Predicting single-cell perturbation responses with DL

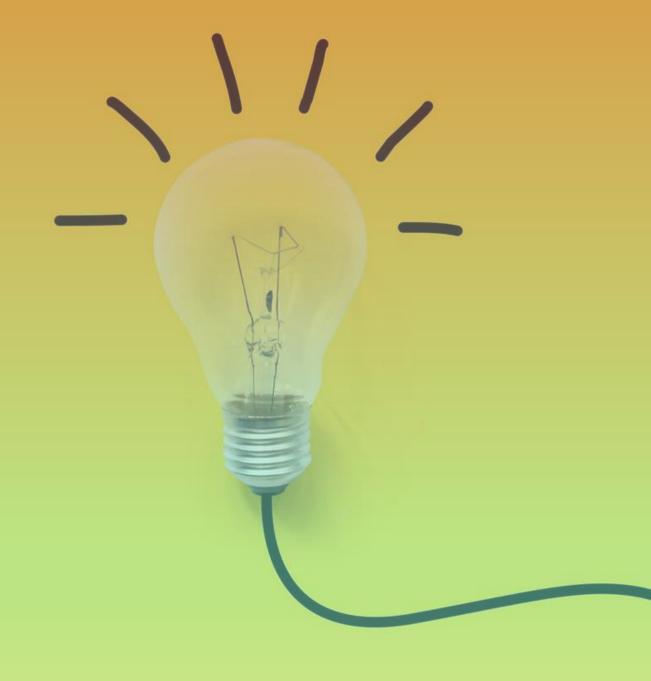
Mehrshad Sadria

Deep learning for biotechnology

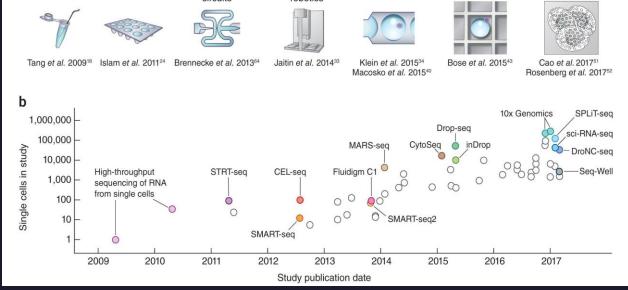
Spring 2022

Overview

- Background & Introduction
- Method
- Results and performance
- Conclusion
- References



What is single cell technology?



Liquid-handling

Nanodroplets

Picowells

In situ barcoding

nature methods

Editorial | Published: 30 December 2013

Method of the Year 2013

Methods to sequence the DNA and RNA of single cells

nature methods

Editorial | Published: 06 January 2020

Method of the Year 2019: Single-cell multimodal omics

Manual

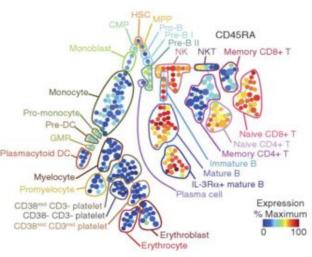
Method of the Year 2020: spatially resolved transcriptomics

Nature Methods 18, 1(2021) | Cite this action

Why single cells

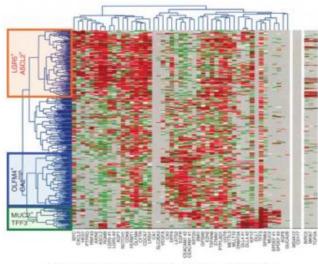
Cellular heterogeneity

Differentiation trajectories



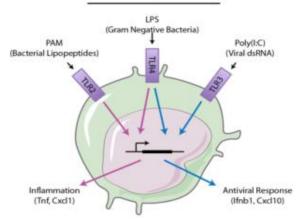
Bendall et al. (2011), Science

Within-cell-type differences

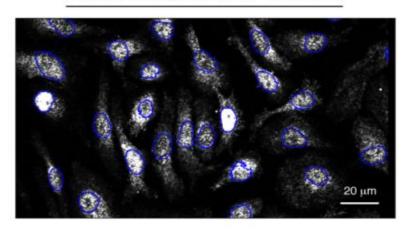


Dalerba et al. (2011), Nature Biotech

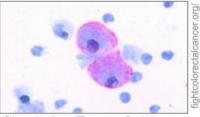
TLR Signaling



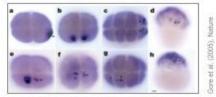
IRF3 Protein Levels - 4h LPS



Cellular responses can vary substantially between "identical" cells.



