyr ! Phe b47: Tyr ! Phe

b71: Arg ! Lys b67: Leu ! Phe

b71: Arg ! Lys

a72: Ile ! Val

9 b9: Trp ! Glu b9: Trp ! Glu

b60: Tyr ! Asn

deterministic global optimization and ab initio approaches 417



differences of the distances between all the atoms involved in the pocket

as described in the computational studies section below (Section III.C.5).

3. Modeling

When bond angles and bond lengths are assumed to be rigid, the geometric shape

of a protein is uniquely determined by its dihedral angles. If more than one

polypeptide is involved, the relative orientations and locations of these different

chains also must be defined. This can most easily be accomplished by defining a

translation vector and a rotation matrix. The translation vector is based on the

Cartesian coordinates of the initial nitrogen atom of each independent chain.

Euler angles specify the rotations necessary to orient a particular polypeptide and

are defined as the angles between the coordinate axes defined by the initial

hydrogen, nitrogen, and alpha carbon of each residue.

The system under study involves all the residues of the binding site. The

substituted amino acids constitute the problem variables, whereas the residues

that remain the same are treated as fixed based on the crystallographic data.

Because there may be multiple amino acid substitutions, the problem variables

are the amino coordinates ðNx;Ny;NzÞ, the Euler angles ðe1; e2; e3Þ, and the di-

hedral angles ðf;c;o; w kÞ of all substituted residues. In contrast to other

existing approaches, the Euler angles and dihedral angles are considered to

span the entire feasible range [�180�;þ180�] and are not restricted to specified

discrete values.

Consequently, the total energy function is defined as

ETotal ¼ EMIN
Unsolvated þ ESolvated ð102Þ

where EMIN
Unsolvated is the potential energy of the system without considering

solvation, ESolvated is the solvation energy of the system, and ETotal is the potential

and solvation energy of the system. Based on the above description the

mathematical formulation can be posed in the following way:

min ETotalðfm;cm;om;wm
k ;Nm

x ;Nm
y ;Nm

z ; e
m
1 ; e

m
2 ; e

m
3 Þ ð103Þ

subject to � p � fm;cm;om; wm
k ; e

m
1 ; e

m
2 ; e

m
3 � p ð104Þ

ðNm
x Þ

L � Nm
x � ðNm

x Þ
U ð105Þ

ðNm
y Þ

L � Nm
y � ðNm

y Þ
U ð106Þ

ðNm
z Þ

L � Nm
z � ðNm

z Þ
U ð107Þ

ðC0mx Þ
L � C0mx ðfm;cm;om; wm

k ;N
m
x ;Nm

y ;N
m
z ; e

m
1 ; e

m
2 ; e

m
3 Þ � ðC0mx Þ

U ð108Þ

ðC0my Þ
L � C0my ðfm;cm;om; wm

k ;N
m
x ;Nm

y ;N
m
z ; e

m
1 ; e

m
2 ; e

m
3 Þ � ðC0my Þ

U ð109Þ

ðC0mz Þ
L � C0mz ðfm;cm;om; wm

k ;N
m
x ;Nm

y ;N
m
z ; e

m
1 ; e

m
2 ; e

m
3 Þ � ðC0mz Þ

U ð110Þ

where m ¼ 1; . . . ;M corresponds to total number of substitutions.
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The additional constraints (105–110) represent the bounds on the N and C0

coordinates and express the binding of the specific residue with the rest of the

pocket [234], because the substituted residue is part of a longer polypeptide and

consequently is not allowed to rotate freely. Because the C0 coordinates can be

evaluated as functions of the independent variables, the restrictions on the

position of C0 are implemented by the incorporation of a penalty function, P, in

the objective function:

P ¼ bfhC0lx � C0xi þ hC0x � C0ux i
þ hC0ly � C0yi þ hC0y � C0uy i

þ hC0lz � C0zi þ hC0z � C0uz ig

The h i function is defined as follows: hAi equals A if A is greater than zero;

otherwise hAi equals zero. Thus, any coordinate value beyond the specified

bounds is multiplied by the penalty parameter b and added to the potential

energy. Consequently, the minimization of the objective function eliminates

solutions in which the C0 position falls outside the specified bounds.

The global optimization formulation is then as follows:

L ¼ ETotal þ a
�XM

m¼1

fmL � fm
� �

fmU � fm
� �

þ cmL � cm
� �

cmU � cm
� �

þ omL � om
� �

omU � om
� �

þ
XK

k¼1

wmL
k � wm

k

� �
wmU

k � wm
k

� �
þ NmL

x � Nm
x

� �
NmU

x � Nm
x

� �
þ NmL

y � Nm
y

� �
NmU

y � Nm
y

� �
þ NmL

z � Nm
z

� �
NmU

z � Nm
z

� �
þ emL

1 � em
1

� �
emU

1 � em
1

� �
þ emL

2 � em
2

� �
emU

2 � em
2

� �
þ emL

3 � em
3

� �
emU

3 � em
3

� ��

where a is a nonnegative parameter that must be greater or equal to the negative

one-half of the minimum eigenvalue of the Hessian of ETotal in the considered

domain defined by the lower and upper bounds (i.e., xL ¼ �p; xU ¼ p) of the

dihedral angles, translation variables, and Euler angles. This parameter can be

rigorously calculated based on the techniques introduced by Adjiman and

Floudas [14] and Adjiman et al. [16,17].

For the problem of determining the binding sites of the unknown HLA

molecules, the global variable set includes the f, c, and wk variables. All of the

dihedral angles of the substituted residues, as well as their translation vectors
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and Euler angles, are continuous variables in the problem and are treated as

local variables.

4. Deterministic Global Optimization

The implementation of the approach involves the connection of the conforma-

tional energy program PACK [74], which allows the evaluation of all energy

interactions when more than one protein chain is involved in the system, to the

deterministic global optimization framework aBB. PACK evaluates all energy

components through repeated calls to the ECEPP/3 potential energy function

program. The local optimization solver NPSOL is used for the minimization of

the overall potential energy provided by PACK and for the minimization of the

convexified potential function (L) provided by aBB. MSEED [52], the program

for the determination of solvation energy, is interfaced to aBB to allow the

consideration of the solvation energy at the local minima. The algorithmic

procedure is represented graphically in Fig. 53.

The implementation of the proposed approach is illustrated in Fig. 54 and

involves the following steps:

1. The Program for Pocket Definition (PPD) uses the input files residue.pdb

and pocket.pdb to generate the coordinates of the residues involved in the

considered pocket.

2. The program ARAS is used to determine the translation vectors, Euler

angles and dihedral angles of the residues in the pocket given their (x; y; z)

coordinates. This information and the initial values for the translation

vector, Euler angles, and dihedral angles of the substituted residues are

incorporated within the input file name.input.

3. The program prePACK utilizes the residue.data file (a set of initial atomic

coordinates that are based on fixed bond lengths, fixed bond angles, and

each variable dihedral angle initially set to 180�), the mol.in file for each

one of the amino acids involved in the pocket, and the prep.name.abb file

(which specifies the fixed and substituted residues) to create a name.date

file. The name.date file is the standard input for the potential function

program, PACK.

