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Ad-hoc Document Retrieval

Standard retrieval task in which the user specifies his information need through a query
which initiates a corpus search for documents which are likely to be relevant to the user.

Query: textual description of information need.

Corpus: a collection of textual documents.

Relevance: satisfaction of the user’s information need.

“Ad-hoc” because the documents in the collection remain relatively static while new
queries are submitted to the system continually.



BERT

e BERT (Bidirectional Encoder Representations from Transformer) is a contextual neural
language model designed to pretrain deep bidirectional representations from unlabeled

text.
e The pre-trained BERT model can be fine-tuned with just one additional output layer to

create state-of-the-art models for a wide range of tasks.
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Motivation

Semantic Search

e People have been trained to use keyword queries because bag-of-words retrieval
models cannot effectively extract key information from natural language.
e Queries written in natural language actually enable better search results when the

system can model language structures.
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Model Architecture

e Input Tokens - concatenation of the query tokens and the document tokens, with token
‘[SEP)’ separating the two segments, [CLS] at the beginning of the first segment..
e Segment Embeddings - ‘Q’ (for query tokens) and ‘D’ (for document tokens), to further

separate the query from the document.

e Position Embeddings - To capture word order.

e Output - Embedding of the first token is used as a
representation for the entire query-document pair. It
is fed into a multi-layer perceptron (MLP) to predict
the possibility of relevance (binary classification).
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Figure 1: BERT sentence pair classification architecture [3].



Sources of Effectiveness
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Figure 2: Visualization of BERT. Colors represent different
attention heads; deeper color indicates higher attention.
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Motivation
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Figure 1: Example similarity matrix excerpts from GloVe,
ELMo, and BERT for relevant and non-relevant document
for Robust query 435. Lighter values have higher similarity.
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Traditional Similarity Tensors

e Q:query consisting of query terms {q1, g2, ..., qul}

e D : document consisting of terms {d1, d2, ..., dID | }

e ranker(Q,D) € R : Real-valued relevance estimate for the document to the query.
e Neural relevance ranking architectures generally use a similarity matrix as input.

Similarity matrix: S € R 1QIP1 \where each cell represents a similarity score between
the query terms and document terms: Sij = sim(q, ,dj).



New Contextualized Similarity Tensors

e Contextualized language models typically consist of multiple stacked layers of
representations (e.g., recurrent or transformer outputs)
e New similarity representation (conditioned on the query and document context):

So,pll, g, d] = cos(contextq p(q, 1), contextg p(d, 1))

For each query term g € Q, documentterm d € D, and layer | € [1..L], where
contextQD(t,I) € RP is the contextualized representation for token t in layer |

e The representations from the stacked layers of contextualized language models like
BERT can benefit general neural ranking models like PACRR, KNRM, DRMM.



Joint BERT approach

e BERT utilizes the [CLS] token for making judgments about the text pairs. Its

representation can be fine-tuned for other tasks.
e The [CLS] token representation is incorporated into existing neural ranking models as

the Joint BERT approach.
e This allows neural rankers to benefit from deep semantic information from BERT in

addition to individual contextualized token matches.
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Motivation

Representational learning: Learn some non-linear transformation of queries and documents
such that documents relevant to a query have high similarities in terms of a simple metric
such as cosine similarity.

e Search-related tasks need to consider a large corpus, and thus it is impractical to apply
inference over all documents for a given query.

e ltis unclear whether representational learning is sufficient to boil the complex notion of
relevance down to simple similarity computations.

e The complete end-to-end retrieval architecture will need to involve multiple stages.
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Multi Stage Ranking

A multi-stage ranking architecture comprises a number of stages, denoted H, to H,.
H, retrieves k, candidates from an inverted index

H_receives a ranked listR__, comprising k _, candidates from the previous stage.
H_provides a ranked list R_ comprising k candidates to the subsequent stage (k_<
k. .

e The ranked list generated by the final stage is designated for consumption by the
searcher.



Model Architecture
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H,: "Bag of Words” BM25

e Input: user query q

e Output: top-k, candidates R H,
e Query is treated as a “bag of words” based on the
BM?25 scoring function. q -

e BM25 looks for exact term matches, but later BERT
stages have the ability to identify relevant
candidates that do not have many matching terms.
e Critical to optimize for recall to provide subsequent
stages a diverse set of documents to work with; Corpus
precision is less of a concern because non-relevant
documents can be discarded by later stages.




