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Problems in NMT

1.  Exposure Bias

2. Overcorrection
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Exposure Bias

(Ranzato et al., 2015)

A discrepancy / "gap": predicted words are drawn from
different distribution at training and inference respectively
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Exposure Bias

« During training, what are fed as the context to the model?
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Exposure Bias

 During training, what are fed as the context to the model?
Ground-truth words (""Data Distribution")

Inferencing?
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Exposure Bias

 During training, what are fed as the context to the model?
Ground-truth words (""Data Distribution")

Inferencing?

Model-predicted words ("Model Distribution")
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Exposure Bias

 During training, what are fed as the context to the model?
Ground-truth words (""Data Distribution")

Inferencing?

Model-predicted words ("Model Distribution")

... We want a correction
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Overcorrection

Example:

reference: We should comply with the rule.
candl: We should abide with the rule.
cand?: We should abide by the law.
cand3: We should abide by the rule.
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Overcorrection

Example:

reference. = We should comply with the rule.
candl: We should abide with the rule.
cand?: We should abide by the law.
cand3: We should abide by the rule.
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Overcorrection

Example:

reference. = We should comply with the rule.

We should abide with the rule.
cand?: We should abide by the law.
cand3: We should abide by the rule.
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Overcorrection

Example: Wrong! "by" should be the right choice

reference: . We should comply with the rule. | 1, 0e; sentence
We should abide with the rule. likelihood)

cand?: We should abide by the law.

cand3: We should abide by the rule.
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Overcorrection

Example:

reference: | We should comply with the rule.
candl: We should abide with the rule.

We should abide by the law.
cand3: We should abide by the rule.
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Overcorrection

«  Example: Wrong! "the rule" should be the right choice

reference: = We should comply with the rule.

candl: We should abide with the rule.
We should abide by the law. (Effect from "by")
cand3: We should abide by the rule.
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Overcorrection

«  Example: Wrong! "the rule" should be the right choice

reference: = We should comply with the rule.

candl: We should abide with the rule.
We should abide by the law. (Effect from "by")
cand3: We should abide by the rule.
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Overcorrection

Example:

reference: | We should comply with the rule. | e
candl: We should abide witt the rule. (a:V; corllie:t word)
cand?: We should abide by t' = law.

We should abide by the rule.

"Overcorrection Recovery” (OR)
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Overcorrection

... What is a proper way to feed both
«  Example: ground-truth words and predicted words?

reference: | We should comply with the rule. | e
candl: We should abide witt the rule. (a:V; Corllfexet word)
cand?: We should abide by t' = law.

We should abide by the rule.

"Overcorrection Recovery” (OR)
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Proposed Methods (in short)

An adjust to the training process...
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Proposed Methods (in short)

An adjust to the training process...

#1: Oracle Word Selection

Select oracle words from its predicted words
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Proposed Methods (in short)

An adjust to the training process...

#1: Oracle Word Selection

Select oracle words from its predicted words

Sample as context from the oracle words
and ground-truth words
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Proposed Methods (in short)

An adjust to the training process...

#2: Sample with Decay
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Proposed Methods

Proposed Methods (in short)

An adjust to the training process...

#2: Sample with Deca
P Y (Scheduled Sampling, Bengio et al.)

sampled y(t-2)  true y(t-2) true y(t-1)

Figure 1: Illustration of the Scheduled Sampling approach,
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.
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Proposed Methods (in short)

An adjust to the training process!

#2: Sample with Deca
P Y (Scheduled Sampling, Bengio et al.)

«  The probability of sampling
ground-truth words decays
with the training process

«  Decreasing guidance

sampled y(t-2)  true y(t-2) true y(t-1)

Figure 1: Illustration of the Scheduled Sampling approach,
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.
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Proposed Methods (in short)

An adjust to the training process!
#2: Sample with Decay

(Scheduled Sampling, Bengio et al.) . .
Inverse sigmoid decay
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Figure 2: Examples of decay
schedules. x: index of the mini-batches
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Proposed Methods (in short)

Verify the approach on
RNN-based NMT Model

the Transformer Model
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Proposed Methods

An RNN-based NMT Model example (Bahdanau et al., 2015)

source sequence and the observed translation are
x = {z1,--- , 7} and y* = {yf,- - .yl‘y.l}.
Encoder. A bidirectional Gated Recurrent Unit
(GRU) (Cho et al., 2014) is used to acquire two
sequences of hidden states, the annotation of z;
is h;y = [7,-: T,] Note that e,, is employed to
represent the embedding vector of the word z;.

