Knowledge Graph Embedding

Presenter: Zhiying Jiang

Agenda

- Overview
 - What & Why Knowledge Graph
 - What & Why Knowledge Graph Embedding
- Methods with Strengths & Weakness
 - KG Embedding with facts alone
 - KG Embedding incorporating additional Information

Before We Start

- This presentation is meant to be an overview of a certain topic/sub-field
- It's not about one specific papers
- I will mainly focus on <u>methods</u>
- This presentation does not include a complete list of methods but some representative ones

- What & Why Knowledge Graph
 - What is Knowledge Graph

Knowledge Graph (KG) is a multi-relational graph composed of entities (represented as nodes) and relations (represented as edges)

- What & Why Knowledge Graph
 - Why do we need Knowledge Graph

It's turning unstructured text data into structured graph data, so that textual data can become knowledge & insights:

- What & Why Knowledge Graph Embedding
 - What is Knowledge Graph Embedding

Knowledge Graph (KG) embedding is to embed components (entities, relations) of KG into continuous vector space

What & Why - Knowledge Graph Embedding

- Why do we need Knowledge Graph Embedding
- To simplify the manipulation while preserving the inherent structure of the KG
- To benefit downstream tasks such as KG completion, relation extraction, entity classification, and entity resolution

e.g., KG Completion

KG is always represented in millions of triples: (entity1, relation, entity2), but it's not complete - there are a lot of missing links. So the goal of this task is to predict the missing part of the triple, which can be:

- ◆ Given entity1 and entity2, predict relation
- ◆ Given entity1 and relation, predict the missing entity2
- ◆ Given a triple, predict whether it's true or false

KG Embedding with facts alone

Before digging into different methods, let's define the task formally:

Given a KG consisting of n entities and m relations, and facts observed in the KG are stored as a collection of triples - $\mathbb{D}^+ = \{(h, r, t)\}$

where $h \in \mathbb{E}, t \in \mathbb{E}, r \in \mathbb{R}$. \mathbb{E} represent the set of entities, \mathbb{R} represents the set of relations (h can be called as head entity, t can be called as tail entity; or they can all be called as node in different contexts)

e.g., (DavidFincher, DirectorOf, FightClub)

- KG Embedding with facts alone
 - Common Procedures on a High Level:
 - Represent entities and relations
 - Options are vectors, matrices, tensors, or modelling them through multivariate Gaussian distributions
 - Define a scoring function
 - To measure the plausibility of a fact. That's the part where methods vary from one to another
 - Learn entity and relation representations
 - Through maximizing the total plausibility of observed facts

- KG Embedding with facts alone
 - We can roughly categorize those methods into 3 directions
 - For each direction, I will choose one representative paper and introduce them in different detailed levels
 - Translation-Based Models
 - TransE [Bordes et al. NeurIPS 2013.]
 - Semantic Matching Models
 - RESCAL [Nickel et al. ICML 2011.]
 - Graph Based Models
 - Graph Attention Networks [Veličković et al. ICLR 2018.]

- The very first paper of Translation-Based Model
- It opens a whole new direction and gives people a whole new perspective of knowledge graph embedding

- What is the key idea of translation-based model?

It assumes - in the vector space, when adding the relation to the head entity, we should get close to the target tail entity.

Entity and Relation Space

Given a fact (h, r, t), we will have $h + r \approx t$

Then the score function is obvious $f_r(h, t) = - \parallel h + r - t \parallel$

- Given the score function, how can we train the model?
 - We are given a KG, and we know all of triples include in the KG are facts, which means they are true (positive)
 - Then we need some negative samples to compare the facts with so that we can train the model to learn the embeddings
 - There are 2 different assumptions when training, which affect the definition of "negative samples"
 - Open World Assumption
 - → Unobserved triples are either wrong or missing
 - Close Word Assumption
 - Unobserved triples are all wrong
 - We can then generate negative samples, e.g., we can replace head/ tail entity with a random head/tail entities, or replace relation with other relations (of course there are other more complex negative sampling methods)

