ATTENTIVE HISTORY SELECTION FOR CONVERSATIONAL QUESTION ANSWERING

Chen Qu, Liu Yang, Minghui Qiu, Yongfeng Zhang, Cen Chen, W. Bruce Croft, Mohit Iyyer

Presented by - Vedanshi Kataria (20774266)

CONTENTS

- ➤ Introduction to Conversation Agents
- ➤ Motivation
- ➤ Bert Encoder
- Proposed Methods
- ➤ Experiments and Evaluation
- ➤ Ablation Analysis
- ➤ Future Work

CONVERSATIONAL AGENTS

- ➤ Can be of multiple types:
 - ➤ Open Domain : General conversation, Natural Dialogues. Example:
 - Closed Domain: Task(/s) specific conversation,
 Conversational Search

- ➤ Early Conversational Agents involved Intent Detection, Slot Filling, Information Retrieval Model, NLU module
- ➤ Siri and Google Assistant can be looked at as an example of a combination of both these types.

MOTIVATION

- ➤ Information Retrieval in the form of general conversational Question Answering (ConvQA) requires the system to remember old conversation as well.
- Existing systems only use the current question to find an answer from the context provided.
- ➤ No existing work that focuses on learning to select or re-weight conversational history turns.
- ➤ There may be three different types of conversation turns:
 - ➤ **Drill Down**: the current question is a request for more information about a topic being discussed
 - > Topic Shift: the current question is not immediately relevant to something previously discussed
 - ➤ **Topic Return**: the current question is asking about a topic again after it had previously been shifted away from

BERT ENCODER

- \triangleright Encodes question q_k , paragraph p (context), and conversational histories H_k into contextualised representations.
- ➤ Input : (q_k, p, H_k) . This input is used to generate (k 1) variations of the instance where each variation contains the same question and passage, with only one turn of conversation history.
- ➤ If the context paragraph is too long, a sliding window is used to split it. Suppose the paragraph is split into n pieces, the training instance (q_k, p, H_k) will generate n(k-1) input sequences.
- ➤ Generates contextualised token-level representations based on the embeddings for tokens, segments, positions, and a special positional history answer embedding (PosHAE)

PROPOSED METHOD 1 - POSITIONAL HISTORY ANSWER EMBEDDINGS

- ➤ Intuition behind adding Positional Embeddings: Utility of a historical utterance could be related to its position.
- ➤ Previous works have been simply appending "n" previous answers to the question.
- ➤ Observed Benefits: Enables the ConvQA model to capture the spatial patterns of history answers in context.

Encoder with PosHAE

PROPOSED METHOD 2 - HISTORY ATTENTION MECHANISM

- ➤ Inputs: Generated token-level and sequence-level representations for all variations
- ➤ A single layer feed forward network is used to learn the attention weights.
- Attention Vector $D \in \mathbb{R}^h$ is learnt to compute attention weight for each sentence presentation s_k^i using $w_i = \frac{e^{\mathbf{D} \cdot \mathbf{s}_k^i}}{\sum_{i'=1}^{I} e^{\mathbf{D} \cdot \mathbf{s}_k^{i'}}}$
- \triangleright *Fine-grained history attention*: Instead of using sequence level representation S_K as input for attention network, use token level representation

PROPOSED METHOD 3 - MULTI TASK LEARNING (1)

- ➤ Answer Span Prediction: For each token, predict the probability of being BEGIN token as well as END token i.e. learn *begin vector* B and *end vector* E.
- The probability for token being begin token and end token is $p_m^B = \frac{e^{Bt_k(m)}}{\sum_{m'=1}^M e^{Bt_k(m')}}$, $p_m^E = \frac{e^{Et_k(m)}}{\sum_{m'=1}^M e^{Et_k(m')}}$ respectively, where B and E are the learnt vectors and $t_k(m)$ is the token representation for the m^{th} token in the k^{th} sequence.
- ➤ Cross Entropy loss is computed for both, B and E as:

$$\mathcal{L}_B = -\sum_{M} \mathbbm{1}\{m=m_B\} \log p_m^B \quad , \quad \mathcal{L}_E = -\sum_{M} \mathbbm{1}\{m=m_E\} \log p_m^E$$

- ► The final loss is $L_{ans} = \frac{1}{2}(L_B + L_E)$.
- ➤ Invalid predictions are discarded at testing time. Examples:
 - > predicted span overlaps with the question part of the sequence
 - ➤ end token comes before the begin token

PROPOSED METHOD 3 - MULTI TASK LEARNING (2)

- ➤ Dialog Act Prediction: Two sets of parameters $A \in R^{|V_a| \times h}$ and $C \in R^{|V_a| \times h}$ are learnt predict the dialog act of affirmation and confirmation respectively. $|V_a|$ and $|V_c|$ denote number of classes.
- ➤ Affirmation Classes: Yes, No, Cannot Say
- ➤ Confirmation Classes: Drill Down, Topic Shift, Topic Return
- ➤ This is an independent predictor that does not consider conversation history.
- We calculate cross entropy loss for both Affirmation and Confirmation as L_A and L_C .