H1 : MONOBERT

e Input: Query g as sentence A and text of candidate

RO Hl
d. as sentence B
| )
e Output: R, i.e, top-k, candidates based on's. a monoBERT
1
scores ——
e monoBERT: pointwise re-ranker, i.e., a BERT model d,
used as a binary relevance classifier. —
e Truncate so concatenation of query, candidate, and d,
separator tokens have a maximum length of 512 [ ) .
tokens 4 . ;
e Use [CLS] vector as input to a single layer neural d .
network to obtain a probability s, of the candidate d. )

being relevant to q




H,: duoBERT

e Input: query as sentence A, candidate d. as R, H,
sentence B, and candidate dj as sentence C g -
e Output: R, obtained by re-ranking the candidates ;
in R, according to their scores s, d, R
e duoBERT: pairwise re-ranker, i.e., estimates the ——
probability P, of the candidate d, being more d,

relevant than dj
e Truncate so concatenation of query, candidate, and
separator tokens have a maximum length of 512

1 R
tokens.
e Use [CLS] vector as input to a single layer neural .

network to obtain the probability P,
e Aggregate the pairwise scores p,; SO that each
document receives a single score s,




H,: duoBERT - Aggregation methods
SUM : s; = Zpi’j’

JE€J;
BINARY : s; = E 1, ,>05;
JEJ;

MIN : 8; — min P;.4
7 jejipz,]7

MAX : s; = maxp; j,
JEJ;

SAMPLE : s; = E DPij>
JEJT;(m)

where J; = {0 < j < |Ri|,J # ¢} and m is
the number of samples drawn without replacement
from the set J;.
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Datasets - |

MS MARCO (Microsoft MAchine Reading COmprehension): created from half a million
anonymized questions sampled from Bing’s search query logs.

e 8.8M passages extracted from 3.6M web documents, 55 words per passage.

e Training set: 500k pairs of query and relevant document, 400M pairs of query and
non-relevant documents.

e Development set: 6,980 queries, with, on average, one relevant document per query.

e Evaluation set: 6,837 queries without relevance judgments.

e Official metric for dataset: MRR@10



Datasets - |i

TREC CAR (Complex Answer Retrieval): consists of cleaned paragraphs from English
Wikipedia.

29M documents, with an average of 60 words per document.
Training set: 3M queries

Validation set: 700k queries

Evaluation set: 2,254 queries

Official metric for dataset: Mean Average Precision (MAP)
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MS MARCO Results

Method Dev  Eval
BM25 (Microsoft Baseline) 16.7 16.5
IRNet 27.8 28.1
monoBERT (Jan 2019) 36.5 35.9
Anserini (BM25) 18.7 19.0
+ monoBERT 37.2 36.5
+ monoBERT + duoBERTyax 326 -

+ monoBERT + duoBERTmin 379 -

+ monoBERT + duoBERT sy 382 37.0
+ monoBERT + duoBERTgnary 383 -

+ monoBERT + duoBERTsyy + TCP | 39.0 37.9
Leaderboard best 39.7 38.3

Table 1: MS MARCO Results.



TREC CAR Results

Method \ MAP
BM25 (Kashyapi et al., 2018) 13.0
Co-PACRR (MacAvaney et al., 2017) | 14.8
BM25 (Anserini) 15.3
+ monoBERT 34.8
+ monoBERT + duoBERTyax 32.6
+ monoBERT + duoBERTsyy 36.9
+ monoBERT + duoBERTEnary 36.9

Table 2: Main Result on TREC 2017 CAR.



Tradeoffs with monoBERT

MS MARCO TREC CAR
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Figure 2: Number of inferences per query vs. effectiveness on the MS MARCO and the TREC CAR datasets when
varying the number of candidates k¢ fed to monoBERT.



Tradeoffs with duoBERT

MRR@10

Figure 3: Number of inferences per query vs. the effectiveness of duoBERT when varying the number of candidates
k1. Each curve has six points that correspond to k1 = {0, 10, 20,30,40,50}, where k; = 0 corresponds to
monoBERT. The values in the x-axis are computed as k; X (k; — 1) for SUM, BINARY, and MIN, and &y X (m —1)
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Multi-Stage Tradeoffs
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Figure 4: Number of inferences per query vs. the effectiveness of duoBERTgsyy when varying the number of
candidates k( and k. Each curve has five points that correspond to ko = {50, 100, 200, 500, 1000}. The number
of inferences per query is calculated as ko + k1 (k1 — 1).



Qualitative Analyses

Query

Sample Passage

Label

Rank

Baseline

| Comparison

who wrote song
killing the blues

_ by Robert Plant and Alison Krauss. This was written by

Chris Isaak’s bass guitarist Roly Salley, and was originally the title track of
Salley’s 2005 solo album. This - was used in an advertising campaign for
the chain store JC Penney, which features sentimental images of heartland

Americana, such as family reunions and Fourth of July celebrations.

BM25: 621

monoBERT: 1

the Crossroads Cross Road is one of Delta

- singer Robert Johnson’s most famous - Who - the -
- Shades.. Frank Ticheli wrote the - - Shades’. It is a concert
piece with allusions...

what causes low
liver enzymes

BM25: 1

monoBERT: 9

Reduced production of _m—ayindicate dysfunction of the -
This article explains the causes and symptoms of _ Scroll

down to know how the production of the enzymes can be accelerated.

monoBERT: 47

duoBERT: 1

Other - of elevated _ may include: Alcoholic hepatitis

(severe liver inflammation caused by excessive alcohol consumption)
Autoimmune hepatitis (liver inflammation caused by an autoimmune disorder)
Celiac disease (small intestine damage caused by gluten) Cytomegalovirus
(CMV) infection.

monoBERT: 1

duoBERT: 7

Table 3: Comparison of BM25 vs. monoBERT, and monoBERT vs. duoBERT, showing result ranks of answers.
(N: not relevant, R: relevant)
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