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Task-Oriented Dialogue Systems

● Systems like Siri or Alexa

● Must interpret what the user is saying/requesting
● Requires knowledge of multiple domains 

● Sometimes must use inferences from dialogue history to interpret user meaning



Motivation

● Dialogue state tracking (DST) is an important component in task-oriented dialogue systems

● Some systems have an over-dependence on domain ontology or lack knowledge sharing 

across domains

● Prior systems struggled with inferring unknown dialogue slot values and have difficulty 

adapting to new domains

● Want to have model that can track multiple dialogue states over several domains across a 

dialogue history



Example dialogue history from the dataset. Note the system 
must refer to previous lines in the dialogue to gain more 

context to a new dialogue line.



Some Definitions

               - Set of user utterances and system response pairs

- Dialogue states for each turn

                       - The domain of the state and the slot of the state. Given J            
                          possible domain/state pairs, Yj is the true word sequence

Domain: An overall area of user interest, e.g. restaurant
Slot: Important attributes of a domain, e.g. for restaurant some slots are price and food
Value: A possible word that is the value for a domain-slot pair, e.g. (restaurant, price, cheap) or (restaurant, food, italian)



TRADE

● TRAnsferable Dialogue statE generator

● Generates dialogue states from utterances using a copy mechanism which facilitates knowledge 

transfer when predicting (domain, slot, value) triplets that were unknown during training

● Three major parts:
○ Utterance Encoder
○ Slot Gate
○ State Generator

● Generates slot values instead of predicting probability distribution of every predefined ontology 

term





Utterance Encoder

● Encodes dialogue utterances into fixed length vectors

● TRADE uses bi-directional gated recurrent units

● Input is the dialogue history 
○ U is a user utterance, R is a system response
○ l is the number of selected dialogue turns before the final turn t
○      is the size of the embedding
○ Concatenation of all words in the dialogue history

● The encoded dialogue history is represented as
○      is the size of the hidden encoder state                              

Section (a) of slide 7



State Generator

● A copy mechanism is required to generate slot values using text from the input

● TRADE uses soft-gated pointer-generator copying
○ Combines a distribution over the vocabulary and a distribution over the dialogue history into a single 

distribution

● State generator uses a GRU to decode and predict each of the possible domain/slot pairs
○ First input to the decoder is the summed embedding of domain and slot

● At decoding step k for j-th pair, the generator takes an embedding       

● The generator maps this into the vocabulary space             

● At the same time, the hidden state is also used to compute the history attention                  over 

using a trainable embedding

and outputs a hidden state

Section (b) of slide 7



State Generator

● Final weighted distribution is 

●     is a trainable scalar value that tries to find the optimal combination ratio

●     is computed by: 

● Where                                                       and          is a trainable weight matrix

● Since             takes the history attention into account, the model can generate words that were not 

predefined in the vocabulary

Section (b) of slide 7



Slot Gate

● The slot gate is a three way classifier

● Maps a context vector from the hidden states         to a probability distribution over ptr, none and 

dontcare classes
○ ptr means that the context points to a slot that matches the current (domain, slot) pair, and the generated 

words from the state generator as the slot value
○ none means that there is no valid context
○ dontcare means that the context is for a slot that doesn’t match the current pair, so it is ignored

●  The slot gate is defined as 

●    is the context vector for the first decoder hidden state
○ Paper does not mention why only the first decoder hidden state is used

Section (c) of slide 7



Training Optimization

● Both the slot gate and the state generator are optimized

● The slot gate uses a cross-entropy loss function with the predicted slot gate        and the true label 

● The state generator uses a different cross entropy loss with             and the true slot word

●  Both losses are optimized as a weighted sum using two hyper parameters ⍺ and 𝛽



Unseen Domain DST

● Strength of TRADE is that it can generalize fairly well to an unseen domain

● Can utilize both zero-shot transferring and few-shot domain expanding
○ Zero-shot transferring: Assume that the unknown domain has no training data
○ Few-shot domain expanding: Assume only 1% of training data for the unseen domain is available

● Unseen domain DST is useful because creating a large-scale dataset for a domain is 

time-consuming and difficult

● Many unknown domains are encountered in real world scenarios



Unseen Domain DST

● TRADE can perform zero-shot transferring if slots from previous domains appear in the new 

domain
○ E.G. if model can track the departure slot for the train domain, there should be overlap with the unseen taxi 

domain and its departure slot

● For few-shot domains, TRADE utilizes elastic weight consolidation (EWC) and gradient episodic 

memory (GEM) for training

● EWC uses a special loss                                                                                       where F is the Fisher information 

matrix, λ is a hyperparameter, ϴ
S
 is the model parameters for the source (known) domain(s) and ϴ 

the parameters for the target (unseen) domain

● GEM keeps a small number of source domain samples, and applies a constraint on the loss while 

learning the unseen domain
○ This constraint prevents the loss from increasing when using the stored samples



Experimental Dataset

TRADE is trained on a dataset called MultiWOZ, the largest existing human-human conversation corpus.



