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                     Time Series Forecasting  
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Time series tracks the movement of the chosen 
data points 
 A sequence of numerical data points in successive order 
 Such as a S&P 500 index value, over a specified period  (1994-

2007) with data points recorded at regular intervals (daily, 
weekly,...) 

Uses historical values and associated patterns to 
predict future activity  
 Include trend analysis, cyclical fluctuation, and issues of 

seasonality 
 As with all forecasting methods, success is not guaranteed! 
 Collaborate with fundamental analysis to make trading decision. 
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 Standard & Poor's 500 is an American stock market index based on the market 

capitalizations of 500 large companies, seen as a leading indicator of U.S. equities 
and a reflection of performance of large-cap sector of the market. 

 Analysts and economists at Standard & Poor's select 500 stocks by considering 
factors as market size, liquidity and industry grouping. 

 It uses a market cap methodology, giving a higher weighting to larger companies. 
 Products for replicating S&P 500: S&P 500 index funds, S&P 500 ETFs 

        S&P 500 Index 
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                  RNN and LSTM 
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 A recurrent neuron (RN, the simplest possible RNN) on the left is unrolled 

through time on the right. 
 RN looks like feedforward neuron, except it has connections pointing backward. 
 At each time step t, RN just has one neuron receiving inputs, producing an 

output, and sending that output back to itself. 

Recurrent Neurons 
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 A layer of 5 RNs as a cell, both the inputs and outputs are vectors  
 Each RN has 2 sets of weights: 1 for the inputs x(t) and the other for the outputs 

of the previous time step y(t–1) 
 y(t) is a function of x(t) and y(t–1), which is a function of x(t–1) and y(t–2), 

and so on.  So, y(t) a function of all the inputs since t = 0 (x(0),x(1), …, x(t)), 
and y(-1) is assumed to be all 0. 

A Layer of Recurrent Neurons 
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 Since y(t) a function of all the inputs since t = 0,  the part of RN preserving 

states across time axis is a “Memory Cell” (“Cell”) 
 A cell’s sate at t is h(t)=f(h(t-1), x(t)), where x(t) is current inputs, h(t-1) is 

cell’s state at t-1. 
 For single RN or a layer of RNs, y(t)=h(t). But for complex cells, y(t)!=h(t), i.e. 

the LSTM cell  

           Memory Cell 



                           Types of RNN 
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Sequence (input) to Sequence (output)   
Simultaneously take a Seq. of inputs and produce a Seq. of outputs  
Predicting time series: feed RNN the prices over the last N days, and 

it output the prices shifted by 1 day into the future (i.e., from N – 1 
days ago to tomorrow) 

Sequence (input) to Vector (output)   
Feed the RNN a Seq. of inputs, and ignore all outputs except for the 

last one (only output last one) 

Vector (input) to Sequence (output)   
Feed the RNN a single input at t=0 and zeros for all other time steps, 

and it output a sequence 

Seq-to-Vec (Encoder), Vec-to-Seq (Decoder)   
Language Translating:  feed the Encoder of RNN a sentence of one 

language, Decoder of RNN outputs a sentence in another language. 
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 Stack multiple layers of cells to create a deep RNN 
 Stack identical cells into a deep RNN 
Use various kinds of cells (BasicRNNCell, BasicLSTMCell, …) with different 

number of neurons 

             Deep RNN 



               Training over Many Time Steps 
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Suffer from the vanishing/exploding gradients (train forever) 
Tricks: parameter initialization, ReLU activation function, batch 

normalization, gradient clipping, faster optimizer 
Training still be very slow for a moderate long sequence (i.e. 50 steps) 
Truncated backpropagation through time: unroll the RNN only over a 

limited number of time steps during training by simply truncating the 
input sequences 
Model will not be able to learn long-term patterns. 

Memory of those first inputs gradually fades away  
Some information is lost after each time step, due to the 

transformation of data when it traverse an RNN. 
After a few time steps, RNN’s state hardly contains the information 

from  those first inputs.  

A popular solution: Long Short-Term Memory (LSTM) 
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 Its training will converge faster and detect long-term dependencies in the data 
 Its state is split in two vectors: h(t) as short-term state, c(t) as long-term state. 
 c(t-1) first drop some previous memories, then add some new current memory 
 After addition, c(t-1) is copied and passed through “tanh” and “Output gate” o(t) 

          Basic LSTM Cell 
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 LSTM has n_neurons neutrons and unroll over 20 steps, 4 instances per batch 
 Stack all the outputs of 20 time steps, projecting output vector of size n_neurons 

into a single output value at each time step by a Fully Connected layer (FC) 
 FC only consists linear neurons, without any activation function.   

  LSTM Cell for Time Series 

LSTM LSTM LSTM LSTM 
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                    Time Series Analysis 
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 It’s about predicting the next value in a generated time series. 
 A training instance is a randomly selected sequence of 20 consecutive values 

from the time series 
  A target sequence is shifted of input instance by one time step into the future. 
 Further, append the predicted value to the sequence, feed the last 20 values to 

the model to predict the next value, and so on, generating a creative sequence. 

     Data of Time Series 
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       Forecast Monthly Return by Daily Data 
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 40 time steps to predict next 20 days return,  sum to be a monthly return 
 LSTM, 3 layers, “tanh” function,1 input, 1 output,  300 neutrons 
 AdamOptimizer, learning rate 0.001, batch size 20, Train/Test split ratio 0.2 
 Tried but not applied: more layers, more neutrons, different batch size, dropout, 

ReLU, different time steps 
 Performance:  Testing MSE is 0.293, Predicting (20 days only) MSE is 0.012, 
                           Predicting Monthly Return MSE is 0.342 

     Forecast Monthly Return by Daily Data 
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 12 time steps to predict next 4 weeks  
    return,  sum to be a monthly return 
 Testing MSE is 2.561 
 Predicting (4 weeks) MSE is 0.313 
 Predicting Monthly Return MSE  
    is 1.175    

 

       Forecast Monthly Return by Weekly Data 
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 12 time steps to predict next 1 month  
    return,  as a monthly return 
 Testing MSE is 7.10 
 Predicting (1 month) MSE is 0.121 
 Predicting Monthly Return MSE  
    is 0.121 

 

       Forecast Monthly Return by Monthly Data 



21 

 

The above 3 LSTM models were trained and tested by different data set. 
To have a fair comparison, we use the same data (daily data, calculate 
corresponding weekly/monthly data) for training and testing. 
 Daily-LSTM:  Training MSE is 0.147,  Testing MSE is 0.178, Predicting (20 days only) 

MSE is 0.011, Predicting Monthly Return MSE is 0.324 
 Weekly-LSTM:  Training MSE is 1.493,  Testing MSE is 2.440, Predicting (4 weeks 

only) MSE is 0.343, Predicting Monthly Return MSE is 1.526 
 Monthly-LSTM:  Training MSE is 6.323,  Testing MSE is 6.588, Predicting (1 month 

only) MSE is 0.453, Predicting Monthly Return MSE is 0.453 

Ensemble 3 LSTM models to be a Voting Predictor 
 Output the mean of 3 LSTMs’ monthly return values   
 Predicting Monthly Return MSE is 0.295 
 0.543% error for predicting monthly return in range -10%~10%  
 

 

     Compare and Ensemble 3 LSTM Models 
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                   Future Works 
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 Improving prediction performance by using 
bagging/boosting to ensemble Daily-LSTM, Weekly-
LSTM, and Monthly-LSTM. 

Use more features and datasets to improve prediction 
performance. 

           Future Works 
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