Deep Learning Applications in Drug Development: Graph Attention Mechanism

February 18, 2022

Presenter: Haudi Ghiassi-Nejad

CS 846 – Deep Learning for Biotechnology Cheriton School of Computer Science

Outline

- Introduction
- Short Survey
- Focused Paper: Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism
- Conclusion
- Future Work
- Questions

Introduction

Drug development is:

Time consuming

It takes more than 10 years for a drug to reach market

Costly

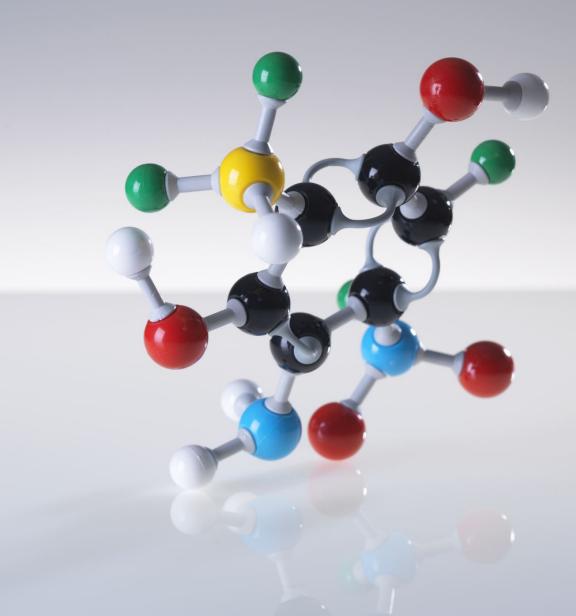
The total costs can surpass 1 billion dollars per drug

Clinical Phases

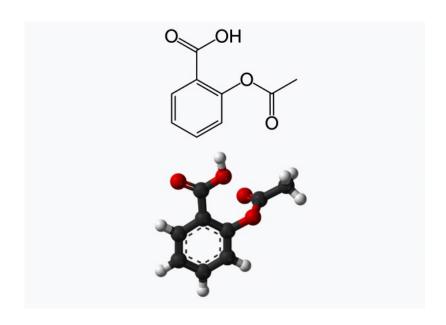
- Preclinical Phase
 - Find the original drug candidate
 - Initial In-vivo and In-vitro tests
 - Toxicity and efficacy tests
- Phase 1: Tests on small group of humans mainly to detect adverse effects
- Phase 2: Efficacy in medium size groups
- Phase 3: Efficacy in larger groups of patients

Small Molecules

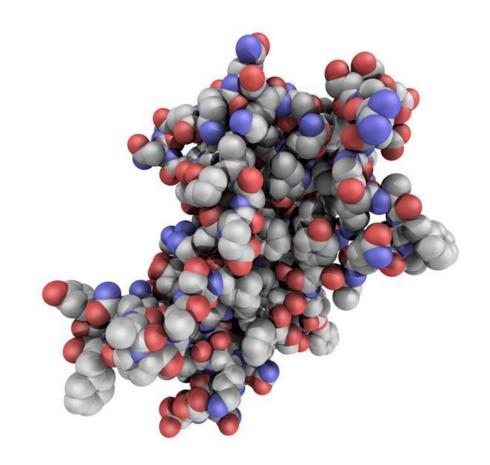
Within the fields of molecular biology and pharmacology, a small molecule is a low molecular weight (< 900 Daltons) organic compound that may regulate a biological process, with a size on the order of 1 nm



Small Molecules vs Large Molecules



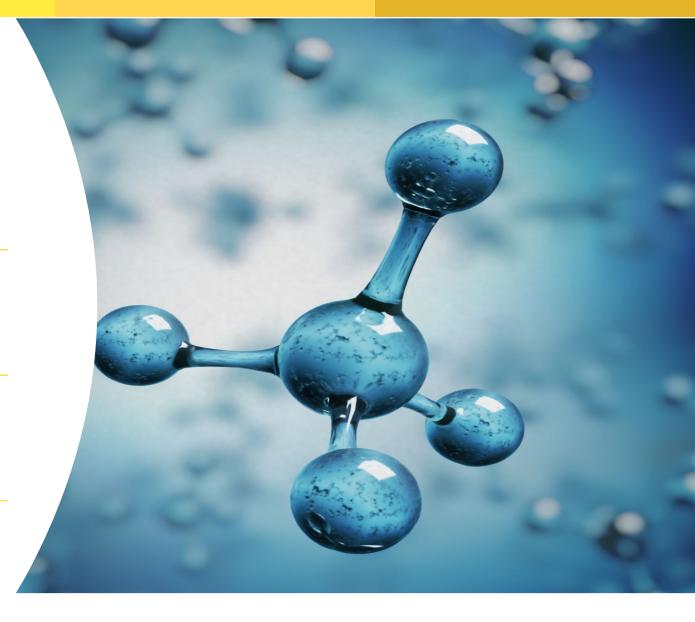
Aspirin



Human Growth Hormone

Problem Complexity: World of Chemical Compounds

- Theoretically, there are 10⁶⁰ molecules with drug like capabilities
- It is impossible for human to go through all of them
- Computer programs are needed!