4. The global optimization program aBB requires a name.abb file that

defines the optimization problem, including the variable bounds. aBB also

uses the name.input file and the name.bounds file, which contains the C
0

bounds used to evaluate the coordinates of C0 as a function of the

independent variables.

5. The program PACK uses the name.date file and is connected with ECEPP/3

in order to evaluate the potential function, which is minimized by the local

optimization solver NPSOL.
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6. The MSEED solvation energy program uses the JRF.dat file, which

defines the solvation parameters si and evaluates the solvation energy at

the current local minimum structure.

5. Computational Studies

Comparison with Crystallographic Data. To compare the predicted structure of

the pockets accurately with the crystallographic data, the best rotation and

translation to relate the two different sets of atomic positions must be obtained.

Given two proteins A and B with Natom atoms, the best superposition is the one

that minimizes the sum of squared distances between each B atom and the

PACK

Initial Structure

NPL local solver
NPSOL

αBB

MSEED

STOP
optimal structure

YES

NO Check for
convergence
UB - LB < ∈

?

Lower Bound

Upper Bound

NLP local solver
NPSOL

Contruct Lower
Bound Problem

Figure 53. Deterministic global optimization algorithm for binding site structure prediction.
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corresponding A atom. Existing approaches to this problem are based on the

following:

ii(i) Iterative minimization using rotation angles [239,240].

i(ii) The use of decomposition approaches, where the transformation matrix

L is determined by calculating the best unrestricted linear transforma-

tion that converts A into B using the least-squares matrix method [241];

or the formation of a generalized inverse of the molecular structure

[242], and then the decomposition L ¼ RS where R is a rotation matrix

and S is a symmetric distortion matrix.

(iii) The construction of a matrix U which yields an orthogonal rotation

directly [243–246].

As pointed out by McLachlan [246], the rotation angles method is very slow,

while the rotation matrix methods depend on whether A is fitted to B or vice

versa and do not minimize the RMS distance. McLachlan [246] proposed an

approach to improve the speed and accuracy of determining the matrix U and

moreover to cover all special cases which arise when U is degenerate or

singular.

We formulated and solved the problem of obtaining the best fit of two protein

structures as a global optimization problem. The best rotation and translation

matrices that minimize the ‘‘fitting distance’’ for the two protein structures are

name.abb
name.bounds

name.input

name.date

residue.pdb
pocket.pdb

prep.name.abb
residue.data

PACK

prePACK

PPD

NPL local solver
NPSOL

ECEPP/3

MSEED

αBB

Initialize
αBB

Figure 54. Implementation of the binding site structure prediction approach.
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guaranteed to be found in all special cases without having to perform any

additional tests and calculations.

Consider two protein structures A and B, with A obtained from the crystal-

lographic data and B determined from our methodology. Both structures involve

Natom atoms with Cartesian coordinates ðxcðiÞ; ycðiÞ; zcðiÞÞ for the crystal and

ðxpðiÞ; ypðiÞ; zpðiÞÞ for the predicted structure. The mathematical formulation of

the best-fitting problem can then be posed as follows:

min RMS¼ð1=NatomÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNatom

i¼1

ðxcðiÞ�x0ðiÞÞ2þðycðiÞ�y0ðiÞÞ2þðzcðiÞ�z0ðiÞÞ2
vuut

subject to

x0ðiÞ
y0ðiÞ
z0ðiÞ

2
64

3
75 ¼ R

xpðiÞ
ypðiÞ
zpðiÞ

2
64

3
75þ T ð111Þ

R ¼
r11 r12 r13

r22 r22 r22

r31 r32 r33

2
64

3
75; T ¼

t1

t2

t3

2
64

3
75

RR> ¼ I

where R and T are the required rotation and translation vectors that translate

the predicted binding sites that correspond to ðxpðiÞ; ypðiÞ; zpðiÞÞ coordinates

to the Cartesian system of the crystal ðxcðiÞ; ycðiÞ; zcðiÞÞ. The coordinates

ðx0ðiÞ; y0ðiÞ; z0ðiÞÞ correspond to the transformed system following the rotation

and translation.

Formulation (111) constitutes a special case of global optimization problems

because it involves the minimization of a convex function subject to a set of

linear equality and nonconvex equality constraints RR> ¼ I. The deterministic

global optimization algorithm aBB [14–18], presented briefly in previous

sections, is used for the solution of this global optimization problem. The

results obtained for the superposition of the predicted HLA-DR3 and I-Ek

binding sites with the crystallographic data are presented in the following

sections. Four tests are performed in order to evaluate the prediction accuracy of

our methodology.

i(i) For each predicted binding site the root-mean-square deviations of

Cartesian coordinates of all the atoms (cRMSD) and the Ca atoms are

evaluated.

(ii) For each one of the substituted residues, the cRMSD is evaluated

considering all the atoms.
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(iii) For each one of the substituted residues, a relative cRMSD is evaluated

based on the following formula:

R� cRMSD

¼ 1

Natom

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2Natom

1

3

ðxpðiÞ � xcðiÞÞ
xcðiÞ

2

þ ðypðiÞ � ycðiÞÞ
ycðiÞ

2

þ ðzpðiÞ � zcðiÞÞ
zcðiÞ

2
" #vuuuut

to measure the relative predictive error of the procedure.

(iv) Computational binding studies are performed to compare the

energetic-based rank ordering of the amino acids in the predicted

binding site versus the rank ordering of the amino acids in the binding

site based on the crystallographic data, as discussed in later sections.

Prediction of HLA-DR3 Binding Sites. We applied our approach to the predic-

tion of the three-dimensional structure of HLA-DR3 binding sites.

As presented in Table XXXVII, by substituting Gly to Val in position b86

in pocket 1 of HLA-DR1, the pocket 1 of HLA-DR3 is formulated. The

predicted pocket of HLA-DR3 is shown in Fig. 55 with the crystallographically

obtained pocket superposition. The cRMSD difference between these two

pockets is found to be 1.09 Å based on the differences of the coordinates of

Figure 55. Superposition of the predicted pocket 1 of HLA-DR3 versus crystallographic data.
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all the atoms involved in the pocket. The relative cRMSD for the whole binding

site is 0.0425, which corresponds to 4.25% difference of the predicted Cartesian

coordinates of the binding site and the crystallographic data. The cRMSD

difference based on the a carbons is 0.55 Å. The cRMSD for the substituted

residue (Val) is 1.584 Å and the relative-cRMSD is 0.04601, which indicates a

4.6% difference between the predicted valine and the valine determined based

on the crystallographic data of the HLA-DR3 molecule [236].