- Given the score function, how can we train the model?
 - Suppose now we have positive sample (h, r, t) and negative sample (h', r', t'), pairwise ranking loss is often used as the loss function under Open World Assumption:

$$L = max(0, \gamma - f_r(h, t) + f_{r'}(h', t'))$$

L is loss for single pair of positive and negative sample γ is the margin between positive and negative score functions

► Then for the whole training set, we will have:

$$\mathcal{L} = \min \sum_{(h,r,t) \in \mathbb{D}^+} \sum_{(h',r',t') \in \mathbb{D}^-} \max(0,\gamma - f_r(h,t) + f_{r'}(h',t'))$$

 \mathbb{D}^+ is the set of positive triples while \mathbb{D}^- is the set of negative triples

The goal is to make the positive triple achieve higher "score" than negative triples

- In a nutshell, the training procedure is as follows:

Algorithm 1 Training under Open World Assumption

```
Input: Observed facts \mathbb{D}^+ = \{(h, r, t)\}
```

- 1: Initialize entity and relation embeddings
- 2: **loop**
- 3: $\mathbb{P} \leftarrow$ a small set of positive facts sampled from \mathbb{D}^+
- 4: $\mathbb{B}^+ \leftarrow \emptyset$, $\mathbb{B}^- \leftarrow \emptyset$
- 5: **foreach** $\tau^+ = (h, r, t) \in \mathbb{P}$ **do**
- 6: Generate a negative fact $\tau^- = (h', r', t')$
- 7: $\mathbb{B}^+ \leftarrow \mathbb{B}^+ \cup \{\tau^+\}, \ \mathbb{B}^- \leftarrow \mathbb{B}^- \cup \{\tau^-\}$
- 8: end for
- 9: Update entity and relation embeddings w.r.t. the gradients of $\sum_{\tau \in \mathbb{B}^+ \cup \mathbb{B}^-} \log \left(1 + \exp(-y_{hrt} \cdot f_r(h, t))\right)$ or $\sum_{\tau^+ \in \mathbb{B}^+, \tau^- \in \mathbb{B}^-} \max \left(0, \gamma f_r(h, t) + f_{r'}(h', t')\right)$
- 10: Handle additional constraints or regularization terms

11: end loop

Output: Entity and relation embeddings

- What's the strength and weakness of this method?
 - ► It is simple and efficient
 - The performance is really good comparing to previous methods
 - But it can not handle one-to-multiple, multiple-to-one, and multiple-to-multiple relations well
 - In general, this method is very innovative in terms of how they model the embedding problems and auspicate a whole new direction (see the image below)

Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h,t)$	Constraints/Regularization
TransE [14]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$
TransH [15]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^d$	$-\ (\mathbf{h} - \mathbf{w}_r^\top \mathbf{h} \mathbf{w}_r) + \mathbf{r} - (\mathbf{t} - \mathbf{w}_r^\top \mathbf{t} \mathbf{w}_r)\ _2^2$	$\ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1$ $ \mathbf{w}_{r}^{\top}\mathbf{r} /\ \mathbf{r}\ _{2} \leq \epsilon, \ \mathbf{w}_{r}\ _{2} = 1$
TransR [16]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r \in \mathbb{R}^{k imes d}$	$-\ \mathbf{M}_r\mathbf{h}+\mathbf{r}-\mathbf{M}_r\mathbf{t}\ _2^2$	$\ \mathbf{h}\ _{2} \le 1, \ \mathbf{t}\ _{2} \le 1, \ \mathbf{r}\ _{2} \le 1$ $\ \mathbf{M}_{r}\mathbf{h}\ _{2} \le 1, \ \mathbf{M}_{r}\mathbf{t}\ _{2} \le 1$
TransD [50]	$egin{aligned} \mathbf{h}, \mathbf{w}_h \in \mathbb{R}^d \ \mathbf{t}, \mathbf{w}_t \in \mathbb{R}^d \end{aligned}$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^k$	$-\ (\mathbf{w}_r\mathbf{w}_h^\top + \mathbf{I})\mathbf{h} + \mathbf{r} - (\mathbf{w}_r\mathbf{w}_t^\top + \mathbf{I})\mathbf{t}\ _2^2$	$\begin{aligned} &\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1 \\ &\ (\mathbf{w}_r \mathbf{w}_h^\top + \mathbf{I})\mathbf{h}\ _2 \le 1 \\ &\ (\mathbf{w}_r \mathbf{w}_t^\top + \mathbf{I})\mathbf{t}\ _2 \le 1 \end{aligned}$

