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Problems in NMT

1. Exposure Bias

2. Overcorrection
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(Ranzato et al., 2015) 

A discrepancy / "gap": predicted words are drawn from 
      different  distribution at training and inference respectively

Exposure Bias 
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Exposure Bias  

• During training, what are fed as the context to the model?
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• During training, what are fed as the context to the model?

• Ground-truth words ("Data Distribution")

• Inferencing?
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Exposure Bias 

• During training, what are fed as the context to the model?

• Ground-truth words ("Data Distribution")

• Inferencing?

•  Model-predicted words ("Model Distribution")
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Exposure Bias 

• During training, what are fed as the context to the model?

• Ground-truth words ("Data Distribution")

• Inferencing?

•  Model-predicted words ("Model Distribution")

… We want a correction
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Overcorrection

• Example:         
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• Example:         

PRESENTATION TITLE PAGE  10Problems in NMT

Overcorrection



• Example:         
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Overcorrection
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Wrong! "by" should be the right choice

(Larger sentence
  likelihood)

• Example:         

Overcorrection



• Example:         
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Overcorrection



• Example:         

PRESENTATION TITLE PAGE  14Problems in NMT

Wrong! "the rule" should be the right choice

(Effect from "by")

Overcorrection



• Example:         
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Wrong! "the rule" should be the right choice

(Effect from "by")

Overcorrection



• Example:         
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("with" is fed
 as a context word)

   "Overcorrection Recovery" (OR)

Overcorrection



• Example:         
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("with" is fed
 as a context word)

   "Overcorrection Recovery" (OR)

Overcorrection
… What is a proper way to feed both 

ground-truth words and predicted words?



Proposed Methods (in short)

An adjust to the training process...
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Proposed Methods (in short)

An adjust to the training process...

#1: Oracle Word Selection

• Select oracle words from its predicted words
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Proposed Methods (in short)

An adjust to the training process...

#1: Oracle Word Selection

• Select oracle words from its predicted words

• Sample as context from the oracle words 
and ground-truth words
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Proposed Methods (in short)

An adjust to the training process...

#2: Sample with Decay
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Proposed Methods (in short)

An adjust to the training process...

#2: Sample with Decay
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(Scheduled Sampling, Bengio et al.)



Proposed Methods (in short)

An adjust to the training process!

#2: Sample with Decay

• The probability of sampling
 ground-truth words decays 
with the training process

• Decreasing guidance
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(Scheduled Sampling, Bengio et al.)



Proposed Methods (in short)

An adjust to the training process!

#2: Sample with Decay
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Inverse sigmoid decay
(Scheduled Sampling, Bengio et al.)

 e: index of the epoches*
 

 x: index of the mini-batches
 



Proposed Methods (in short)

Verify the approach on

• RNN-based NMT Model

• the Transformer Model
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Proposed Methods

An RNN-based NMT Model example (Bahdanau et al., 2015) 
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Proposed Methods
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#1: Oracle Word Selection

(… with several strategies)

At step j



#1 Oracle Word Selection
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Word Level Oracle (WO)

W

At step jAt step j-1
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WO with Gumbel Noise
At step jAt step j-1

#1 Oracle Word Selection
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WO with Gumbel Noise
At step j-1 Gumbel Noise?

  

#1 Oracle Word Selection
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WO with Gumbel Noise
At step j-1 Gumbel Noise?

   
• Rough idea: 

the Gumbel-max trick helps 
one sample from categorical distribut
ion given log-probabilities without 
leaving log space  

• Added here as regularization
to make the selection more robust

#1 Oracle Word Selection
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Sentence Level Oracle (SO)

• Not only to select the oracle word at the word level 

• Try to select an oracle sentence first

#1 Oracle Word Selection



PRESENTATION TITLE PAGE  33Proposed Methods

Sentence Level Oracle (SO)

• At step j-1:

1. Get k-best candidate translations* using beam-search

2. Rank with BLEU, select the highest as the oracle sentence

3. Pick the (j-1)-th word as the oracle word 

#1 Oracle Word Selection
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Sentence Level Oracle (SO)

• At step j-1:

1. Get k-best candidate translations* using beam-search

2. Rank with BLEU, select the highest as the oracle sentence

3. Pick the (j-1)-th word as the oracle word 

* Force Decoding: 
Candidates are forced to have the same 
length as the ground-truth sentence

#1 Oracle Word Selection
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Training Objective



Key Experiments
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Translation Tasks:

• NIST  Chinese → English (Zh→En)

• WMT'14 English →German (En→De)



Key Experiments
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Scheduled Sampling
(Bengio et al.)

• NIST  Chinese → English (Zh→En)



Key Experiments
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• WMT'14 English →German (En→De)



Result Analysis
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• Factor analysis on Oracle Word Selection



Result Analysis
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• Convergence (Left), 
Sentence Length (Middle) 
Gumbel Noise Factor (Right)



Result Conclusion
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• Mitigate the gap between training and inference by:

• feeding as context the oracle word / groudtruth word
with a sampling scheme

• Sampling the context word with decay 
from the ground truth words

• Verified the effectiveness with strong baseline models

• Sentence-level oracle show superiority over the
Word-level oracle



Significance
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• Justify the effectiveness thoroughly

with detailed analysis

• Easy to adopt

(Github: https://github.com/ictnlp/OR-NMT )

https://github.com/ictnlp/OR-NMT


Significance
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• Justify the effectiveness thoroughly

with detailed analysis

• Easy to adopt

(Github: https://github.com/ictnlp/OR-NMT )

• (… Application on my project: Cantonese-Chinese Translation Task)

https://github.com/ictnlp/OR-NMT


Discussion
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• A comparison to Bengio’s work 
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