Ad-hoc retrieval with BERT

Deeper Text Understanding for IR with Contextual Neural Language Modeling - Dai et al (SIGIR'19) CEDR: Contextualized Embeddings for Document Ranking - MacAvaney et al (SIGIR'19) Multi-Stage Document Ranking with BERT - Nogueira et al

Presenter: Udhav Sethi (u2sethi@uwaterloo.ca)

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods
- 4. Multi-Stage Document Ranking with BERT
 - a. Motivation
 - b. Proposed Methods
 - c. Experiments
 - d. Results & Analysis
- 5. References

1. Ad-hoc retrieval and BERT - Introduction

- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods
- 4. Multi-Stage Document Ranking with BERT
 - a. Motivation
 - b. Proposed Methods
 - c. Experiments
 - d. Results & Analysis
- 5. References

Ad-hoc Document Retrieval

Standard retrieval task in which the user specifies his information need through a query which initiates a corpus search for documents which are likely to be relevant to the user.

- **Query**: textual description of information need.
- **Corpus**: a collection of textual documents.
- **Relevance**: satisfaction of the user's information need.
- **"Ad-hoc**" because the documents in the collection remain relatively static while new queries are submitted to the system continually.

BERT

- BERT (Bidirectional Encoder Representations from Transformer) is a contextual neural language model designed to pretrain deep bidirectional representations from unlabeled text.
- The pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods
- 4. Multi-Stage Document Ranking with BERT
 - a. Motivation
 - b. Proposed Methods
 - c. Experiments
 - d. Results & Analysis
- 5. References

Motivation

Semantic Search

- People have been trained to use keyword queries because bag-of-words retrieval models cannot effectively extract key information from natural language.
- Queries written in natural language actually enable better search results when the system can model language structures.

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods
- 4. Multi-Stage Document Ranking with BERT
 - a. Motivation
 - b. Proposed Methods
 - c. Experiments
 - d. Results & Analysis
- 5. References

Model Architecture

- Input Tokens concatenation of the query tokens and the document tokens, with token '(SEP)' separating the two segments, [CLS] at the beginning of the first segment..
- Segment Embeddings 'Q' (for query tokens) and 'D' (for document tokens), to further separate the query from the document.
- **Position Embeddings -** To capture word order.
- **Output** Embedding of the first token is used as a representation for the entire query-document pair. It is fed into a multi-layer perceptron (MLP) to predict the possibility of relevance (binary classification).

Figure 1: BERT sentence pair classification architecture [3].

Sources of Effectiveness

Table 1: Example of Robust04 search topic (Topic 697).

Title	air traffic controller
Description	What are working conditions and pay for U.S. air traffic
	controllers?
Narrative	Relevant documents tell something about working condi-
	tions or pay for American controllers. Documents about
	foreign controllers or individuals are not relevant.

Figure 2: Visualization of BERT. Colors represent different attention heads; deeper color indicates higher attention.

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods

3. CEDR: Contextualized Embeddings for Document Ranking

a. Motivation

- b. Proposed Methods
- 4. Multi-Stage Document Ranking with BERT
 - a. Motivation
 - b. Proposed Methods
 - c. Experiments
 - d. Results & Analysis
- 5. References

Motivation

Figure 1: Example similarity matrix excerpts from GloVe, ELMo, and BERT for relevant and non-relevant document for Robust query 435. Lighter values have higher similarity.

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods

3. CEDR: Contextualized Embeddings for Document Ranking

a. Motivation

b. Proposed Methods

- 4. Multi-Stage Document Ranking with BERT
 - a. Motivation
 - b. Proposed Methods
 - c. Experiments
 - d. Results & Analysis
- 5. References

Traditional Similarity Tensors

- **Q** : query consisting of query terms **{q1, q2, ..., q**_{|Q|}**}**
- D: document consisting of terms {d1, d2, ..., d_{|D|} }
- ranker(Q,D) \in R : Real-valued relevance estimate for the document to the query.
- Neural relevance ranking architectures generally use a similarity matrix as input.

Similarity matrix: $S \in \mathbb{R}^{|Q| \times |D|}$, where each cell represents a similarity score between the query terms and document terms: $S_{i,i} = sim(q_i, d_i)$.

New Contextualized Similarity Tensors

- Contextualized language models typically consist of multiple stacked layers of representations (e.g., recurrent or transformer outputs)
- New similarity representation (conditioned on the query and document context):

$S_{Q,D}[l,q,d] = cos(context_{Q,D}(q,l), context_{Q,D}(d,l))$

For each query term $q \in Q$, document term $d \in D$, and layer $I \in [1..L]$, where context_{0.D}(t,I) $\in \mathbb{R}^{D}$ is the contextualized representation for token t in layer I

• The representations from the stacked layers of contextualized language models like BERT can benefit general neural ranking models like PACRR, KNRM, DRMM.