Small portions of translation-based model

RESCAL

- The very first latent feature model for knowledge graph embedding
- RESCAL associates each entity with a vector to capture its latent semantics
- Each relation is represented as a matrix which models models pairwise interactions between latent factors
- The score function is defined as:

$$f_r(h,t) = \mathbf{h}^{ op} \mathbf{M}_r \mathbf{t} = \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} [\mathbf{M}_r]_{ij} \cdot [\mathbf{h}]_i \cdot [\mathbf{t}]_j$$

 \mathbf{M}_{r}

 $\mathbf{M}_r \in \mathbb{R}^{d \times d}$ is a matrix associated with relation

- The very first paper to utilize Self-Attention in graph embedding
 - What is Graph Attention Networks?
 - The main idea is to enable neighbours of one node to attend representation with different weights
 - The key element is its Graph Attention Networks (GAT) layer
 - If we take an analogy to transformer, each node is treated as the word to embed, and selected neighbours are treated as context words
 - Formally, we define a set of node features, $h=\{h_1,h_2,\ldots,h_N\},h_i\in\mathbb{R}^F\text{, where N is the number of nodes,}$ and F is the number of features in each node
 - The output of GAT layer will be $h' = \{h'_1, h'_2, \dots, h'_N\}, h'_i \in \mathbb{F}'$

- What is Graph Attention Networks in detail?
 - Define a weight matrix, $\mathbf{W} \in \mathbb{R}^{F' \times F}$, applied to every node $\rightarrow \mathbf{W} h_i$
 - Perform Self-Attention $a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$ among nodes $\Rightarrow e_{ij} = a(\mathbf{W}h_i, \mathbf{W}h_j)$, where $j \in N_i, N_i$ is neighbours of i
 - \bullet Normalize coefficients across all choices of $h_{\!j}$ using softmax function

$$\Rightarrow \alpha_{ij} = softmax(e_{ij}) = \frac{exp(e_{ij})}{\sum_{k \in N_i} exp(e_{ik})}$$

• Represent h_i' as linear combination of its neighbours

$$\rightarrow h_i' = \sigma(\sum_{j \in N_i} \alpha_{ij} W h_j)$$

- What is Graph Attention Networks in more detail?
 - In the paper, Self-Attention $a: \mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$ is a single-layer feedforward neural network with LeakyReLU as nonlinear function $exp(LeakyReLU(a[Wh_i \parallel Wh_i]))$

$$\Rightarrow \alpha_{ij} = \frac{exp(LeakyReLU(a[Wh_i \parallel Wh_j]))}{\sum_{k \in N_i} exp(LeakyReLU(a[Wh_i \parallel Wh_j]))}, \text{ where } \parallel \text{ is }$$

concatenation operation

Also multi-head attention is used in this paper, so we have

$$\rightarrow h_i' = \parallel_{k=1}^K \sigma(\sum_{j \in N_i} \alpha_{ij} W h_j), \text{ where } \parallel \text{ is concatenation and } K$$

represents the number of head we have

- What is Graph Attention Networks in more detail?

Figure 1: Left: The attention mechanism $a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$ employed by our model, parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$, applying a LeakyReLU activation. Right: An illustration of multihead attention (with K=3 heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The aggregated features from each head are concatenated or averaged to obtain \vec{h}_1' .