To generate pocket 4 of HLA-DR3, three substitutions are made on the

composition of the pockets of HLA-DR1 at the positions b13: Phe ! Ser;

b26: Leu ! Tyr; and b74: Ala ! Arg. The cRMSD difference for all the

residues in the pocket is 1.11 Å, and the overall relative difference of the

predicted pocket compared to the crystallographic data is 2.08%. The cRMSD

difference based on the a carbons is 0.49 Å. The cRMSD for each one of the

substituted residues is 1.67 Å for Ser, 0.83 Å for Tyr, and 1.46 Å for Arg and

correspond to relative differences of 3.2%, 1.2% and 2.3%, respectively.

For pocket 6 of HLA-DR3, the substitutions are at positions b11: Leu to Ser;

b13: Phe to Ser; and b71: Arg to Lys. The cRMSD difference for this pocket is

1.22 Å based on all atom deviations, which corresponds to a relative cRMSD of

4.9%. The cRMSD difference based on the a carbons is 0.61 Å. The individual

cRMSD for Serb11 is 1.26 Å, for Serb13 it is 1.62 Å, and for Lys b71 it is

1.82 Å, which correspond to relative predictive errors of 7.4%, 3.7% and 3.2%,

respectively.

For pocket 7 of HLA-DR3, three substitutions are made at the positions b28:

Glu to Asp; b47: Tyr to Phe, and b71: Arg to Lys. The cRMSD difference for

this pocket is 1.94 Å based on all atom deviations, which corresponds to a

4.69% deviation. The cRMSD difference based on the a carbons is 0.71 Å. The

cRMSD for each one of the substituted residues are 1.08 Å for Phe, 3.08 Å for

Asp, and 3.4 Å for Arg and correspond to relative differences of 1.4%, 5.1%,

and 4.7%, respectively.

Finally, for pocket 9 only one substitution is needed, namely Trp to Glu in

position b9 to obtain pocket 9 of HLA-DR3 from pocket 9 of HLA-DR1. The

resulting pocket is found to have a cRMSD difference of 1.03 Å based on all

atoms and 0.56 Å based on the Ca atoms. The relative cRMSD based on all

atom deviations is 37.2%. Considering only the substituted residue, the cRMSD

is 1.67 Å. The large predictive deviation in this pocket is due to the large

inherent deviation between the HLA-DR1 and the HLA-DR3 crystallographic

data. This cRMSD difference for pocket 9 is 1.05 Å, which corresponds to an

inherent relative cRMSD of 20.7%.

The results of our prediction approach for all the pockets are summarized in

Table XXXVIII. Note that the percentage predictive error is less than 5%,

except for pocket 9 where the large inherent deviation between the two crystals

prohibits a more accurate prediction.
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The coordinates of N and C0 are variables in this formulation with bounded

ranges for their values around the corresponding atoms in HLA-DR1. Based on

the differences observed in the N and C0 (x, y, z) coordinates of the HLA-DR1,

HLA-DR3, and I-Ek crystals [171,236,237] after superposition, tight bounds in

the range of 0.3–1.0 suffice. To study further the effect of the bounds, we

considered bound variations of (�0:5Þ; ð�0:7Þ and ð�1:0). The predicted

structures of pocket 1 exhibited small cRMSD differences of 1.18, 1.11, and

1.09 Å, respectively, calculated based on all atoms.

Our prediction approach considers the simultaneous substitution of all amino

acids responsible for the differences of MHC class II molecules. The required

substitutions usually involve 2, 3, or 4 residues and give rise to a global

optimization problem that includes as variables the dihedral angles of each

residue as well as the translation vector and Euler angles defining the relative

position of each residue. In order to reduce the size of the resulting global

optimization problem, the following two simplifying alternative procedures also

were explored. The first approach is sequential in nature. Instead of considering

all amino acids substitutions simultaneously, we considered them sequentially.

In particular, the conformation of the first considered substituted amino acid was

determined by minimizing the intra- and intermolecular interactions between

the specific amino acid and the other residues of the HLA-DR1 binding site.

Then, this residue was considered as part of the pocket, and the structure of the

second substituted residue was determined. In the second alternative approach

TABLE XXXVIII

Results for HLA-DR3 Prediction

Substituted

Pocket Residues

——————————— ———————————————————

cRMSD (Å) Relative cRMSD (%)

——————————— —————————

Pocket All Atoms Ca All Atoms cRMSD (Å)

1 1.09 0.55 4.6 Val: 1.58

Ser: 1.67

4 1.11 0.49 2.1 Tyr: 0.83

Arg: 1.46

Ser: 1.26

6 1.22 0.61 4.9 Ser: 1.62

Lys: 1.82

Asp: 3.08

7 1.94 0.71 4.7 Phe: 1.08

Lys: 3.40

9 1.32 0.56 37.2 Glu: 1.67
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we considered each of the substituted amino acids independently and deter-

mined their conformations based on minimized energy interactions with the rest

of amino acids involved in the pocket of HLA-DR1 molecule. The results

obtained for the case of pocket 1 of HLA-DR3 are better than that of the

sequential approach having an cRMSD of 2.17 Å compared to 2.51 Å of the

sequential procedure but worse than that of the simultaneous approach

(cRMSD¼1.09 Å). The reason is that in the sequential approach the error

from the first determined amino acid conformation is accumulated as its con-

formation affects greatly the conformation of the other sequentially considered

amino acids.

Prediction of I-Ek Binding Sites. Pocket 1 of I-Ek requires three substitutions:

b85: Val! Ile; b86: Gly! Phe, and b90: Thr! Leu. The predicted pocket is

illustrated in Fig. 56 with the crystallographic data of I-Ek [78]. The cRMSD

difference based on all atoms deviations is 1.67 Å and corresponds to 9.2%

relative predictive error. The cRMSD differences for the individual substituted

residues are 2.45, 3.36, and 1.76 Å, for Ile, Phe, and Leu, respectively.

For pocket 4 of I-Ek there are four substitutions needed, as shown in

Table XXXVII (b13: Phe to Ser; b74: Ala to Glu; b78: Tyr to Val; and b:71

Arg to Lys). The cRMSD difference is 1.58 Å, which corresponds to 3.49%

predictive error. For the individual substituted residues the cRMSD differences

Figure 56. Superposition of the predicted pocket 1 of I-Ek versus crystallographic data.
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are 0.78, 1.35, 2.88, and 1.61 Å, for Ser, Glu, Val, and Lys, respectively. These

individual differences correspond to relative predictive errors of 1.59%, 2.16%,

4.48%, and 2.03%.

For pocket 6 of I-Ek, three substitutions are required at the positions b11:

Leu ! Ser, b13: Phe ! Cys; and b71: Arg ! Lys. The cRMSD difference is

1.28 Å based on all atoms, which corresponds to 5.19% relative predictive error.

For the individual substituted residues, the cRMSD differences are 1.89, 2.67,

and 1.64 Å for Ser, Cys, and Lys, respectively. These differences correspond to

4.41%, 14.06%, and 2.82% relative predictive error.