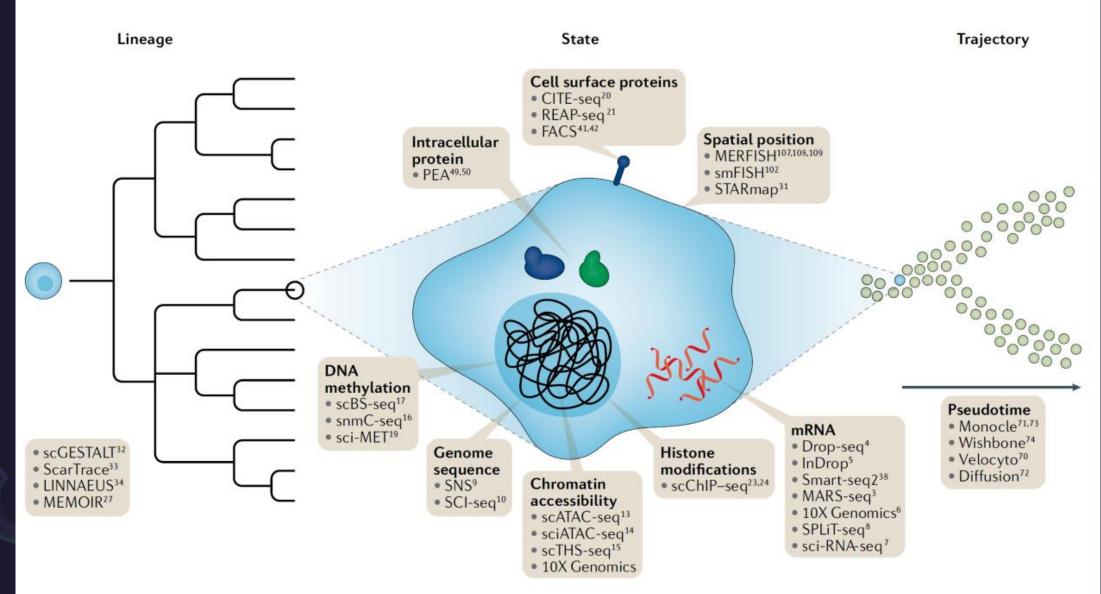
Circulating Tumor Cells



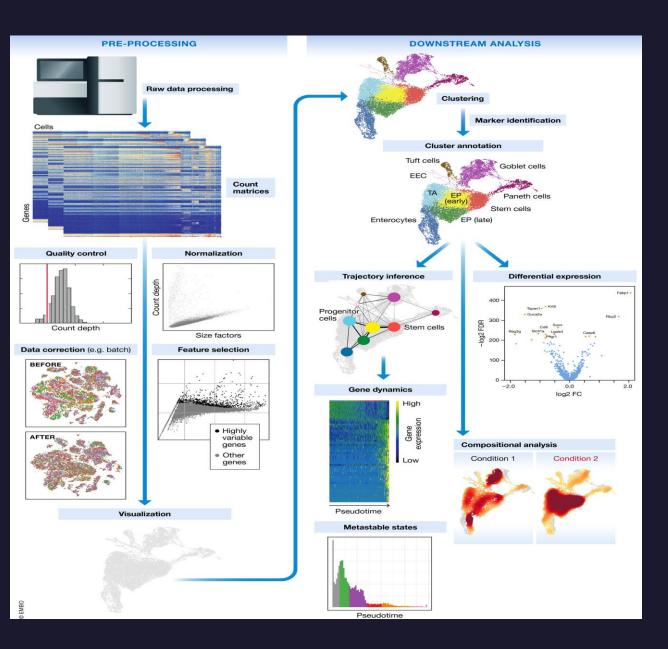
Zebrafish early embryo

Overcome low input

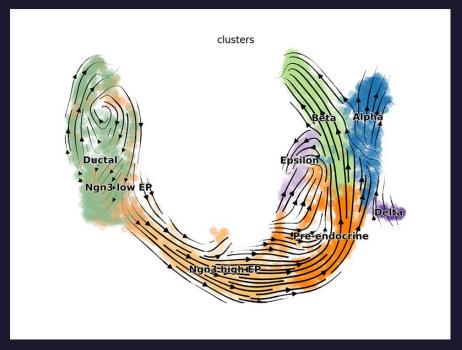
Diverse technologies for sc profiling



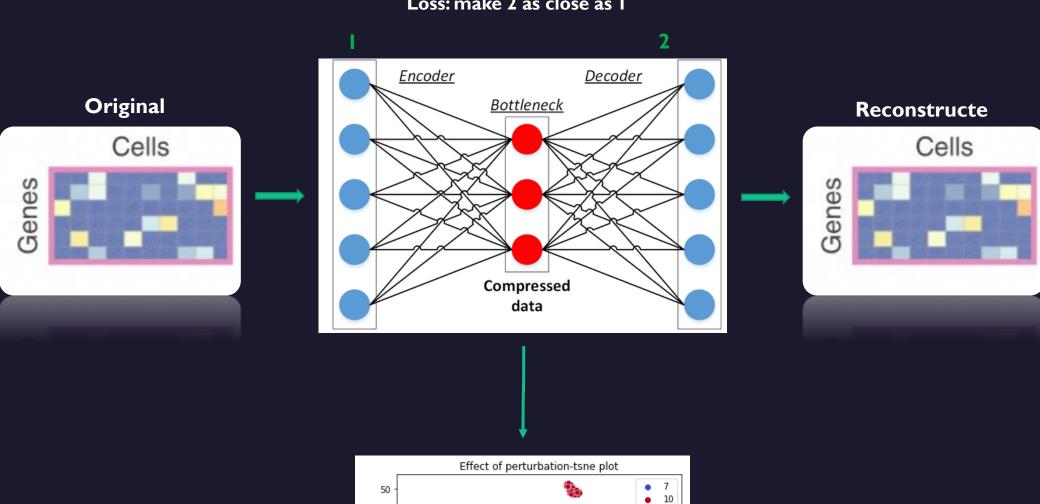
Typical single-cell RNA-seq analysis workflow

