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Intrinsic Motivation

Providing external rewards is often difficult or expensive in reinforcement learning, 

especially in applications in the physical world.

Intrinsic motivation, on the other hand, encourages the agent to learn general 

knowledge or skills in its environment to later solve more difficult tasks.



Many Intrinsic objectives

Information gain e.g. Lindley 1956, Sun 2011, Houthooft 2017

Prediction error e.g. Schmidhuber 1991, Bellemare 2016, 

Pathak 2017

Empowerment e.g. Klyubin 2005, Tishby 2011, Gregor 2016

Skill discovery e.g. Eysenbach 2018, Sharma 2020, Co-Reyes 

2018

Surprise minimization e.g. Schrödinger 1944, Friston 2013, Berseth 

2020

Bayes-adaptive RL e.g. Gittins 1979, Duff 2002, Ross 2007
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Empowerment Objective

Defined as mutual information between agent's future actions and inputs.

Measures degree of control over future inputs: In each state, choose precise 

action. Across all states, make use of all actions.

Prior methods (Jung et al., Gregor et al., Karl et al.) use tractable models or 

variational methods to optimize empowerment in discrete toy environments.

We aim to scale empowerment to complex visual environments.

● Requires scalable MC estimators that let us estimate empowerment using 

flexible deep neural networks.

● Trivial to achieve diverse pixel inputs (e.g. spin around). Need a meaningful 

representation of the high-dimensional input that the agent can control.



Summary of Contributions

We leverage a world model learned from pixels to infer a latent state about the 

environment that we apply empowerment to.

The world model lets us optimize for empowerment in imagination, reducing 

the amount of trial and error in the real environment.

Mutual informations for deep models are often intractable. We propose two 

tractable MC estimators for empowerment (action space, latent state space)

Learning the world model without task rewards, we demonstrate successful 

zero-shot and few-show adaptation to a range of challenging control tasks.
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Background: Learning Latent Dynamics (PlaNet)



Background: Learning Behaviors (Dreamer)



Method: Empowerment Overview

Our general definition of empowerment under policy \pi is the mutual information 

between sequences of actions and model states:

Can estimate this objective either in state-space or action-space.

Compute Monte-Carlo estimates of the entropies from multiple imagined rollouts.

Conditional entropy is easy to compute given a set of rollouts. The marginal 

entropy is estimated as entropy of a mixture distribution across the rollouts.



Method: Action Entropy Formulation

where      is resampled from the 

marginal                         for 

estimating the open-loop action 

entropy.



Method: State Entropy Formulation

where      is resampled from the 

marginal                         for 

estimating the open-loop state 

entropy.



Method: Value Learning for Empowerment
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Experiments

Environments:

● Six continuous control tasks of the DeepMind Control Suite.

● Agent is given only raw images as input.

● Challenging tasks: Hopper, Acrobot, Quadruped, etc from pixels.

Evaluation:

● Agent explores without task rewards and learns the world model.

● Then label experience with rewards to train a task policy in imagination.

● Direct evaluation on the task gives zero-shot performance.

● Additional greedy exploration for the task gives adaptation performance.



Demo: Walker after 5M frames

Empowerment                                                     Random



Demo: FourRoom



Demo: FourRoom



Zero-Shot performance (State vs Action)

Empowerment Actions

Empowerment States

Random exploration

Dreamer (5e6 steps)

PlaNet (5e6 steps)

SLAC (3e6 steps)

A3C (1e8 steps, proprio)

D4PG (1e8 steps)



Adaption Performance (One-Step vs Value Learning)

Empowerment Value

Empowerment Reward

Random exploration

Dreamer (5e6 steps)

PlaNet (5e6 steps)

SLAC (3e6 steps)

A3C (1e8 steps, proprio)

D4PG (1e8 steps)



We see temporal abstraction as critical for further improving exploration.

● For example, Quadruped learns many upside down movements but is less 

interested in getting on its feet.

Using Kolmogorov Mutual Information as the intrinsic motivation. This requires to 

track the complexity of a neural network, which is an under-explored area.

Future Work
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