Pocket 7 of I-Ek requires four substitutions, as shown in Table XXXVII (b28:

Glu to Val; b47: Tyr to Phe; b67: Leu to Phe; and b71: Arg to Lys). The cRMSD

difference is 2.03 Å and corresponds to 4.33% relative predictive deviation. For

the individual residues the cRMSD differences are 2.89, 2.15, 2.20, and 3.23 Å

for Val, Pheb47, Pheb67, and Lys, respectively, and correspond to 3.95%, 3.1%,

5.28%, and 4.41% relative predictive deviation.

Finally, pocket 9 of I-Ek features three substitutions: a72: Ile to Val; b9: Trp

to Glu; and b60: Tyr to Asn. The cRMSD difference is 1.35 Å, which

corresponds to 23.3% relative predictive deviation. For the individual residues

the cRMSD differences are 1.56, 2.46, and 1.56 Å for Val, Glu, and Asn,

respectively. The larger relative predictive deviation for this pocket is mainly

due to the large relative error for Val at position a72, and the large deviation

between the crystals HLA-DR1 and HLA-DR3 gives a cRMSD of 1.09 Å and a

21.4% relative deviation. The results for all the pockets are summarized in

Table XXXIX.

In order to study the effect of considering different bounds on N and C0

coordinates, the proposed approach was applied to all the pockets for �0:5 and

�0:3 Å bounds around the coordinates of the corresponding atoms of HLA-DR1

molecule. The results are shown in Table XL. As was found from the crystal-

lographic data of the I-Ek molecule binding with different peptides (i.e., a

peptide derived from murine hemoglobin Hb(64–76), or a peptide from murine

heat shock protein 70 Hsp(236–248)), there is some inherent variability in the

range of 0.01–0.4 Å for N and C0 coordinates. These differences correspond to

pocket flexibility to accommodate different peptides.

The obtained cRMSD data for all predicted pockets show good agreement

with the crystallographic data considering that there is an inherent difference

between the crystals, as shown in Table XLI. The cRMSD differences shown in

Table XLI represent the differences in the common atoms of the pockets of

HLA-DR1 and HLA-DR3 crystals, as well as the differences between HLA-

DR1 and I-Ek crystals. These cRMSD differences serve as a reference point in

the evaluation of the predicted pockets. For instance, for pocket 1 of HLA-DR3

the predicted structure via the proposed approach has a cRMSD difference of

1.09 Å, whereas the crystallographic data of pocket 1 for HLA-DR1 and
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pocket 1 of HLA-DR3 exhibit a cRMSD of 1.03 Å among their common atoms.

Comparing the results shown in Tables XXXVIII, XXXIX, and XLI, it is

evident that the predicted structures are close to their reference points, even for

pocket 9.

TABLE XL

Effect of Different Bounds on N and C0 Coordinates (I-Ek)

Pocket Bounds cRMSD (Å)

1 �0.5 2.26

�0.3 1.67

4 �0.5 1.81

�0.3 1.58

6 �0.5 1.28

�0.3 1.44

7 �0.5 3.17

�0.3 2.41

9 �0.5 1.84

�0.3 1.77

TABLE XXXIX

Results for I-Ek Prediction

Substituted

Pocket Residues

——————————— ———————————————————

cRMSD (Å) Relative cRMSD (%)

——————————— —————————

Pocket All Atoms Ca All Atoms cRMSD (Å)

Ile: 2.45

1 1.67 0.47 9.2 Phe: 3.36

Leu: 1.76

Ser: 0.78

4 1.58 0.83 3.5 Glu: 1.35

Val: 2.88

Lys: 1.61

Ser: 1.89

6 1.28 0.65 5.2 Cys: 2.67

Lys: 1.64

Val: 2.89

7 2.03 0.93 4.3 Phe: 2.15

Phe: 2.20

Lys: 3.23

Val: 1.56

9 1.35 0.63 23.3 Glu: 2.46

Asn: 1.56
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Our approach couples the modeling of energetic interactions and determi-

nistic global optimization approaches and can predict the pockets of HLA-DR3

and I-Ek with small (RMS) differences.

C. Prediction of Relative Binding Affinities

We have developed a theoretical approach that determines the relative binding

affinities of amino acids binding to the five pockets of the MHC II molecule

HLA-DR1. MHC II molecules such as HLA-DR1 are cell surface glycoproteins

that play a pivotal role in the development of an effective immune response. An

important function of HLA molecules is to bind and present antigen peptides to T

cells. Presently there is no comprehensive way of predicting and energetically

evaluating peptide binding for HLA molecules.

To determine quantitatively the relative binding affinities of different pep-

tides for HLA molecules, we developed a decomposition approach based on

deterministic global optimization that takes advantage of the topography of the

HLA binding groove. Our computational results for binding the 20 naturally

occurring amino acids in the five pockets of the HLA allele HLA-DRB1*0101

are in excellent agreement with experimental binding assays and with X-ray

crystallography data.

1. Definition of Problem

Class II histocompatibility molecules are cell surface molecules that form

complexes with self and nonself peptides and then present them to T cells as part

of the immune response. MHC II molecules are important in autoimmune

diseases such as diabetes and rheumatoid arthritis, and being able to predict and

design the sequences and affinities of peptides which bind to MHC II molecules

would increase our understanding of these diseases as well as our ability to

design drugs to treat them.

The question that is addressed is stated as follows: Given the (x,y,z)

coordinates of the atoms in HLA-DR1 [171], can we predict the affinity and

conformation of the peptides which bind to it?

TABLE XLI

cRMSD Differences Between HLA-DR1, HLA-DR3, and I-Ek Crystals

HLA-DR1 vs. HLA-DR3 HLA-DR1 vs. I-Ek-HB

Crystals—All Atoms Crystals—All Atoms

Pocket cRMSD (Å) cRMSD (Å)

1 1.03 1.24

4 0.84 1.23

6 0.84 0.84

7 0.996 0.997

9 1.05 1.092
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2. Approach

We have developed a decomposition approach for predicting the binding affinity

and conformation of peptides binding to HLA-DR1. Our decomposition

approach takes advantage of the fact that the binding affinity of a peptide for

HLA-DR1 molecules is determined primarily by the binding affinity of

individual amino acid residues for HLA-DR1’s five binding pockets. Our

approach uses a sequence of three steps [234]:

III: Consideration of each binding pocket individually

III: Evaluation of the binding of one amino acid at a time to a given pocket

III: Creation of a rank-ordered list of strong, average, and weak amino acid

binders for each pocket

Step I involves determining which residues of the HLA-DR1 molecule

compose a given pocket. This process is discussed in Section V.C.3 below.

Step II involves formulating a mathematical model for the potential and

solvation energy of the pocket and the binding amino acid and then using

this model to predict the amino acid conformation which corresponds to the

global minimum potential and solvation energy state of the system. This global

minimum energy state is considered to be the system’s most stable state. The

mathematical model used to describe the energy of the HLA-DR1/peptide

system is discussed in Section V.C.3 below, while the global minimization

algorithm used to find the peptide conformation corresponding to the global

minimum energy is discussed in Section V.C.4 below. Step III involves

comparison of the amino acids binding to a given pocket. The comparison

standard used is the change in potential and solvation energy of an amino acid

on binding, �E. This quantity is defined as the difference between the global

minimum potential and solvation energy of an amino acid when it is bound in

the pocket (ETotal) and the global minimum potential and solvation energy of a

free amino acid far from the pocket or any other interactions (E0
Res):

�E ¼ ETotal � E0
Res ð112Þ

The quantity �E can be thought of as the difference between the final (bound)

and initial (free) states of an amino acid. Thermodynamics predicts that events

will proceed in the direction that lowers the total energy of their components.