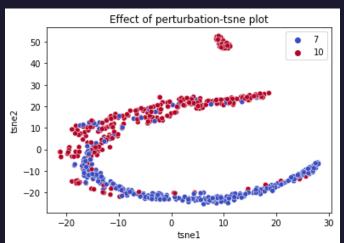




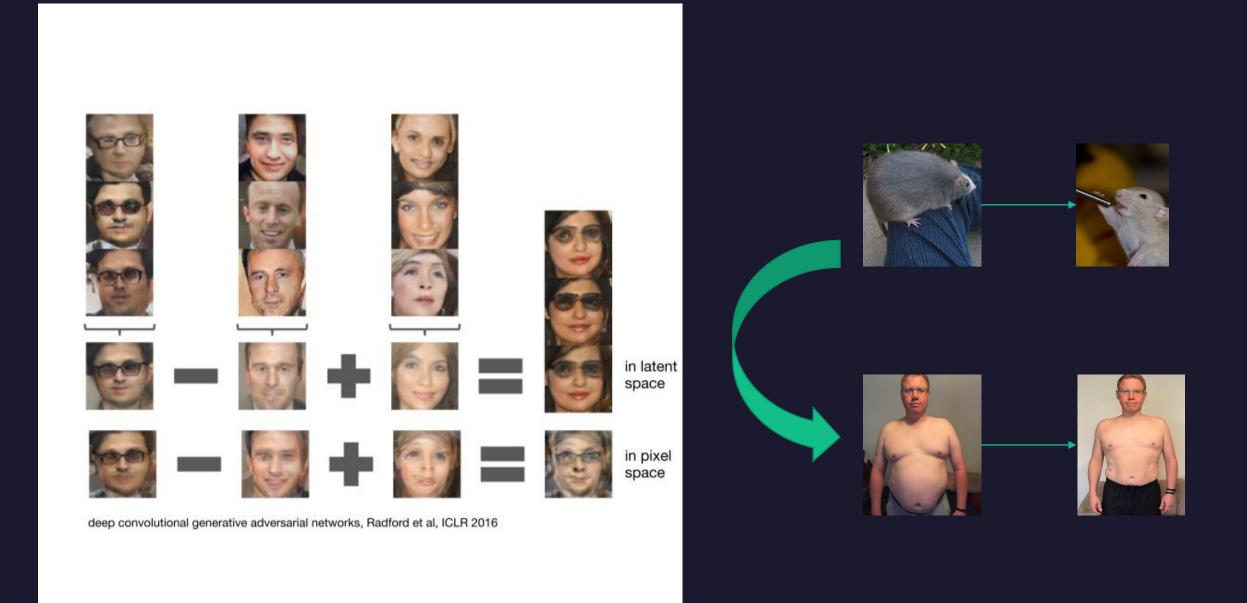


Loss: make 2 as close as 1





Style transfer & domain adaptation by generative neural networks



ARTICLES

https://doi.org/10.1038/s41592-019-0494-8

scGen predicts single-cell perturbation responses

Mohammad Lotfollahi 101,2, F. Alexander Wolf 101 and Fabian J. Theis 101,2,3*

Accurately modeling cellular response to perturbations is a central goal of computational biology. While such modeling has been based on statistical, mechanistic and machine learning models in specific settings, no generalization of predictions to phenomena absent from training data (out-of-sample) has yet been demonstrated. Here, we present scGen (https://github.com/theislab/scgen), a model combining variational autoencoders and latent space