Joint BERT approach

- BERT utilizes the [CLS] token for making judgments about the text pairs. Its representation can be fine-tuned for other tasks.
- The [CLS] token representation is incorporated into existing neural ranking models as the **Joint BERT approach**.
- This allows neural rankers to benefit from deep semantic information from BERT in addition to individual contextualized token matches.

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods

4. Multi-Stage Document Ranking with BERT

- a. Motivation
- b. Proposed Methods
- c. Experiments
- d. Results & Analysis
- 5. References

Motivation

Representational learning: Learn some non-linear transformation of queries and documents such that documents relevant to a query have high similarities in terms of a simple metric such as cosine similarity.

- Search-related tasks need to consider a large corpus, and thus it is impractical to apply inference over all documents for a given query.
- It is unclear whether representational learning is sufficient to boil the complex notion of relevance down to simple similarity computations.
- The complete end-to-end retrieval architecture will need to involve multiple stages.

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods

4. Multi-Stage Document Ranking with BERT

a. Motivation

b. Proposed Methods

- c. Experiments
- d. Results & Analysis
- 5. References

Multi Stage Ranking

- A multi-stage ranking architecture comprises a number of stages, denoted H_0 to H_N .
- H_0 retrieves k_0 candidates from an inverted index
- H_n receives a ranked list R_{n-1} comprising k_{n-1} candidates from the previous stage.
- H_n provides a ranked list R_n comprising k_n candidates to the subsequent stage ($k_n \le k_{n-1}$.
- The ranked list generated by the final stage is designated for consumption by the searcher.

Model Architecture

H₀: "Bag of Words" BM25

- Input: user query q
- **Output:** top-k₀ candidates R₀
- Query is treated as a "bag of words" based on the BM25 scoring function.
- BM25 looks for exact term matches, but later BERT stages have the ability to identify relevant candidates that do not have many matching terms.
- Critical to optimize for recall to provide subsequent stages a diverse set of documents to work with; precision is less of a concern because non-relevant documents can be discarded by later stages.

H₁ : monoBERT

- Input: Query q as sentence A and text of candidate d_i as sentence B
- Output: R₁, i.e., top-k₁ candidates based on s_i scores
- **monoBERT:** pointwise re-ranker, i.e., a BERT model used as a binary relevance classifier.
- Truncate so concatenation of query, candidate, and separator tokens have a maximum length of 512 tokens
- Use [CLS] vector as input to a single layer neural network to obtain a probability s_i of the candidate d_i being relevant to q

H₂: duoBERT

- Input: query as sentence A, candidate d_i as sentence B, and candidate d_i as sentence C
- **Output:** R₂, obtained by re-ranking the candidates in R₁ according to their scores s_i
- **duoBERT:** pairwise re-ranker, i.e., estimates the probability p_{i,j} of the candidate d_i being more relevant than d_i
- Truncate so concatenation of query, candidate, and separator tokens have a maximum length of 512 tokens.
- Use [CLS] vector as input to a single layer neural network to obtain the probability p_{ii}
- Aggregate the pairwise scores p_{i,j} so that each document receives a single score s_i

H₂: duoBERT - Aggregation methods

$$\mathbf{SUM}: s_i = \sum_{j \in J_i} p_{i,j},$$

$$BINARY: s_i = \sum_{j \in J_i} \mathbb{1}_{p_{i,j} > 0.5},$$

$$\mathbf{MIN}: s_i = \min_{j \in J_i} p_{i,j},$$

$$\mathbf{MAX}: s_i = \max_{j \in J_i} p_{i,j},$$

SAMPLE :
$$s_i = \sum_{j \in J_i(m)} p_{i,j}$$
,

where $J_i = \{0 \le j < |R_1|, j \ne i\}$ and *m* is the number of samples drawn without replacement from the set J_i .

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods

4. Multi-Stage Document Ranking with BERT

- a. Motivation
- b. Proposed Methods
- c. Experiments
- d. Results & Analysis
- 5. References

Datasets - I

MS MARCO (Microsoft MAchine Reading COmprehension): created from half a million anonymized questions sampled from Bing's search query logs.

- 8.8M passages extracted from 3.6M web documents, 55 words per passage.
- **Training set:** 500k pairs of query and relevant document, 400M pairs of query and non-relevant documents.
- **Development set:** 6,980 queries, with, on average, one relevant document per query.
- **Evaluation set:** 6,837 queries without relevance judgments.
- Official metric for dataset: MRR@10

Datasets - II

TREC CAR (Complex Answer Retrieval): consists of cleaned paragraphs from English Wikipedia.

