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Prelude: the importance of language 

Do we have better neural networks than them？ 
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LECTURE  ONE 

Word2Vec 



Things you need to know: 

01 

Dot product: 

a ! b = ||a||||b||cos(θab)  

         = a1b1+a2b2+ … +anbn 

One can derive Cosine similarity 

   cos θab = a ! b  /  ||a||||b|| 

 

Softmax Function:   
If we take an input of [1,2,3,4,1,2,3], the softmax of that is  
[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175].  
The softmax function highlights the largest values and  
suppress other values, so that they are all positive and 
sum to 1. 
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Two cases of transforming from discrete to continuous space 

01 

1.  Calculus (for computing the space covered by a curve) 

2.  Word2Vec (for computing the “space” covered by the meaning of a word) 

Word2Vec 



Traditional representation of a word’s meaning 

01 

1.  Dictionary, not too useful in computational linguistic research. 

2.  WordNet  

It is a graph of words, with relationships like “is-a”, synonym sets. 

Problems: Depend on human labeling hence missing a lot, hard to automate 

this process. 

3.   These are all using atomic symbols: hotel, motel, equivalent to 1-hot vector: 

           Hotel:    [0,0,0,0,0,0,0,0,1,0,0,0,0,0] 

           Motel:    [0,0,0,0,1,0,0,0,0,0,0,0,0,0] 

      These are called one-hot representations. Very long: 13M (google crawl).    

      Example: inverted index. 
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Problems. 

01 

There is no natural meaning of similarity,  

           hotel X motelT  = 0 

No inherent notion of similarity with 1-hot vectors. 

 

They are very long too. For daily speech, 20 thousand words, 50k for machine 

translation. ½ million for material science. Google web crawl, 13M words. 
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How do we solve the problem? This is what Newton and Leibniz did for 

calculus (the name f(x) is like 1-hot vector):  

01 Word2Vec 
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Let’s do something similar: 01 

1.  Use a lot of “rectangles”, a vector of numbers, to represent to approximate the 

meaning of a word. 

2.  What represents the meanings of a word?  

         “You shall know a word by the company it keeps” – J.R. Firth, 1957 

  

Thus, our goal is to assign each word a vector such that similar words have similar 

vectors (by dot-product).  

 

We will believe JR Firth and use a neural network to train (low dimension) vectors such 

that if two words appear together in a text each time, they should get slightly closer. 

This allows us to use a massive corpus without annotation (core theme of this course)! 

Thus, we will scan thru training data by looking at a window 2d+1 at a time, given a 

center word, trying to predict d words on the left and d words on the right. 

Word2Vec 



To design a neural network for this: 

01 

More specifically, for a  center word wt, and “context words” wt’, within a window of 

some fixed size say 5 (t’=t-1, … t-5, t+1, … , t+5) we use a neural network to 

predict all wt’ to maximize: 

                             p(wt’|wt) = … 

This has a loss function 

                             L = 1 – p(wt’|wt) 

Thus by looking at many positions in a big corpus, we keep on adjusting these 

vectors to minimize this loss, we arrive at a (low dimensional) vector approximation 

of the meaning of each word, in the sense that if two words occur in close proximity 

often then we consider them similar. 
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To design a neural network for this: 

01 

Thus the objective function is: maximize the probability of any context word given 

the current center word: 

                L’(θ) = Π t=1..T Π d=-1..-5,1..5 P(wt+d | wt, θ ) 

Where θ is all the variables we optimize (I,e, the vectors). 

Taking negative logarithm (and average per word) so that we can minimize 

               L(θ)  = - 1/T Σt=1..T  Σd=-1 .. -5, 1,..,5 log P(wt+d | wt ) 

Then what is P(wt+d | wt)? We can just take their vector dot products, and then take 

softmax, to approximate it, letting v be the vector for word w: 

               L(θ)  ≈ - 1/T Σt=1..T  Σd=-1 .. -5, 1,..,5 log Softmax (vi+d ! vt)         

Word2Vec 



To design a neural network for this: 

01 

Last slide:  

           L(θ)  ≈ - 1/T Σt=1..T  Σd=-1 .. -5, 1,..,5 log Softmax (vi+d ! vt) 

 

The softmax of a center word c, and a context/outside word o 

          

           Softmax(vo ! vc ) = e^(vo !  vc) / Σk=1..V e^(vk ! vc) 

 

Note, the index runs over the dictionary of size V, not the whole text T. 

Word2Vec 



The skip-gram model 
01 Word2Vec 

•  Vocabulary size: V 

•  Input layer: center word in 1-hot form.         

•  k-th row of WVxN is center vector of k-th 

word.  

•  k-th column of W’NXV is context vector of 

the k-th word in V. Note, each word has 

2 vectors, both randomly initialized. 

•  The output column yij, i=1..C, has 3 steps 

      1) Use the context word 1 hot vector to  

           choose its column in W’NxV 

          2) dot product with hi the center word 

       3) compute the softmax 



The Training of θ 
01 Word2Vec 

•  We will train both WVxN and W’NxV 

•  I.e. compute all vector gradients.  