vector arithmetics for high-dimensional single-cell gene expression data. We show that scGen accurately models perturbation and infection response of cells across cell types, studies and species. In particular, we demonstrate that scGen learns cell-type and species-specific responses implying that it captures features that distinguish responding from non-responding genes and cells. With the upcoming availability of large-scale atlases of organs in a healthy state, we envision scGen to become a tool for experimental design through in silico screening of perturbation response in the context of disease and drug treatment.

¹Helmholtz Zentrum München – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.

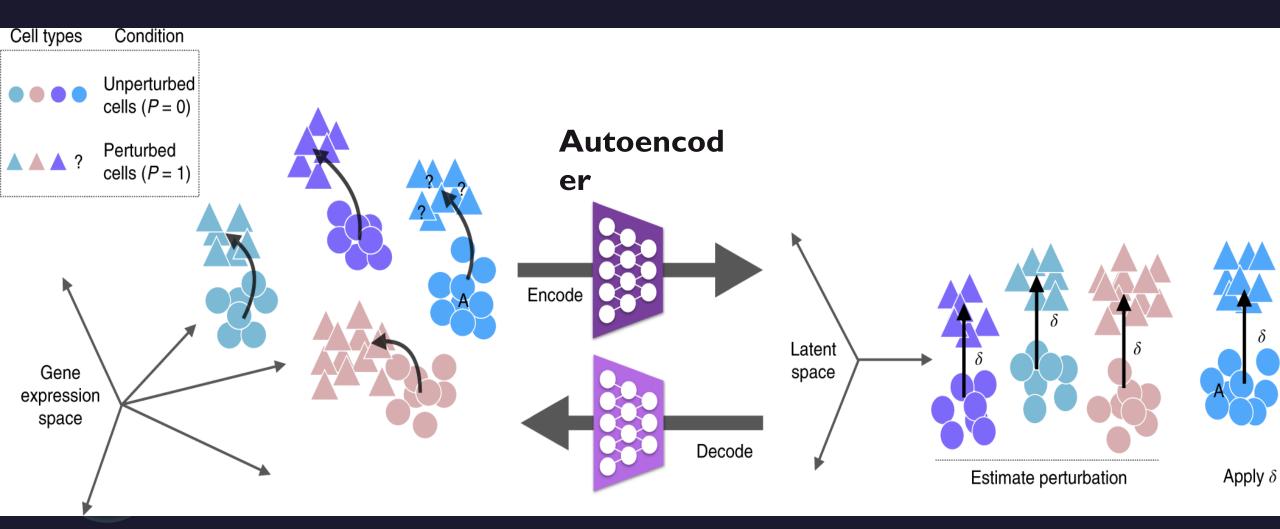
²School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.