- What's the strength and weakness of this method?

- It is computationally efficient since it doesn't require matrix operation and is parallelizable
- It allows assigning different importances to different nodes implicitly
- It doesn't require to know the entire graph structure
- It's also flexible, with only GAT layer, we can insert it into any other architectures
- It can also leverage the interpretability of knowledge graph embedding as we can have attribution map according to attention scores
- ► However, it only shows the strong performance in node classification problem. And the lack of considering relations may make it disadvantageous in a certain downstream tasks (e.g., link prediction)

KG Embedding incorporating additional information

Another stream of work utilize additional information in knowledge graph embedding, and the common additional information can be:

- Entity Types
- Textual Descriptions
 - Knowledge Graph Representation with Jointly Structural and Textual Encoding [Xu et al. IJCAI 2017.]
- Relation Paths
 - Modelling Relation Paths for Representation Learning of Knowledge Bases [Lin et al. EMNLP 2015.]
- Pretrained Language Models
 - KG-BERT: BERT for Knowledge Graph Completion [Yao et al. AAAI 2020.]

Knowledge Graph Representation with Jointly Structural and Textual Encoding

- The very first paper to incorporate both structural information and textual information in knowledge graph embedding
- It utilized entity description as the textual information

- They used various methods to encode textual information (Bag-of-Words, LSTM Encoder, Attentive LSTM Encoder)
- They utilized pretrained TransE embedding for structural representation
- The innovation part is that they used gated mechanism to balance between the structure information and textual information

Knowledge Graph Representation with Jointly Structural and Textual Encoding

• As we can see, the general framework is the same as TransE, and the only difference is that they incorporated gate mechanism in entity representation $e = g_e \odot e_s + (1 - g_e) \odot e_d$

Other Additional Information used in KG Embedding

- Modelling Relation Paths for Representation Learning of Knowledge Bases [Lin et al. EMNLP 2015.]
 - Same framework as TransE and encoding the path from head entity to tail entity using different strategies (addition, multiplication, RNN)
- KG-BERT: BERT for Knowledge Graph Completion [Yao et al. AAAI 2020.]
 - Fine tune BERT on different downstream tasks (triple classification, relation prediction, link prediction).
 - It's based on Close World Assumption, which assume every unobserved triple to be negative.

Figure 1: Illustrations of fine-tuning KG-BERT for predicting the plausibility of a triple.

Figure 2: Illustrations of fine-tuning KG-BERT for predicting the relation between two entities.

Summary

- Knowledge Graph embedding is a trending topic that can help people discover the underlying facts, especially when more and more information in the real world is stored as structured data (wikidata, yago, freebase, dbpedia)
- In this presentation, I introduced some representative knowledge graph embedding models with different levels of detail
- Hopefully this introduction can interest people and inspire more and more people working on it:)

References

- Yao, Liang, Chengsheng Mao, and Yuan Luo. "KG-BERT: BERT for Knowledge Graph Completion." arXiv preprint arXiv:1909.03193 (2019).
- Wang, Quan, et al. "Knowledge graph embedding: A survey of approaches and applications." *IEEE Transactions on Knowledge and Data Engineering* 29.12 (2017): 2724-2743.
- Lin, Yankai, et al. "Modeling relation paths for representation learning of knowledge bases." arXiv preprint arXiv:1506.00379 (2015).
- Veličković, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).
- Bordes, Antoine, et al. "Translating embeddings for modeling multi-relational data." Advances
 in neural information processing systems. 2013.
- Xu, Jiacheng, et al. "Knowledge graph representation with jointly structural and textual encoding." arXiv preprint arXiv:1611.08661 (2016).
- Nickel, Maximilian, Volker Tresp, and Hans-Peter Kriegel. "A three-way model for collective learning on multi-relational data." *Icml*. Vol. 11. 2011.

Thank You!