7i=GRU(e,,, hi1) (1)
By = C D ess Tonit) 2)
Proposed Methods

Attention. The attention is designed to extract
source information (called source context vector).
At the j-th step, the relevance between the target
word Y5 and the i-th source word is evaluated and
normalized over the source sequence

rij = vftanh (Wasj—1 + Ugh;) 3)
exp (ryy)

>id s exp (rir)

The source context vector is the weighted sum of
all source annotations and can be calculated by

x|
Cj = Zi:l a,-jhi (5)

“4)

Q5

PAGE 26

Decoder. The decoder employs a variant of
GRU to unroll the target information. At the j-th
step, the target hidden state s; is given by

sj = GRU(('y;_l.sj_l.(fJ-) (6)

The probability distribution P; over all the words
in the target vocabulary is produced conditioned
on the embedding of the previous ground truth
word, the source context vector and the hidden
state

fJ =g((’.yj-_].CJ‘.SJ'> (7)
0; = WUTJ‘ (8)
P; = softmax (0;) 9)

where ¢ stands for a linear transformation, W, is
used to map t; to o; so that each target word has
one corresponding dimension in 0;.
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Proposed Methods

#1: Oracle Word Selection

At step j
Decoder i-p
) . ,
( oracle| [,* P _iLogistic regression :
Yoot J IZY T classifier
1—p°. p

(... with several strategies)
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#1 Oracle Word Selection

Word Level Oracle (WO)
At step j-1 At step j

T:kips] oracle
— =i

Figure 2: Word-level oracle without noise.
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#1 Oracle Word Selection

WO with Gumbel Noise
At step j-1 At step j

p ' Logistic regression !
' classifier

Loglstlc regressuon

classifier

Figure 3: Word-level oracle with Gumbel noise. . S .' ErERTE T vusnuinos e weeens o6 S
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#1 Oracle Word Selection

WO with Gumbel Noise
At step j-1

_______________________________________

I l 1-besi
o acle

Figure 3: Word-level oracle with Gumbel noise.

Loglstlc regression |
classifier

—>01_1

Proposed Methods

Gumbel Noise?

in Figure 3, then softmax function is performed,
the word distribution of y;_1 is approximated by

n = —log (— log u) (10)
0j-1=(0j-1+mn) /7 (11)
ﬁ’jﬁl = softmax (0;_1) (12)

where 7 is the Gumbel noise calculated from a uni-
form random variable v ~ (0, 1), 7 is tempera-
ture. As 7 approaches 0, the softmax function is
similar to the argmax operation, and it becomes
uniform distribution gradually when 7 — oo.
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#1 Oracle Word Selection

WO with Gumbel Noise
At step j-1

I |1 -besti
o acle

Figure 3: Word-level oracle with Gumbel noise.

LOgIStIC regressuon
classifier

Proposed Methods

Gumbel Noise?

Rough idea:

the Gumbel-max trick helps

one sample from categorical distribut
ion given log-probabilities without
leaving log space

Added here as regularization
to make the selection more robust
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#1 Oracle Word Selection

Sentence Level Oracle (SO)

Not only to select the oracle word at the word level

Try to select an oracle sentence first

W UNIVERSITY OF
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#1 Oracle Word Selection

Sentence Level Oracle (SO)
At step j-1:
1. Get k-best candidate translations* using beam-search
2. Rank with BLEU, select the highest as the oracle sentence

3. Pick the (j-1)-th word as the oracle word
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#1 Oracle Word Selection

Sentence Level Oracle (SO)

At step j-1:

l.

2.

Proposed Methods

Get k-best candidate translations* using beam-search
Rank with BLEU, select the highest as the oracle sentence

Pick the (j-1)-th word as the oracle word

* Force Decoding:
Candidates are forced to have the same
length as the ground-truth sentence
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Training Objective

Decoder. The decoder employs a variant of
GRU to unroll the target information. At the j-th
step, the target hidden state s; is given by

S; = GRU((’,y;_l.Sj_l.(_’j) (6)

The probability distribution P; over all the words
in the target vocabulary is produced conditioned
on the embedding of the previous ground truth
word, the source context vector and the hidden
state

fj=g<(’y;_l.cj.sj> (7)
0; = Wofj (8)
P; = softmax (0;) )

where ¢ stands for a linear transformation, W, is
used to map t; to o; so that each target word has
one corresponding dimension in 0;.

3.3 Training

After selecting y;_1 by using the above method,
we can get the word distribution of y; according
to Equation (6), (7), (8) and (9). We do not add
the Gumbel noise to the distribution when calcu-
lating loss for training. The objective is to maxi-
mize the probability of the ground truth sequence
based on maximum likelihood estimation (MLE).
Thus following loss function is minimized:

o ly™l n[,n
LO)==-3 > s [5]  (6)

where IV is the number of sentence pairs in the
training data, |y™| indicates the length of the n-th

ground truth sentence, P7” refers to the predicted
probability distribution at the j-th step for the n-th

sentence, hence P |y7| is the probability of gen-
erating the ground truth word y? at the j-th step.
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Key Experiments