³Department of Mathematics, Technical University of Munich, Munich, Germany.

⁴Computational Biology, Neuherberg, Germany.

⁵Computational Biology, Neuherberg, Germany.

scGen



Method

$$P(x_i|\theta) = \int P(x_i|z_i;\theta) P(z_i|\theta) dz_i$$

Approximate the posterior distribution

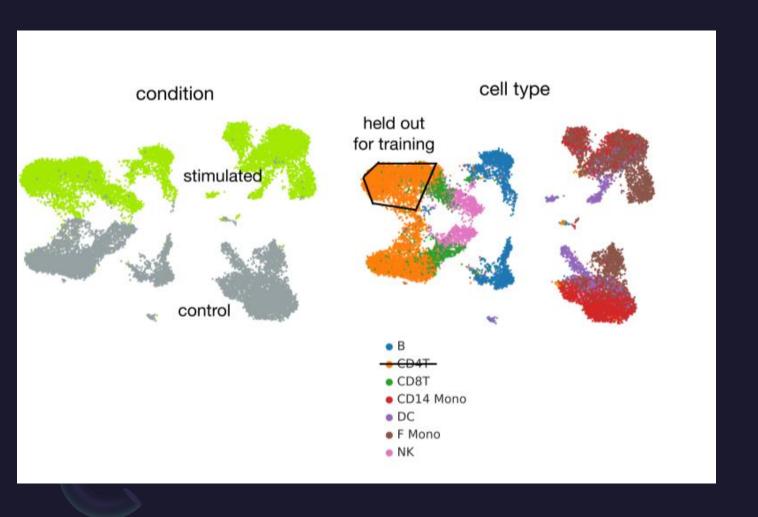
$$\begin{aligned} & \operatorname{KL}\left(Q\left(z_{i}|x_{I},\phi\right)||P\left(z_{i}|x_{i},\theta\right)\right) \\ &= E_{Q\left(z_{i}|x_{i},\phi\right)}[\log Q\left(z_{i}|x_{i},\phi\right) - \log P\left(z_{i}|x_{i},\theta\right)] \end{aligned}$$

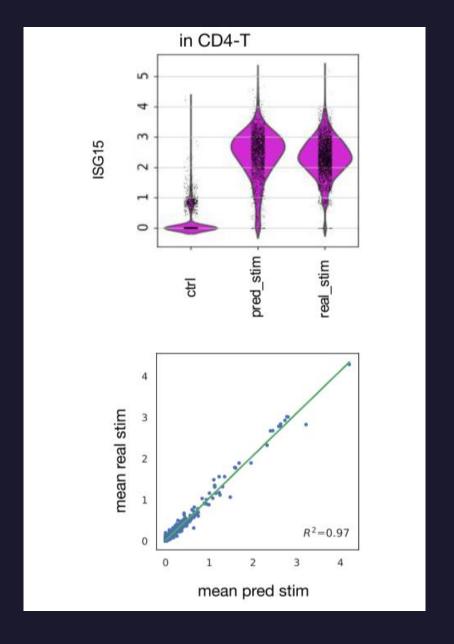
where θ is a model learnable parameters in our neural network and z_i is a latent variable, x_i is your sample.