•  Thus θ is in space R2NV, N is vector size, 

V is number of words. 

•         L(θ) /      v , for all vectors in θ. 

θ = [          ]in R2NV 	
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Gradient Descent 
01 Word2Vec 

•  θnew = θold – α      L(θold) /   /   θold 

•  Stochastic gradient descent (SGD): Just 

do one position (one center word and its 

context words) at a time. 

θ = [          ]in R2NV 	
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Negative Sampling in Original Word2Vec 

01 Word2Vec 

•  In our L(θ)  ≈ - 1/T Σt=1..T  Σd=-1 .. -5, 1,..,5 log Softmax (vi+d ! vt) where 

            Softmax(vo ! vc ) = e^(vo !  vc) / Σk=1..V e^(vk ! vc) 

     Each time we have to calculate Σk=1..V e^(vk ! vc), this is too expensive. 

•  To overcome this, use negative sampling. Overall objective function: L(θ) = 1/T Σt=1..T Lt(θ) 

          Lt(θ) = log σ (uo
Tvc) + Σt=1..k Ej~P(w) [log σ (- uj

Tvc)] 

                  = log σ (uo
Tvc) + Σj~P(w) [log σ (- uj

Tvc)] 

•   Where the sigmoid function σ(x) = 1/1+e-x, treated as probability for ML people. I.e. 

maximize the first term, taking k=10 random samples in the second  term. 

•  For sampling, we can use unigram distribution U(w) or U(w)3/4 for rare words.  



CBOW  

01 Word2Vec 

•  What about we predict center word, given context word, opposite to the skip-gram model? 

•  Yes, this is called Continuous Bag Of Words model in the original Word2Vec paper. 



Results  

01 Word2Vec 



Results  01 Word2Vec 



More realistic data – not everything is perfect  01 Word2Vec 



An interesting application outside CS  01 Word2Vec 

•  Nature, July 2019 V. Tshitonya et al, “Unsupervised word embeddings capture latent 

knowledge from materials science literature”. 

•  Lawrence Berkeley lab material scientists applied word embedding to 3.3 million 

scientific abstracts published between 1922-2018. V=500k.  Vector size: 200 

dimension, used skip-gram model 

•  With no explicit insertion of chemical knowledge 

•  Captured things like periodic table and structure-property relationship in materials: 

              ferromagnetic − NiFe + IrMn ≈ antiferromagnetic 

•  Discovered new thermoelectric materials: “would be years before their discovery”. 



Beyond Word2Vec 

01 Word2Vec 

•  Co-occurrence matrix 

       Window based co-occurrence 

       Document based co-occurrence 

        Ignore the, he, has … frequent words. 

        Close proximity weigh more … 

•  In word2vec, if a center word w appear again, we have to repeat this process. Here they 

are processed together. Also consider documents. 

•  Symmetric. 

•  SVD decomposition, this was before Word2Vec. But it is O(nm2), too slow for large data. 



GloVe (Global vectors model) 

01 Word2Vec 

•  Combining Word2Vec and Co-occurrence matrix approaches. Optimize 

          L(θ) = ½ Σi,j=1..W f(Pi,j) (ui
Tvj – log Pi,j)2 

       

     Where, u, v vectors are still the same, Pi,j is the count that ui and vj co-occur. Essentially  

     This says, the more ui,vj  co-occur, the larger their dot product should be. f gets rid of too  

     frequent occurrences. 

 

•  What about these two vectors? X=U+V works. 

•  Polysemy? Somebody please present S. Arora et al and related papers. 



Literature & Resources for Word2Vec 

01 

Bengio et al, 2003, A neural probabilistic language model. 

Collobert & Weston 2008, NLP (almost) from scratch 

Mikolov et al 2013, word2vec paper 

Pennington Socher, Manning, GloVe paper, 2014 

Rohde et al 2005 (SVD paper) An improved model of semantics similarity based on 

lexical co-occurrence. 

Plus thousands more. 

Resources:  

https://mccormickml.com/2016/04/27/word2vec-resources/ 

https://github.com/clulab/nlp-reading-group/wiki/Word2Vec-Resources 
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Project Ideas 

01 

1.  Current word2vec or GloVe approaches are good for high frequency words. 

The lower frequency words are overwhelmed by the higher frequency ones. 

Can you experiment on some stratified strategy (for example, by removing 

higher frequency words, but not their vectors) so that we could gradually also 

train the relationship for lower frequency words. 

2.  Can you try to investigate some sort of “conditional word2vec” so that it solves 

polysemy problems? (Note, do literature search first.) For example, if a word of 

technical flavour appears in the same page as “apple”, then “apple” is more 

likely to be a piece of electronic device. But one needs to do this automatically, 

without human intervention.  
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02 
Attention and Transformers 

LECTURE TWO 