Thus �E is a measure of the tendency of an amino acid to bind with the pocket of

the HLA-DR1 molecule. A very negative �E corresponds to very strong binding.

3. Modeling

Pocket Definition. Consideration of each of HLA-DR1’s five binding pockets

independently, which corresponds to Step I in Section V.C.2 above, involves
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determining which residues of the HLA-DR1 molecule compose a given pocket.

X-ray crystallography data are available that provide the (x,y,z) Cartesian

coordinates of the atoms in the complex of HLA-DRB1*0101 and the influenza

peptide HA [171]. The Program for Pocket Definition (PPD) is able to define a

given HLA-DR1 pocket from this crystallographic data by calculating which

HLA-DR1 amino acids have atoms within a radius R of the atoms of the

influenza peptide amino acid bound to the pocket [234]. The HLA-DR1 residues

that do have atoms within this radius constitute the pocket. The inputs required

for PPD operation are the value of R, the crystallographic data for the entire

HLA-DR1/peptide complex [171], and the crystallographic data for the peptide

amino acid bound in the HLA-DR1 pocket. The crystallographic coordinates of

the pocket residues are given in an output file. A range of R values has been

evaluated [234] in order to determine an appropriate radius which represents a

pocket realistically but which does not include so many residues in the pocket

that energy minimization is computationally intractable. Table XLII presents the

residues defining each of HLA-DR1’s five pockets at different radii. The general

trends of this table include increased pocket complexity with increased radius

(such as in Pocket 1), constant pocket complexity despite increased radius (such

as in Pocket 7), and the much larger number of amino acids in Pocket 1 in

comparison to the other four pockets [234]. Based on the results in Table XLII,

a radius of 5 Å was used to define Pockets 1, 4, 6, and 7 of HLA-DR1, whereas a

radius of 4.5 Å was used to define Pocket 9.

Problem Formulation. The position of a particular peptide or amino acid chain

in space can be described completely by a translation vector, a rotation matrix,

and a set of dihedral angles. The translation vector is defined as the coordinates

of the backbone nitrogen atom on the first residue of a chain. The rotation

matrix is defined by the Euler angles of the first chain residue. In our work, the

HLA-DR1 pockets are considered rigid and fixed. Thus the variables are the

nitrogen coordinates, Euler angles, and dihedral angles of the amino acid which

is attempting to bind to a pocket.

Because the decomposition approach described in Section V.C.2 above

implicitly assumes that the binding residue is part of a longer peptide, the

Cartesian coordinates of the carboxyl carbon atom (C0) must be constrained.

The decomposition approach is based on the assumption that the rest of the

peptide, although not explicitly modeled, is binding normally, and thus that the

backbone atoms of the binding peptide do not vary greatly from their crystal-

lographic positions. Because the optimization problem is formulated on internal

coordinates, the Cartesian coordinates of C0 are implicit variables defined as

functions of the translation vector, Euler angles, and dihedral angles of the

peptide [234].
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With these variables in mind, formulation of the energy minimiza-

tion problem proceeds as follows [234]. Let E be the function which calculates

the potential and solvation energy of the HLA-DR1 pocket /binder system.

Let the Cartesian coordinates of the nitrogen translation vector be defined by

the variables Nx, Ny, and Nz. Let the Euler angles be represented by e1, e2,

and e3. Let k ¼ 1; . . . ;K, where K is the total number of side-chain dihedral

angles of the amino acid residue binding to a pocket. The set of variable

dihedral angles then includes the backbone dihedral angles f, c, and o, and

the side chain angles wk. The Cartesian coordinates of the backbone

carboxyl carbon (C0) are defined by C0x, C0y, and C0z. Utilizing these variable

definitions, the potential energy minimization problem can be formulated as

TABLE XLII

PPD Pocket Compositions for R ¼ 4:0–5:0 Å

Pocket R ¼ 4.0 R ¼ 4.5 R ¼ 5.0

1 ilea31 phea32 ilea31 phea32 ilea31 phea32

trpa43 alaa52 trpa43 alaa52 trpa43 alaa52

sera53 phea54 sera53 phea54 sera53 phea54

valb85 glyb86 valb85 glyb86 valb85 glyb86

pheb89 pheb89 phea24 pheb89 phea24

asnb82 asnb82 glua55

thrb90

4 glna09 asna62 glna09 asna62 glna09 asna62

pheb13 glnb70 pheb13 glnb70 pheb13 glnb70

argb71 alab74 argb71 alab74 argb71 alab74

tyrb78 tyrb78 glua11 tyrb78 glua11

leub26 leub26

6 glua11 asna62 glua11 asna62 glua11 asna62

vala65 aspa66 vala65 aspa66 vala65 aspa66

leub11 leub11 leub11 pheb13

argb71

7 vala65 asna69 vala65 asna69 vala65 asna69

glub28 tyrb47 glub28 tyrb47 glub28 tyrb47

trpb61 leub67 trpb61 leub67 trpb61 leub67

argb71 argb71 argb71

9 ilea72 asna69 ilea72 asna69 ilea72 asna69

meta73 arga76 meta73 arga76 meta73 arga76

trpb09 aspb57 trpb09 aspb57 trpb09 aspb57

tyrb60 tyrb60 trpb61 tyrb60 trpb61

leua70
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follows:

min Eðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ ð113Þ
subject to � p � f � p ð114Þ

�p � c � p ð115Þ
�p � o � p ð116Þ
�p � wk � p; k ¼ 1; . . . ;K ð117Þ
�p � e1 � p ð118Þ
�p � e2 � p ð119Þ
�p � e3 � p ð120Þ
Nl

x � Nx � Nu
x ð121Þ

Nl
y � Ny � Nu

y ð122Þ

Nl
z � Nz � Nu

z ð123Þ
C0lx � C0xðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ � C0ux ð124Þ
C0ly � C0yðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ � C0uy ð125Þ

C0lz � C0zðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ � C0uz ð126Þ

In the formulation above, the superscripts u and l denote upper and lower

bounds, respectively, for the Cartesian coordinates of both the amino nitrogen

and the carboxyl carbon.