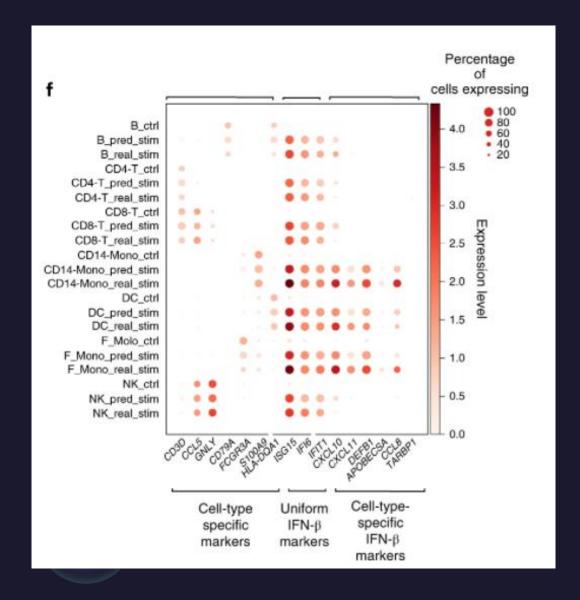
$$\begin{split} \log &P\left(x_{i}|\theta\right) - \operatorname{KL}\left(Q\left(z_{i}|x_{i},\phi\right) \parallel P\left(z_{i}|x_{i},\theta\right)\right) \\ &= E_{Q\left(z_{i}|x_{i},\phi\right)}\left[\log P\left(x_{i}|z_{i},\theta\right)\right] - \operatorname{KL}\left[Q\left(z_{i}|x_{i},\phi\right) \parallel P\left(z_{i}|\theta\right)\right] \end{split}$$

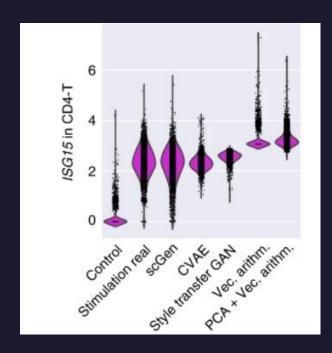
$$\operatorname{Loss}\left(x_{i}
ight) = rac{1}{L} \sum_{l=1}^{L} \operatorname{log}\!P\left(x_{i}|z_{i,l}, heta
ight) - lpha \operatorname{KL}\left[Q\left(z_{i}|x_{i}, \phi
ight) || P\left(z_{i}| heta
ight)
ight]$$

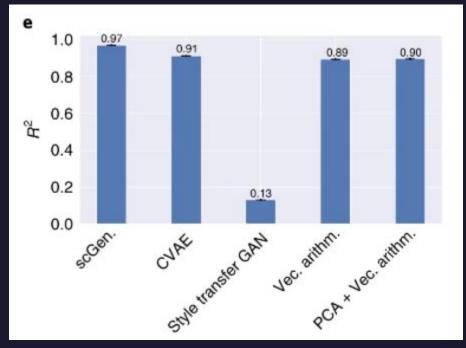
Results



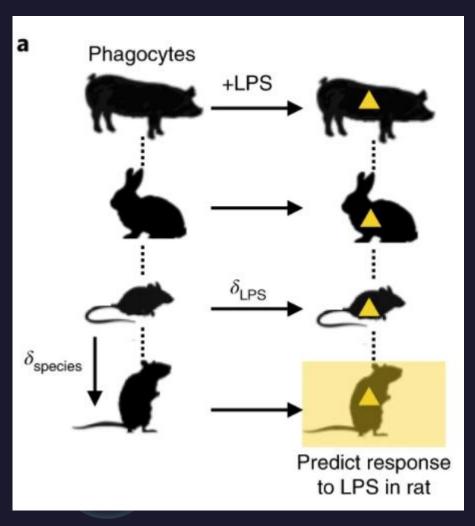


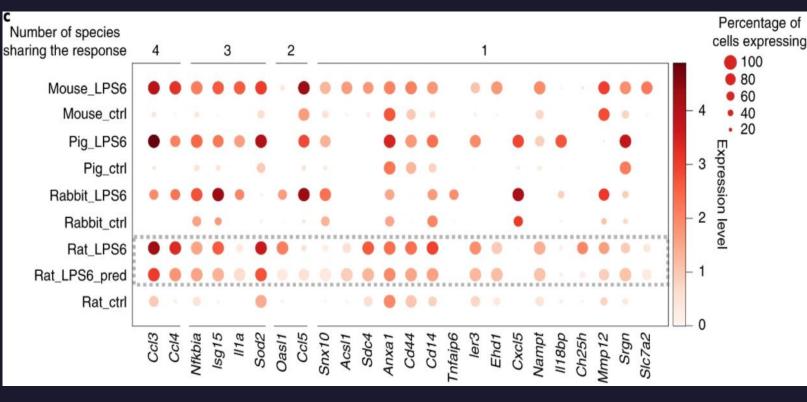






scGen predicts perturbation response across different species





$$z_{i,\mathrm{rat,LPS}} = \frac{1}{2}(z_{i,\mathrm{mouse,LPS}} + \delta_{\mathrm{species}} + z_{i,\mathrm{rat,control}} + \delta_{\mathrm{LPS}})$$