- 29M documents, with an average of 60 words per document.
- **Training set:** 3M queries
- Validation set: 700k queries
- Evaluation set: 2,254 queries
- Official metric for dataset: Mean Average Precision (MAP)

- 1. Ad-hoc retrieval and BERT Introduction
- 2. Deeper Text Understanding for IR with Contextual Neural Language Modeling
 - a. Motivation
 - b. Proposed Methods
- 3. CEDR: Contextualized Embeddings for Document Ranking
 - a. Motivation
 - b. Proposed Methods

4. Multi-Stage Document Ranking with BERT

- a. Motivation
- b. Proposed Methods
- c. Experiments
- d. Results & Analysis
- 5. References

MS MARCO Results

Method	Dev	Eval
BM25 (Microsoft Baseline)	16.7	16.5
monoBERT (Jan 2019)	36.5	28.1 35.9
Anserini (BM25)	18.7	19.0
+ monoBERT	37.2	36.5
+ monoBERT + duoBERT _{MAX}	32.6	-
+ monoBERT + duoBERT _{MIN}	37.9	-
+ monoBERT + duoBERT _{SUM}	38.2	37.0
+ monoBERT + duoBERT _{BINARY}	38.3	-
+ monoBERT + duoBERT _{SUM} + TCP	39.0	37.9
Leaderboard best	39.7	38.3

Table 1: MS MARCO Results.

TREC CAR Results

Method	MAP	
BM25 (Kashyapi et al., 2018)	13.0	
Co-PACRR (MacAvaney et al., 2017)	14.8	
BM25 (Anserini)	15.3	
+ monoBERT	34.8	
+ monoBERT + duoBERT _{MAX}	32.6	
+ monoBERT + duoBERT _{SUM}	36.9	
+ monoBERT + duoBERT _{BINARY}	36.9	

Table 2: Main Result on TREC 2017 CAR.

Tradeoffs with monoBERT

Figure 2: Number of inferences per query vs. effectiveness on the MS MARCO and the TREC CAR datasets when varying the number of candidates k_0 fed to monoBERT.

Tradeoffs with duoBERT

Figure 3: Number of inferences per query vs. the effectiveness of duoBERT when varying the number of candidates k_1 . Each curve has six points that correspond to $k_1 = \{0, 10, 20, 30, 40, 50\}$, where $k_1 = 0$ corresponds to monoBERT. The values in the *x*-axis are computed as $k_1 \times (k_1 - 1)$ for SUM, BINARY, and MIN, and $k_1 \times (m - 1)$ for SAMPLE. To avoid clutter, plots for SAMPLE at $m = \{10, 30\}$ are omitted.

Multi-Stage Tradeoffs

Figure 4: Number of inferences per query vs. the effectiveness of duoBERT_{SUM} when varying the number of candidates k_0 and k_1 . Each curve has five points that correspond to $k_0 = \{50, 100, 200, 500, 1000\}$. The number of inferences per query is calculated as $k_0 + k_1(k_1 - 1)$.

Qualitative Analyses

Query	Sample Passage	Label	Rank	
			Baseline	Comparison
	Killing The Blues by Robert Plant and Alison Krauss. This was written by			
	Chris Isaak's bass guitarist Roly Salley, and was originally the title track of			
who wrote song	Salley's 2005 solo album. This song was used in an advertising campaign for	R	BM25: 621	monoBERT: 1
killing the blues	the chain store JC Penney, which features sentimental images of heartland			
	Americana, such as family reunions and Fourth of July celebrations.			
	Who wrote the blues song Crossroads Cross Road Blues is one of Delta	N	BM25: 1	monoBERT: 9
	Blues singer Robert Johnson's most famous songs. Who wrote the song			
	'Blue Shades Frank Ticheli wrote the song 'Blue Shades'. It is a concert			
	piece with allusions			
	Reduced production of liver enzymes may indicate dysfunction of the liver.			
what causes low	This article explains the causes and symptoms of low liver enzymes. Scroll	R	monoBERT: 47	duoBERT: 1
liver enzymes	down to know how the production of the enzymes can be accelerated.			
	Other causes of elevated liver enzymes may include: Alcoholic hepatitis			
	(severe liver inflammation caused by excessive alcohol consumption)			
	Autoimmune hepatitis (liver inflammation caused by an autoimmune disorder)	N	monoBERT: 1	duoBERT: 7
	Celiac disease (small intestine damage caused by gluten) Cytomegalovirus			
	(CMV) infection.			

Table 3: Comparison of BM25 vs. monoBERT, and monoBERT vs. duoBERT, showing result ranks of answers. (N: not relevant, R: relevant)

References

- 1. Nogueira, Rodrigo, et al. "Multi-stage document ranking with BERT." *arXiv preprint arXiv:1910.14424* (2019).
- 2. Dai, Zhuyun, and Jamie Callan. "Deeper text understanding for IR with contextual neural language modeling." *Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.* 2019.
- 3. MacAvaney, Sean, et al. "CEDR: Contextualized embeddings for document ranking." *Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.* 2019.
- 4. Nogueira, Rodrigo, and Kyunghyun Cho. "Passage Re-ranking with BERT." *arXiv preprint arXiv:1901.04085* (2019).
- 5. Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv* preprint arXiv:1810.04805 (2018).

THANK YOU! Q&A