TRAINING

► Hyper parameters λ and μ are used combine the losses of both the tasks: $L = μL_{ans} + λL_A + λL_C$

- ➤ Advantages:
 - ➤ Two tasks provide more supervising signals to fine-tune the encoder.
 - ➤ Representation learning benefits from regularisation effect by optimising for multiple tasks.

COMBINED MODEL REPRESENTATION

End to End System Representation

ATTENTION VISUALIZATION

- ➤ Brighter spots mean higher attention weights.
- ➤ Token ID refers to the token position in an input sequence. A sequence contains 384 tokens.
- ➤ Relative history position refers to the difference of the current turn # with a history turn #. The selected examples are all in the 7th turn.
- ➤ Dialog Acts (Confirmation):
 - > Drill Down: the current question is a request for more information about a topic being discussed
 - ➤ Topic Shift : the current question is not immediately relevant to something previously discussed
 - ➤ Topic Return : the current question is asking about a topic again after it had previously been shifted away from

EXPERIMENTATION & EVALUATION

- ➤ Data: QuAC (Question Answering in Context) dataset
 - ➤ Designed for modelling and understanding information-seeking conversations
 - ➤ Contains interactive dialogs between an information-seeker and an information provider
 - ➤ Information-seeker tries to learn about a hidden Wikipedia passage by asking a sequence of freeform questions
 - ➤ Dialog data contains dialog act information
 - ➤ Questions are more open-ended, unanswerable, or only meaningful within the dialog context

Items	Train	Validation
# Dialogs	11,567	1,000
# Questions	83,568	7,354
# Average Tokens Per Passage	396.8	440.0
# Average Tokens Per Question	6.5	6.5
# Average Tokens Per Answer	15.1	12.3
# Average Questions Per Dialog	7.2	7.4
# Min/Avg/Med/Max History Turns Per Question	0/3.4/3/11	0/3.5/3/11

EXPERIMENTATION & EVALUATION

Key take-aways:

- ➤ Bert+PosHAE has better training efficiency and performance that FlowQA
- ➤ HAM performs better than BERT + PosHAE
- ➤ Applying BERT-Large to HAM substantially improves answer-span prediction. A more powerful encoder can boost the performance.

Models	F1	HEQ-Q	HEQ-D	Yes/No	Follow up
BiDAF++	51.8 / 50.2	45.3 / 43.3	2.0 / 2.2	86.4 / 85.4	59.7 / 59.0
BiDAF++ w/ 2-C	60.6 / 60.1	55.7 / 54.8	5.3 / 4.0	86.6 / 85.7	61.6 / 61.3
BERT + HAE	63.9 / 62.4	59.7 / 57.8	5.9 / 5.1	N/A	N/A
FlowQA	64.6 / 64.1	- / 59.6	- / 5.8	N/A	N/A
BERT + PosHAE	64.7 / -	60.7 / -	6.0 / -	N/A	N/A
HAM	65.7 [‡] / 64.4			88.3 / 88.4	
HAM (BERT-Large)	66.7 [‡] / 65.4	63.3 / 61.8	9.5 / 6.7	88.2 / 88.2	62.4 / 61.0

ABLATION ANALYSIS

Performance Drop:

- ➤ By replacing fine-grained history attention with sequence- level history attention
- ➤ By disabling the history attention module, performance drops dramatically for 4.6% and 3.8%
- Disabling history attention also hurts the performance for dialog act prediction
- ➤ Removing the answer span prediction task, a relatively large performance drop for dialog act prediction is observed

➤ Performance Increase:

- ➤ Removal of the dialog act prediction task results in a slight and insignificant increase in the performance for answer span prediction.
- The encoder benefits from a regularisation effect because it is optimised for two different tasks and thus alleviates overfitting.

REFERENCES

- ➤ Qu, Chen, et al. "Attentive History Selection for Conversational Question Answering." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.
- ➤ Qu, Chen, et al. "BERT with History Answer Embedding for Conversational Question Answering." Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019.
- ➤ C. Zhu, M. Zeng, and X. Huang. SDNet: Contextualized Attention-based Deep Network for Conversational Question Answering. CoRR, 2018.
- ➤ Choi, Eunsol, et al. "Quac: Question answering in context." arXiv preprint arXiv: 1808.07036 (2018)
- ➤ P. Rajpurkar, R. Jia, and P. Liang. Know What You Don't Know: Unanswerable Questions for SQuAD. In ACL, 2018.
- ➤ C. Qu, L. Yang, W. B. Croft, J. R. Trippas, Y. Zhang, and M. Qiu. Analyzing and Characterizing User Intent in Information-seeking Conversations. In SIGIR, 2018.
- ➤ H.-Y. Huang, E. Choi, and W. Yih. FlowQA: Grasping Flow in History for Conversational Machine Comprehension. CoRR, 2018.
- ➤ Tuason, Ramon, Daniel Grazian, and Genki Kondo. "Bidaf model for question answering." Table III EVALUATION ON MRC MODELS (TEST SET). Search Zhidao All (2017).

THANK YOU