Model interpretability

I) Example based methods

Types of DNN Interpretability

2) Attribution Methods

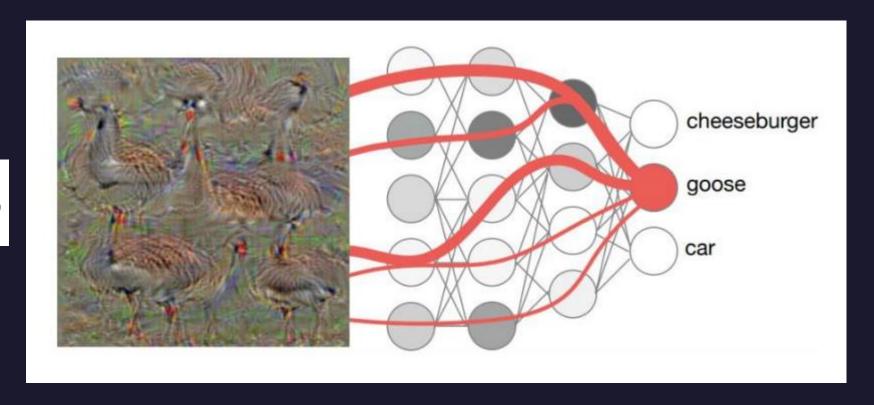
3) Data Generation

Activation maximization

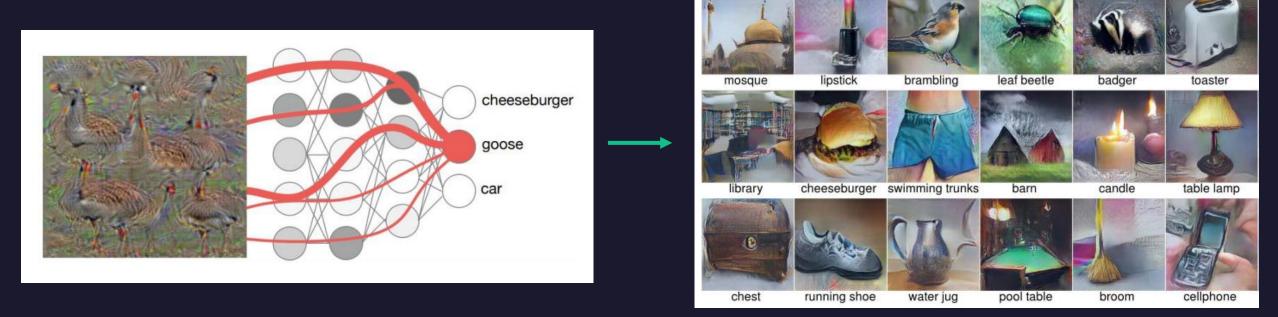
- Generates an image, which maximizes the class score.
- The difference: the optimization is performed with respect to the input image, while the weights are fixed to those found during the training stage.

$$\arg\max_{I} S_c(I) - \lambda ||I||_2^2,$$

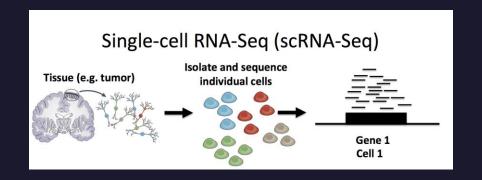
Find the most likely input pattern for a given class.

