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Ad-hoc Document Retrieval
Standard retrieval task in which the user specifies his information need through a query 
which initiates a corpus search for documents which are likely to be relevant to the user.

● Query: textual description of information need.
● Corpus: a collection of textual documents.
● Relevance: satisfaction of the user’s information need.
● “Ad-hoc” because the documents in the collection remain relatively static while new 

queries are submitted to the system continually.



BERT
● BERT (Bidirectional Encoder Representations from Transformer) is a contextual neural 

language model designed to pretrain deep bidirectional representations from unlabeled 
text.

● The pre-trained BERT model can be fine-tuned with just one additional output layer to 
create state-of-the-art models for a wide range of tasks.
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Motivation
Semantic Search

● People have been trained to use keyword queries because bag-of-words retrieval 
models cannot effectively extract key information from natural language.

● Queries written in natural language actually enable better search results when the 
system can model language structures.
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Model Architecture

● Position Embeddings - To capture word order.
● Output - Embedding of the first token is used as a 

representation for the entire query-document pair. It 
is fed into a multi-layer perceptron (MLP) to predict 
the possibility of relevance (binary classification).

● Input Tokens - concatenation of the query tokens and the document tokens, with token 
‘[SEP]’ separating the two segments, [CLS] at the beginning of the first segment..

● Segment Embeddings - ‘Q’ (for query tokens) and ‘D’ (for document tokens), to further 
separate the query from the document.



Sources of Effectiveness
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Traditional Similarity Tensors
● Q : query consisting of query terms {q1, q2, ..., q|Q | }
● D :  document consisting of terms {d1, d2, ..., d|D | }
● ranker(Q,D) ∈ R : Real-valued relevance estimate for the document to the query. 
● Neural relevance ranking architectures generally use a similarity matrix as input.

Similarity matrix: S ∈ R |Q |× |D |, where each cell represents a similarity score between 
the query terms and document terms: Si,j = sim(qi ,dj).



New Contextualized Similarity Tensors
● Contextualized language models typically consist of multiple stacked layers of 

representations (e.g., recurrent or transformer outputs)
● New similarity representation (conditioned on the query and document context):

For each query term q ∈ Q, document term d ∈ D, and layer l ∈ [1..L], where 
contextQ,D(t,l) ∈ RD is the contextualized representation for token t in layer l

● The representations from the stacked layers of contextualized language models like 
BERT can benefit general neural ranking models like PACRR, KNRM, DRMM.



Joint BERT approach
● BERT utilizes the [CLS] token for making judgments about the text pairs. Its 

representation can be fine-tuned for other tasks. 
● The [CLS] token representation is incorporated into existing neural ranking models as 

the Joint BERT approach.
●  This allows neural rankers to benefit from deep semantic information from BERT in 

addition to individual contextualized token matches.
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Motivation
Representational learning:  Learn some non-linear transformation of queries and documents 
such that documents relevant to a query have high similarities in terms of a simple metric 
such as cosine similarity.

● Search-related tasks need to consider a large corpus, and thus it is impractical to apply 
inference over all documents for a given query.

● It is unclear whether representational learning is sufficient to boil the complex notion of 
relevance down to simple similarity computations.

● The complete end-to-end retrieval architecture will need to involve multiple stages.
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Multi Stage Ranking
● A multi-stage ranking architecture comprises a number of stages, denoted H0 to HN.
● H0 retrieves k0 candidates from an inverted index
● Hn receives a ranked list Rn−1 comprising kn−1 candidates from the previous stage.
● Hn provides a ranked list Rn comprising kn candidates to the subsequent stage (kn ≤ 

kn−1. 
● The ranked list generated by the final stage is designated for consumption by the 

searcher.



Model Architecture



H0: “Bag of Words” BM25
● Input: user query q 
● Output: top-k0 candidates R0
● Query is treated as a “bag of words” based on the 

BM25 scoring function.
● BM25 looks for exact term matches, but later BERT 

stages have the ability to identify relevant 
candidates that do not have many matching terms.

● Critical to optimize for recall to provide subsequent 
stages a diverse set of documents to work with; 
precision is less of a concern because non-relevant 
documents can be discarded by later stages.



H1 : monoBERT
● Input: Query q as sentence A and text of candidate 

di as sentence B
● Output: R1, i.e., top-k1 candidates based on si 

scores
● monoBERT: pointwise re-ranker, i.e., a BERT model 

used as a binary relevance classifier.
● Truncate so concatenation of query, candidate, and 

separator tokens have a maximum length of 512 
tokens

● Use [CLS] vector as input to a single layer neural 
network to obtain a probability si of the candidate di 
being relevant to q



H2: duoBERT
● Input: query as sentence A, candidate di as 

sentence B, and candidate dj as sentence C
● Output: R2, obtained by re-ranking the candidates 

in R1 according to their scores si
● duoBERT: pairwise re-ranker, i.e., estimates the 

probability pi,j of the candidate di being more 
relevant than dj

● Truncate so concatenation of query, candidate, and 
separator tokens have a maximum length of 512 
tokens.

● Use [CLS] vector as input to a single layer neural 
network to obtain the probability pi,j

● Aggregate the pairwise scores pi,j so that each 
document receives a single score si



H2: duoBERT - Aggregation methods
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MS MARCO (Microsoft MAchine Reading COmprehension): created from half a million 
anonymized questions sampled from Bing’s search query logs.

● 8.8M passages extracted from 3.6M web documents, 55 words per passage.
● Training set: 500k pairs of query and relevant document, 400M pairs of query and 

non-relevant documents.
● Development set: 6,980 queries, with, on average, one relevant document per query.
● Evaluation set: 6,837 queries without relevance judgments. 
● Official metric for dataset: MRR@10

Datasets - I



Datasets - II
TREC CAR (Complex Answer Retrieval): consists of cleaned paragraphs from English 
Wikipedia.

● 29M documents, with an average of 60 words per document.
● Training set:  3M queries
● Validation set: 700k queries
● Evaluation set: 2,254 queries
● Official metric for dataset: Mean Average Precision (MAP)
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MS MARCO Results



TREC CAR Results



Tradeoffs with monoBERT



Tradeoffs with duoBERT



Multi-Stage Tradeoffs



Qualitative Analyses
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