Although the constraints on the amino nitrogen in the formulation above can

be considered directly as problem variables, the C0 coordinates are not explicit

variables and consequently must be defined as a function of the other variables

[234]. Because the energy minimization problem described above involves these

implicit constraints on the location of C0, a penalty function must be added to

the function E in order to implement these constraints. The modified form of the

function E is then [234]:

E0 ¼ E þ bfhC0lx � C0xi þ hC0x � C0ux i ð127Þ
þ hC0ly � C0yi þ hC0y � C0uy i ð128Þ
þ hC0lz � C0zi þ hC0z � C0uz ig ð129Þ

The h i function has the following definition: hAi equals A if A is greater than

zero; otherwise hAi equals zero. Therefore, if the coordinates of C0 are within

their respective bounds, the function E will not be modified. If, however, a

particular coordinate falls outside of its bounds, the function will be increased by
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an arbitrarily large constant b. The conformation’s energy then would be

arbitrarily large, and the conformation would be discarded as a choice for the

minimum energy conformation.

Note that E in the formulation above is a nonconvex function involving

numerous local minima that correspond to metastable states of the specific

amino acid binding to the pocket. A single global minimum defines the energe-

tically most favorable peptide conformation. In establishing a ranked-order list

of binding peptides, one needs to identify rigorously the best conformation of (i)

the binding residue far from the pocket and (ii) the complex of Pocket 1 with the

binding residue. Consequently, there is a need for a method that can guarantee

convergence to the global minimum potential energy conformation and which is

capable of solving large-scale constrained optimization problems. The global

optimization approach aBB [18,20,247] is one such method.

GLO-DOCK. The aBB algorithm is interfaced and supported with several other

programs in the overall energy minimization scheme, and the entire collection

of programs is known as GLO-DOCK. The additional programs include

MSEED, RRIGS, NPSOL, and PACK. The MSEED program is discussed in

Section III.A.2 above and calculates solvent-accessible surface areas, and the

RRIGS program is discussed in Section III.A.2 above and calculates solvent-

accessible volumes. Only one of these programs is utilized for calculating

solvent energies during a given peptide docking optimization. The program

NPSOL [28] is a nonlinear local optimization solver used in the calculation of

upper and lower bounds for aBB. The PACK program [74], and its associated

program prePACK, is a peptide calculation program. The prePACK program

initializes PACK by converting the amino acid residue data supplied by the

program’s user into the format required by the ECEPP/3 potential energy model.

The prePACK program also generates the parameter values used by PACK in

calculating energy potentials. The PACK program transforms Cartesian

coordinates into internal (dihedral angle) coordinates and uses the ECEPP/3

potential energy model to provide function and gradient evaluations to aBB.

The PACK program is able to keep track of data for several peptides and make

appropriate calls to ECEPP/3 for calculation of their interaction energies [74].

As discussed below, solvation contributions based on solvent-accessible area are

added only at local minima, so the program MSEED is called from aBB through

PACK once a local minimum has been found. The program RRIGS is called

from aBB though PACK at each local minimization step.

Several supporting programs generate the input files used in this overall

minimization scheme. These programs include PPD and ARAS. PPD, the

Program for Pocket Definition, was discussed above and defines a given pocket

from crystallographic data. The output file from PPD is then used as an input file

for the program ARAS, the Amino acid Residue Angle Solver. ARAS converts
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the crystallographic data from the PPD output file into translation vectors, Euler

angles, and dihedral angles for each amino acid in the file. An ARAS output file

(name.input in Figure 57) is then used as an input file for PACK. Three other

input files are required for peptide docking optimizations: name.abb and

prep.name.abb, which provide the bounds on the initial nitrogen atom and

other information needed by aBB; and name.bounds, which provides the bounds

on C0 for the penalty function. The (x,y,z) nitrogen and C0 bounds for each

pocket binder are determined by examining the crystallographic data for the

corresponding peptides in the HLA-DRB1*0101/influenza virus peptide com-

plex presented by Stern et al. [171]. These bounds are set at �0.7 Å from the

crystallographic coordinates. A schematic diagram for the overall global

optimization scheme is given in Fig. 57.

Figure 57. Schematic diagram for peptide docking global optimization. The arrows indicate

the direction of information flow. The names of input, output, and source code files are indicated.

References to ‘‘f & f 0’’ and ‘‘f only’’ describe whether gradient evaluations or only function

evaluations are used.
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Solvation Methods. Because the polar, cohesive nature of water profoundly

affects all molecular interactions in biological systems [248], the effects of

solvation on the conformation of a protein must be included in an accurate

protein model.

There are many types of solvation models. Explicit solvation models arrange

individual water molecules around peptides and calculate solvent–peptide

interactions with potential models similar to those discussed in Section

III.A.1 above. These explicit models are prohibitively expensive computation-

ally because of the large number of water molecules involved and because a

given peptide conformation has a large number of equivalent possible water

molecule arrangements, making it necessary to calculate the energy of many

solvent arrangements and average them together [83]. Neglecting the molecular

nature of water molecules yields much simpler, implicit solvation models.

Models of this type often estimate energies of solvation as functions of solvent-

accessible surface areas or volumes.

Our work is based on two separate implicit methods of determining solvation

potentials. One method involves solvent-accessible area calculations, and the

other involves solvent-accessible volume calculations. These models are based

on two assumptions: that a solvation energy can be calculated for each

functional group of a peptide by calculating an averaged energy of interaction

between the group and a layer of solvent known as the solvation shell, and that

these solvation energies are additive. Thus the model assumes that the total

energy of solvation of a peptide can be expressed as the sum of the energies of

solvation for each of the functional groups of the peptide [83].

The solvent-accessible area solvation model used in our work is based on a

program called MSEED [52]. This model assumes that the energy of solvation is

proportional to the solvent-accessible surface area of the peptide, as discussed in

Section III.A.2 above. MSEED area calculations have some limitations, how-

ever. First, MSEED does not always search effectively for the peptide’s surface

areas. The error incurred by this ineffective search, however, has been shown to

be less than 2% for a number of test problems [52]. Second, changes in peptide

conformations produced by minimization of the total energy of the peptide

proceed continuously but not necessarily smoothly, and surface area gradients

may thus have discontinuities. Large discontinuities may cause minimization

techniques that require calculation of first derivatives to fail to converge. This

problem is avoided in our work because gradients for area-accessible solvation

contributions are not calculated and surface-accessible solvation energies are

included in the total energy only at local minimum energy conformations and

are not part of local minimization processes.

The solvent-accessible volume model used in our work is based on a program

called RRIGS, which stands for Reduced Radius Independent Gaussian Sphere

[53]. This model assumes that the energy of solvation of a peptide is
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proportional to the solvent-accessible volume of a solvation layer or shell

around the peptide, as discussed in Section III.A.2 above. This method provides

continuous derivatives of the solvation potential, so solvation contributions to

total energy can be added at every step of local minimizations and not just at the

local minimum itself. Thus the RRIGS solvation model interfaces well with the

ECEPP/3 potential energy model [83].

Combining the ECEPP/3 potential energy model with a solvation model

creates an expression for the total potential and solvation energy (ETotal) of the

system: ETotal ¼ EPotential þ ESolvation, where EPotential is calculated from ECEPP/3

and ESolvation is calculated from either the MSEED or RIGGS solvation models.