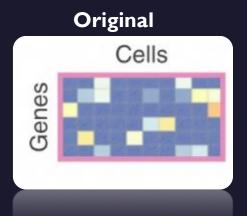


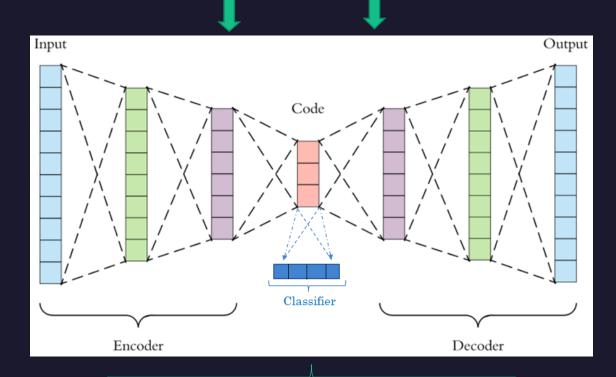
AM modification

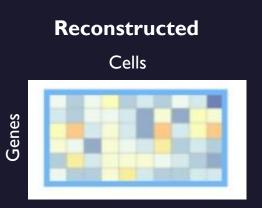


- Problem: The set of all possible images is so vast that it is possible to produce 'fooling' images that excite a neuron, but do not resemble the natural images that neuron has learned to detect.
- Image quality can be improved by using image priors.



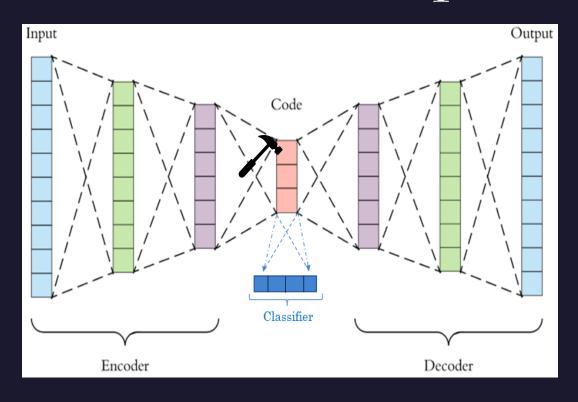


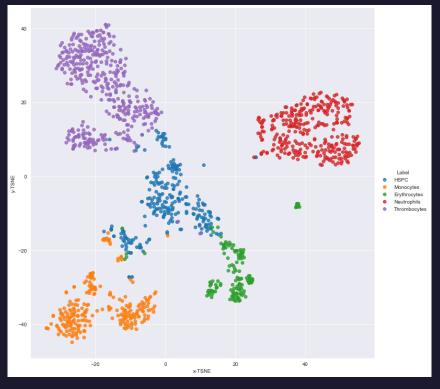


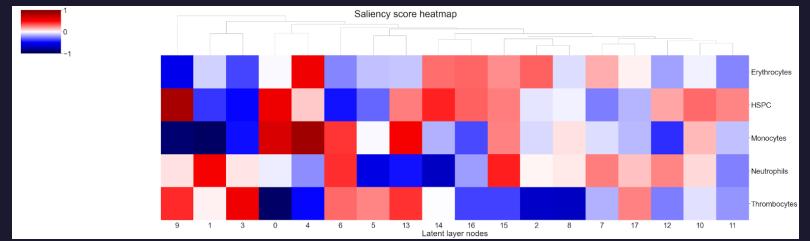


DL interpretation methods

Zebrafish development







Summary

- The potential of single cell analysis.
- scGen can be used in several contexts including perturbation prediction response for unseen phenomena across cell types and species.
- scGen can be used to design in-silico experiments of gene perturbation.
- Interpretation methods can be used to understand the decision-making process in DL.
- Interpretation methods can help us in detecting master regulators of a biological process.

References

- Lotfollahi M, Wolf FA, Theis FJ. scGen predicts single-cell perturbation responses. Nat Methods. 2019 Aug;16(8):715–21.
- Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv. 2015 Nov 19;
- Current best practices in single-cell RNA-seq analysis: a tutorial, Malte D Luecken, Fabian J Theis, doi.org/10.15252/msb.20188746
- Svensson V, Vento Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018 Apr;13(4):599–604

Example based methods

- Which training instance influenced the decision most?
- we need criticism to explain what are not captured by prototypes.
- <u>Influential instances</u> are the training data points that were the most influential for the parameters of a prediction model or the predictions themselves. Identifying and analyzing influential instances helps to find problems with the data, debug the model and understand the model's behavior better.
- Does not highlight which features are important.