Factoid Question Answering

CS 898 – Project
June 12, 2017

Salman Mohammed
David R. Cheriton School of Computer Science
University of Waterloo
Motivation

“What are the odds the New England Patriots will beat the Atlanta Falcons”

The odds favor the Patriots over the Falcons by 3 points.

NFL Schedule

Sun, Feb 5, 2017
3:30 PM PST

TV: FOX

Patriots
AFC East

Falcons
NFC South

Bill Gates / Spouse

Melinda Gates
m. 1994

Melinda Ann Gates, DBE is an American philanthropist, former Microsoft employee, and wife of Microsoft founder Bill Gates. She is co-founder of the Bill & Melinda Gates Foundation. [Wikipedia]
Examples

Q: Who is the Falcons quarterback in 2012?
 A: Matt Ryan

Q: Where did George Harrison live before he died?
 A: Liverpool

Q: Who were the parents of Queen Elizabeth I?
 A: Anne Boleyn, Henry VIII of England
Task

simple factoid question answering
answers reference a single fact in the knowledge-base

Freebase – large knowledge base
17.8M million facts, 4M unique entities, 7523 relation types
fact: Bahamas country/currency Bahamian_dollar

different from complex questions
Q: Who does David James play for in 2011?
Q: What year did Messi and Henry play together in Barcelona?
Harrison died in 2001, aged 58, from lung cancer. He was cremated and his ashes were scattered in the Ganges and Yamuna rivers in India, in a private ceremony according to Hindu tradition. He left an estate of almost £100 million.

George Harrison - Wikipedia
https://en.wikipedia.org/wiki/George_Harrison
Approach

Q: Who were the parents of Queen Elizabeth I?
A: Anne Boleyn, Henry VIII of England

Entity: Queen Elizabeth I
Freebase Entity MID: m.02rg_
Relation: /people/person/parents
Lookup Freebase: query (entityid, relation)
Difficulties

no consistent way to do entity name → ID conversion
‘JFK’ could refer to a person, president, film, airport.

evaluate correct answer
‘Cuban Convertible Peso’ vs. ‘Cuban Peso’

state-of-the-art accuracy: ~76%
many facts
long pipeline
Assuming you know...

Word Vectors

dense vector representation for words
word2vec, GloVe

Fully Connected Neural Networks

every node in a layer connected to all nodes in the previous layer
fixed size input(image) and output(classes)

Recurrent Neural Networks

modelling sequences
reasoning about previous events to make decision
Recurrent NNs

Input: x_t
word embedding

Memory/State: h_t
embedding based on current input and previous state
final state: think “sentence embedding”

An unrolled recurrent neural network.
Deep Bi-directional RNNs

Problem with RNNs

Learning long-term dependencies
“I grew up in France … I speak fluent ____.”

Vanishing/Exploding gradient problem
notice that the same weight matrix is multiplied at each
time step during forward and backward propagation
Long Short Term Memory Networks (LSTMs)

Avoid long term dependency problem
remember information for a long time

Idea: gated cells
complex node with gates controlling what information is passed through
maintains an additional “cell state” - c_t

Method
Approach

Q: Who were the parents of Queen Elizabeth I?
A: Anne Boleyn, Henry VIII of England

Entity: Queen Elizabeth I
Freebase Entity MID: m.02rg_
Relation: /people/person/parents
Lookup Freebase: query (entityid, relation)
Entity Detection

NOTE: followed by fully connected layers
Entity Linking

‘Einstein’ \rightarrow ‘m.013tyr’
more than one entity refers to ‘Einstein’

build a Lucene index of all entities
store entity MID as docid
store the name variants in different fields
ranked retrieval – BM25
Relation Prediction

Where was Einstein born

NOTE: followed by fully connected layers
Relation Prediction

- Dataset: Simple Questions
- Training set: ~76,000 examples
- Validation set: ~11,000 examples
- Number of classes: 1,837 relation types
- Model: Bi-directional LSTM (4 layers)
- Accuracy on validation set: ~81%
Other Ideas

joint-model the (entity, relation) pair
rank entities, relations and then, joint-model them

convolutional networks with attention modules
character level CNN for entity detection
word level CNN for relation prediction
Practical Tips
Tricks of the Trade

Activation function: try ReLU
prevents from shrinking gradients

Optimization algorithm: try Adam
computes adaptive learning rate; usually faster convergence

Weight initialization: use Xavier initialization
make sure weights start out ‘just right’

Prevent overfitting: dropout, L2 regularization
dropout prevents feature co-adaptation
remember to scale model weights at test time for dropout
Tricks of the Trade (cont’d)

Random Hyperparameter Search
grid search is a bad idea; read: https://arxiv.org/abs/1206.5533
some hyper-parameters more important than others

Batch Normalization
make activations unit gaussian distribution at the beginning of the training
insert BatchNorm layer immediately after fully-connected/convolutional layers

Initialize recurrent weight matrix, W^{hx} & W^{hh}, to identity matrix

Gradient clipping
helps exploding gradient problem
Acknowledgement

Wengpen Yin et al.
https://arxiv.org/abs/1606.03391

Ferhan Ture, Oliver Jojic
https://arxiv.org/abs/1606.05029

Christopher Olah
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Jimmy Lin
slide template taken from https://lintool.github.io/bigdata-2017w
Hi, how can I help?