With this mathematical model for the potential and solvation energy of the

pocket and the binding amino acid in place, the next step in evaluating the

binding of one amino acid at a time to a given HLA-DR1 pocket is finding the

amino acid conformation that corresponds to the global minimum potential and

solvation energy of the system.

4. Deterministic Global Optimization

The first step in implementing a global optimization algorithm like aBB is the

formulation of the optimization problem. This involves choosing the functions

that will be optimized (either minimized or maximized), choosing the variables

that will be optimized, and choosing the constraints that will be included in the

problem. For the peptide docking prediction problem, implementing a global

optimization algorithm also involves deciding whether to minimize the total

energy function based on the Cartesian coordinates of the peptide atoms or based

on the dihedral angles of the peptide. Because optimization constraints are more

easily applied to internal coordinates like dihedral angles than to Cartesian

coordinates [20], we used internal coordinates for our work. The problem

formulation is developed in Section V.C.3 above. The function E shown in

Section V.C.3 is difficult to minimize because it is nonlinear and nonconvex and

has multiple local minima. These local minima correspond to metastable states

of the amino acid binder being modeled, but the single global minimum is the

minimum that defines the energetically most stable peptide conformation.

Our minimization scheme determines the peptide conformation that corre-

sponds to the global minimum total potential and solvation energy through a

series of steps [83,234]:

1. Upper bound calculation: The local solver NPSOL identifies a local

minimum of the potential energy function supplied by PACK in a region

(rectangle) defined by the lower and upper bounds of the variables. These

bounds are supplied by aBB. If solvent-accessible volume is being consi-

dered, potential energy evaluations during local minimization are made
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using the ECEPP/3 model and RRIGS. If solvent-accessible surface area

is being considered, potential energy evaluations are made using only the

ECEPP/3 model and the solvation energy is calculated by MSEED and

added only at the local minimum.

2. The current best upper bound is updated to be the minimum of those

stored thus far.

3. The current rectangle (region) is partitioned by bisecting its longest side.

4. Lower bound calculation: The convex underestimator function L is

minimized in each new rectangle using NPSOL and PACK (with ECEPP/3). If

solvent-accessible volume is being considered, potential energy evalua-

tions are also made using RRIGS. If solvent-accessible surface area is

being considered, potential energy evaluations are not made with MSEED,

and the solvation contributions are added only at the local minimum. If a

minimum is greater than the best upper bound, the corresponding rectangle

will be eliminated from the search. Otherwise, the local minimum value is

stored.

5. The rectangle with the current minimum value for L is selected for further

partitioning.

6. If the best upper and lower bounds are within the user-specified tolerance

E, the program will finish; otherwise it will proceed back to Step 1.

We then introduced an energetic-based criterion to evaluate the energy of

interaction between a given pocket and each naturally occurring amino acid.

This measure, which we denote as �E, corresponds to the difference between

(i) the global minimum total potential and solvation energy that considers all the

energetic atom-to-atom interactions—classified as inter-interactions between

the atoms of the residues that define the pocket of HLA-DR1 protein and the

atoms of the considered naturally occurring amino acid, and classified as intra-

interactions among the atoms of the considered naturally occurring amino

acid—and (ii) the global minimum potential and solvation energy of the

considered naturally occurring amino acid when it is far away from the pocket.

Equation (130) illustrates this criterion:

�E ¼ E0
Total � E0

Res ð130Þ

where E0
Total is the global minimum of the potential energy of the complex of the

pocket and the binding peptide or amino acid, and E0
Res is the global minimum of

the potential energy of the peptide or amino acid away from the pocket. Note that

�E does not represent a difference in the free energies of the complex and

isolated amino acids. Instead, it denotes the difference between potential and

solvation energy for the complex and the isolated amino acids.
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Repeating this optimization scheme for each naturally occurring amino acid

in each of HLA-DR1’s five binding pockets and then listing each pocket’s amino

acid binders in order of increasing global minimum potential and solvation

energy (decreasing binding affinity) creates a rank-ordered list of strong,

average, and weak amino acid binders for each pocket.

5. Computational Studies

Binding Affinity Evaluation in HLA-DR1 Pockets. The area and volume

solvation methods correctly predict the binding affinity and conformations of

the strongest binders to Pockets 1, 4, and 6. Neither the area nor the volume

solvation methods correctly predict the crystallographic binder conformations

for Pocket 7 and 9, perhaps due the pockets’ incomplete definition.

The volume solvation method appears to be a stronger method for consider-

ing solvation than the area solvation method. The area solvation method does

not use separate parameters for charged and neutral atoms, and its structure does

not permit consideration of area contributions at each step of local minimiza-

tions of the total energy. Solvation energy contributions in the volume method

are of the same order of magnitude as nonbonded contributions, whereas

solvation energy contributions are an order of magnitude larger than nonbonded

energy contributions in the area solvation method. The domination of total

energy values by solvation in the area solvation method may not distinguish

amino acid binders sufficiently from one another in rank-ordered binding lists.

Our global optimization results are in excellent agreement with available

experimental data. Experimental data [234] for amino acids binding to Pocket 1

are shown in Fig. 58. We were able to reproduce the relative binding affinities

shown in the figure, and all of our other relative binding affinity results agree

with literature data. The results for Pocket 1 and Pocket 4 are especially

encouraging, because Pocket 1 is considered to be the most discriminating and

most important pocket for successful peptide binding [249] and Pocket 4 is

considered to be one of the most important pockets in T-cell recognition

interactions [250]. This agreement indicates that our approach is an accurate,

effective tool for approaching the peptide docking problem.

The need for determining the conformation of a binding amino acid which

corresponds to its global minimum total energy instead of to a local minimum

total energy is illustrated in Fig. 59. Figure 59 shows a local minimum

conformation and the global minimum conformation of tyrosine in Pocket 1

for the volume solvation method. The volume solvation method’s local mini-

mum conformation of tyrosine has a �E of �17.349 kcal/mol and is shown in a

lighter shade, whereas the global minimum conformation of tyrosine has a �E

of �20.155 and is shown in darker shade. There is only a 13.9% difference

between these two �E values, but there is a significant difference in their

conformations. The global minimum conformation corresponds closely to the
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crystallographically determined conformation, highlighting the necessity of not

mistaking a local solution for the global solution. This comparison also high-

lights the need for global optimization methods in approaches to the peptide

docking prediction challenge.

Binding Affinity Evaluation After Structure Prediction. Our prediction of the

structures of MHC class II binding sites has significant implications for the

evaluation of peptide binding to HLA molecules. We applied our binding

affinity prediction methodology to the binding pocket structures we predicted in
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Figure 58. Pocket 1 competitive binding assays.

Figure 59. Global (darker) versus local (lighter) tyrosine conformations in pocket 1, volume

solvation.
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Section V.B.5. We then compared the results of predicting binding affinities for

predicted versus crystallographic pockets.