Training and Evaluation Details

● Trained end-to-end using the Adam optimizer, a batch size of 32, an annealing learning rate in 

[0.001, 0.0001] and a dropout ratio of 0.2

● The ⍺ and 𝛽 parameters were both set to 1

● The initial word embeddings are the concatenation of the Glove embedding and the character 

embedding, with a dimension of 400

● To simulate an out-of-vocabulary setting, a word dropout is used in the utterance encoder to 

randomly mask small amounts of input tokens

● Two evaluation metrics are used
○ Joint Goal Accuracy: compares predicted dialogue states to the ground truth           and only considered 

correct if all the output values match exactly
○ Slot accuracy: compares predicted (domain, slot, value) triplet to the ground truth label 



Comparison to Similar Models

TRADE is compared to the following models:

● MDBT 

● GLAD

● GCE (current S.O.T.A)

● SpanPtr 

The authors have modified the above models to be

usable with the MultiWOZ dataset.

While TRADE does not always achieve highest slot

accuracy, it does have the best joint accuracy. This means that when training on multiple domains at the 

same time, TRADE can predict the exact dialogue state more often than the other models.



Zero Shot results

● Results on the zero-shot experiment done by 

excluding one domain during training.

● The Taxi domain achieves relatively high results, and 

is quite close to the singly trained taxi domain.

● Taxi is high because all of it’s slots share similar values 

to the Train domain.

● The authors mention that while the other domain 

performances are not as promising, the slot accuracy 

is still impressive despite having no in-domain 

samples.

● Using more similar training domains could help 

increase the zero-shot accuracy.



Domain Expanding Results



Domain Expanding Results

● The Base Model (BM) indicates results evaluated on the four domains using their in-domain 

training data
○ BM is then fine tuned using the 1% unknown domain
○ Naive means that the BM was just retrained with the new data with no special technique

● In general GEM outperforms the naive model and EWC in terms of overcoming catastrophic 

forgetting 
○ Shows very little accuracy drop after learning the new domain

● Pre-training followed by fine-tuning outperforms training from scratch on a single domain

● Much smaller accuracy drop after fine-tuning with GEM

● Fine-tuning increases evaluation of the new domain in general
○ For the new domain evaluation EWC and GEM are generally outperformed by the naive retraining approach

● Overall fine-tuning is better than the BM, and GEM is useful for minimizing accuracy loss of the 

original domains



Slot Embedding Similarity

● Calculated the cosine similarity between the embeddings of 

all the possible slots in MultiWOZ

● More blue = more similar

● Shows slots with similar or correlated values learn similar 

embeddings

● destination and departure share similar values
○ Names of cities

● price range and stars share correlated values
○ 5 star hotels will likely be more expensive



Slot Error Rates

● Analysis of the highest error-rate slots

● x-axis is proportion of mis-predicted values in a 

given slot

● Typically name slots have highest error rate 

since they have so many possible values

● Number-related slots typically have the lowest 

error rate

● Some error rates higher than they should 

because the labels of the domain-slot pair is 

missing from the data
○ Missing label results in an incorrect prediction 

no matter what



Knowledge Transferring Error Analysis

● Model was trained zero-shot on 

hotel and restaurant domains only
○ Trained on Restaurant and tested 

on Hotel for (a) and vice versa for 
(b)

● x-axis is # of correctly predicted 

slot values

● Shows very high accuracy results 

between the similar slots

● Slots that don’t exist between 

domains are very difficult to track



Conclusion

● TRADE model can learn to track states without predefined domain ontology

● TRADE shares all parameters across multiple domains

● Achieves state-of-the-art joint goal and slot goal accuracy on MultiWOZ dataset

● Can perform limited zero-shot DST for unseen domains

● Can perform few-shot DST for unseen domains without forgetting learned domains