Translation Tasks:
NIST Chinese — English (Zh - En)

WMT'14 English — German (En - De)
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Key Experiments

« NIST Chinese — English (Zh - En)

Systems | Architecture | MT03 | MT04 | MTO05 | MTO06 | Average
Existing end-to-end NMT systems
Tu et al. (2016) Coverage 33.69 38.05 35.01 34.83 35.40
Shen et al. (2016) | MRT 37.41 39.87 37.45 36.80 37.88
Zhang et al. (2017) | Distortion 37.93 40.40 36.81 35.77 313
Our end-to-end NMT systems
RNNsearch 37.93 40.53 36.65 35.80 37.73
Scheduled Sampling
(Bengio et al.) 8.8
this work + OR-NMT | 40. 40”* | 42. 63”* | 38. 87”* | 38. 44+ | 40.09

" Transformer H 46.89 ‘ 47.88 ‘ 47.40 46.66 47.21
+ word oracle 47.42 48.34 47.89 47.34 47.75
+ sentence oracle || 48.31* | 49.40* | 48.72* | 48.45* | 48.72

Table 1: Case-insensitive BLEU scores (%) on Zh—En translation task. “1”, “1”, “x” and “x” indicate statistically
significant difference (p<0.01) from RNNsearch, SS-NMT, MIXER and Transformer, respectively.
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Key Experiments

Key Experiments

-« WMT'l4 English - German (En - De)

Systems newstest2014
RNNsearch 25.82

+ SS-NMT 26.50

+ MIXER 26.76

+ OR-NMT I 27.41*
Transformer (base) 2734

+ SS-NMT 28.05

+ MIXER 27.98

+ OR-NMT | 28.65%

Table 3: Case-sensitive BLEU scores (%) on En—De
task. The “I” indicates the results are significantly bet-
ter (p<0.01) than RNNsearch and Transformer.
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Key Experiments

Result Analysis

- Factor analysis on Oracle Word Selection

Systems Average
RNNsearch 37.(0
+ word oracle 38.94
+ noise 39.50
+ sentence oracle 39.56
+ noise | 40.09

Table 2: Factor analysis on Zh— En translation, the re-
sults are average BLEU scores on MT03~06 datasets.
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Result Analysis

« Convergence (Left),
Sentence Length (Middle)
Gumbel Noise Factor (Right)

ot

~ RNNsearch

Training Loss
w

[N

Figure 4: Training loss curves on Zh—En translation
with different factors. The black, blue and red colors
represent the RNNsearch, RNNsearch with word-level
oracle and RNNsearch with sentence-level oracle sys-
tems respectively.

Result Analysis

45.0 RNNsearch (BLEU: 37.93)
OR-NMT (BLEU: 40.40)
o 400
[e}
»
- 35.0
10|
.
m 30.0
25.0

S S S S SO
\Q" QQ« @Q~ @Qq \b‘Q~ ®Q« @Q« (\Q.’
Source Sentence Length

Figure 7: Performance comparison on the MTO03 test
set with respect to the different lengths of source sen-
tences on the Zh—En translation task.
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--=-- RNNsearch

BLEU Score
5 E5 s 55

Figure 6: Trends of BLEU scores on the MTO3 test set
with different factors on the Zh—En translation task.

BLEU Score

Epoch

Figure 5: Trends of BLEU scores on the validation set
with different factors on the Zh—En translation task.
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Result Conclusion

- Mitigate the gap between training and inference by:

« feeding as context the oracle word / groudtruth word
with a sampling scheme

*  Sampling the context word with decay
from the ground truth words

- Verified the effectiveness with strong baseline models

- Sentence-level oracle show superiority over the
Word-level oracle
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Significance

 Justify the effectiveness thoroughly

with detailed analysis

» Easy to adopt
(Github: https://github.com/ictnlp/OR-NMT )
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https://github.com/ictnlp/OR-NMT

Result Conclusion

Significance

Justify the effectiveness thoroughly

with detailed analysis

Easy to adopt
(Github: https://github.com/ictnlp/OR-NMT )

(... Application on my project: Cantonese-Chinese Translation Task)
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Discussion

* A comparison to Bengio’s work

xma e sese o TR S A S S .

o Soﬂrr;ax )over Softma); over } g .’ DeCOder - .‘_- .[{ ‘I
y(t-1 y(t e k"

f A ; - A e :
e oo ] : yqracle Vi P ! Logistic regression :
f ; o J- classifier :
X 9 : % T e RS :
h ' 1 — p & . p '
: ot 8. S :
sampled y(t-2)  true y(t-2) true y(t-1) " S__/] - ] — ; GRU Ce” ; ¢ o o "

Figure 1: Illustration of the Scheduled Sampling approach,
where one flips a coin at every time step to decide to use the
true previous token or one sampled from the model itself.
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Result Conclusion
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