We applied our methodology to the pocket we predicted for pocket 1 of

HLA-DR3 and to the pocket obtained from crystallographic data [221] for the

binding amino acids Phe, Ile, and Met. Based on the energy differences we

found that Phe is a better binder than Met by 1.1 kcal/mol and that Met is a

better binder than Ile by 3.9 kcal/mol for the predicted pocket. For pocket 1

based on the crystallographic data, our binding studies determined the same

sequence (i.e., Phe followed by Met and Met by Ile) with corresponding

differences of 2.37 kcal/mol for Phe to Met and 2.06 for Met to Ile. Application

of our predictive binding approach [12] to the predicted, as well as to the

crystallographicaly obtained, pocket 4 of HLA-DR3 for the binding amino acids

Asp, Glu, Ile, and Phe showed that the negatively charged Asp and Glu are very

strong binders. In contrast, Ile and Phe were weaker binders than Asp and Glu.

We also applied our predictive binding approach to the predicted pocket 1 of

I-Ek for the binding amino acids Ile, Val, and Phe. Our results showed that Phe

is a better binder than Ile by an energy difference of 6.1 kcal/mol, and that Ile

binds better than Val by an energy difference of 2.8 kcal/mol. We obtained

similar results from the crystallographic data, with Phe being a better binder

than Ile and Ile being a better binder than Val with energy differences of 4.4 and

0.7 kcal/mol, respectively.

In order to verify further the correct prediction of the binding sites of HLA

molecules, we used the crystal of HLA-DR3 [78] to predict pocket 1 of HLA-

DR1. We compared the results obtained using the predicted pocket to those

found with the crystallographically obtained pocket [221]. As shown in Table

XLIII, the binding studies using the predicted pocket illustrate the same trends

as the binding studies using the crystallographic pocket. Therefore, our

approach not only predicts the binding site structure of class II HLA molecules,

but also provides results consistent with the binding studies of individual amino

acids based on the crystallographic data.

D. Perspectives and Future Work

We currently are expanding and extending our binding site structure and binding

affinity prediction methods. We are expanding our methods to incorporate

rigorous calculation of free energies. Our approach to these free energy

calculations involves the terms in the following equation:

ETotal ¼ EVacuum � TSVacuum þ ECavity þ ESolvation þ EIonize ð131Þ

where ETotal is the total free energy of a protein–protein system. In this approach,

as in our earlier approach discussed above, EVacuum is the potential energy of a

protein system conformation in a vacuum calculated from the ECEPP/3 force
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field. In our expanded approach, SVacuum is the entropy of a protein conformation

in a vacuum. In order to calculate this term, we generate a large set of unique

conformers and then apply a harmonic approximation to obtain the entropy of

each conformation. The ECavity term in this approach is the energy required to

form a protein conformation’s cavity in aqueous solvent. This cavity energy is

estimated to be proportional to the surface area of the protein system exposed to

water. We calculate the ESolvation term in this expanded approach with Poisson–

Boltzmann electrostatics by using the DELPHI software package [251–253]. The

ESolvation term is the difference in a protein system conformation’s polarization

energy in solvent (dielectric constant e ¼ 80) and in a vacuum (dielectric

constant e ¼ 1), as shown in the equation below:

ESolvation ¼
1

2

X
i

X
s

qiss;e¼80

jri � rsj
� 1

2

X
i

X
s

qiss;e¼1

jri � rsj
ð132Þ

where qi is the charge associated with atom i, and ss is the surface charge

induced by each charge s other than i. The EIonize term is the energy due to the

ionization state of a protein system at a given pH. These expansions to our

binding site structure and binding affinity prediction methods will allow us to

TABLE XLIII

Comparison of Binding Studies in Predicted Binding Sites Versus Crystallographic Binding Sites in

Pocket 1 of HLA-DRI (R ¼ 5:0 Å), Area Solvation

�E Crystal �E Prediction Difference Difference

Residue (kcal/mol) (kcal/mol) (kcal/mol) (%)

Tyr �20.000 �18.850 �1.15 5.75

Phe �19.625 �18.040 �1.58 2.95

Trp �16.950 �17.754 0.80 4.72

Gln �15.396 �15.916 0.52 3.37

Met �13.943 �13.928 �0.02 0.14

Asn �13.784 �14.644 0.86 6.24

Thr �13.297 �13.297 0.00 0.00

Leu �12.481 �12.399 �0.08 0.64

Ile �12.465 �12.486 0.02 0.16

Ser �11.557 �11.187 �0.37 3.20

Cys �11.280 �11.087 �0.19 1.68

Val �11.209 �11.324 0.12 1.07

Ala �10.355 �10.338 �0.02 0.19

Gly �10.091 �9.996 �0.09 0.89

Glu- �7.744 �6.891 �0.85 10.97

Asp- �2.431 �2.594 0.16 6.58
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model solvent effects more rigorously and more accurately, as well as allowing

the study of ionization effects. We then will have the ability to calculate and

predict not only relative binding affinities, but accurate, quantitative binding

affinitites. The drawback of employing the entropic and Poisson–Boltzmann

calculations discussed above is the large increase in computational time they

require. We are exploring ways of parallelizing our algorithm to address this

issue.

In addition to expanding our methods, we are extending them to the

investigation of larger systems. We are examining the role of the peptide

residues intermediate to the pocket-binding residues in peptides that bind to

HLA molecules, as well as modeling the docking of entire peptides to HLA

molecules. Our future plans include extending our methods to the examination

of T-cell interactions with HLA molecules and bound peptides.

Our computational and experimental results demonstrate that applying

atomistic level modeling and deterministic global optimization is a promising

approach to a systematic framework for peptide docking prediction. The

strengths of our peptide docking prediction model are its guaranteed conver-

gence to the global minimum energy, its detailed modeling of entropic,

electrostatic, and other energetic interactions, and its quantitative prediction

of binding free energy.

The predictive power of protein–protein interaction and peptide docking

models is of significant and increasing importance. Accurate prediction will

lead to the more efficient and effective design of drugs and devices. Peptide

docking and protein–protein interaction prediction thus will play a valuable role

in capitalizing on the data provided by the mapping of human and other

genomes.

VI. CONCLUSIONS

The intense worldwide experimental and theoretical research effort directed

toward solving the protein folding and peptide docking problems underscores

their importance. The ability to predict computationally the folding of proteins

and the formation of protein–protein complexes would support and help direct

experimental work in biology, chemistry, biophysics, and pharmaceutical

development. In this review we have shown that molecular modeling and global

optimization are the dominant factors that will provide solutions to these

problems.

In particular, this review has focused on the use of ab initio models, which

give rise to a series of complex mathematical problems. A second important

component has been the application of deterministic global optimization,

namely the aBB algorithm, for solving the resulting problems. In this review

we have analyzed and discussed many issues related to the modeling of protein
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folding and peptide docking systems. These observations have highlighted the

extraordinary difficulty of these problems and the crucial interdependence of ab

initio modeling and deterministic global optimization approaches.
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227. H. J. Böhm, The computer program ludi: A new method for the de novo design of enzyme

inhibitors. J. Comput. Aided Mol. Design 6, 61–78 (1992).
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