Short Survey I

Machine Learning Algorithms

Predict the physical and chemical properties of a molecule

Support vector machine (SVM): One of the oldest and most popular ones Accuracy is reasonably good

Extreme gradient boosting (XGBoost): One of the newest ensemble learning algorithms, more optimization compared to traditional gradient boosting

Random forest (RF): Creates a strong classifier or regressor by an ensemble of individual decision trees

Deep neural networks (DNN)

Short Survey II

Graph Neural Networks - Mostly after 2016

- Message Passing Neural Networks (MPNN):
 - Message Passing phase: transmits information across the molecular graph to learn a molecular embedding
 - Readout phase: Computes a feature vector for the whole molecular graph
- Graph Convolutional Neural Networks (GCN)
 - Aggregate neighbors' information to produce an intermediate representation
 - transform the aggregated representations with linear projection and followed by a non-linear projection
- Graph Attention Networks (GAT): Similar to GCN but weighted aggragation
- Attentive FP (We will cover this today)

Paper: Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism

By Xiong et al.

Molecular Understanding is Hard

- A molecular structure is usually composed of many-body interactions and complex electronic configurations
- Chemists have been working "at the edge of chaos" and in desperate need of augmented intelligence from AI.

Graph based vs Geometry based

Graph Based

only the information concerning the topological arrangement of atoms

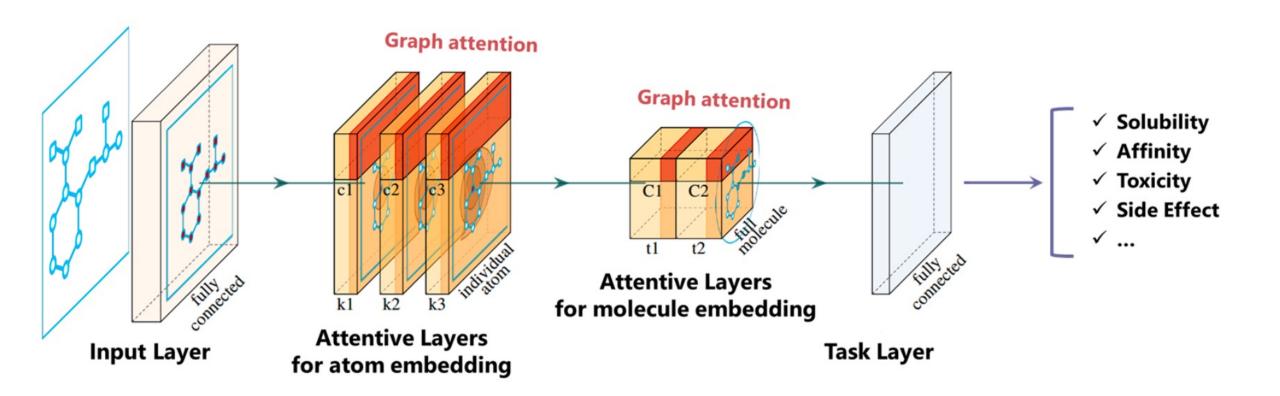
Geometry Based

- Molecular geometry information including:
 - bond length, bond angles, torsional angles
- Higher calculation costs
- Uncertainty in conformation of atoms: active conformation of a small molecule in a given binding process is usually unknown

Initial Atomic and Bond Features

atom feature	size	description				
atom symbol	16	[B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, I, At, metal] (one-hot)				
degree	6	number of covalent bonds [0,1,2,3,4,5] (one-hot)				
formal charge	1	electrical charge (integer)				
radical electrons	1	number of radical electrons (integer)				
hybridization	6	[sp, sp ² , sp ³ d, sp ³ d ² , other] (one-hot)				
aromaticity	1	whether the atom is part of an aromatic system $[0/1]$ (one-hot)				
hydrogens	5	number of connected hydrogens [0,1,2,3,4] (one-hot)				
chirality	1	whether the atom is chiral center $[0/1]$ (one-hot)				
chirality type	2	[R, S] (one-hot)				
bond feature	size	description				
bond type	4	[single, double, triple, aromatic] (one-hot)				
conjugation	1	whether the bond is conjugated [0/1] (one-hot)				
ring	1	whether the bond is in ring $[0/1]$ (one-hot)				
stereo	4	[StereoNone, StereoAny, StereoZ, StereoE] (one-hot)				

Network Structure

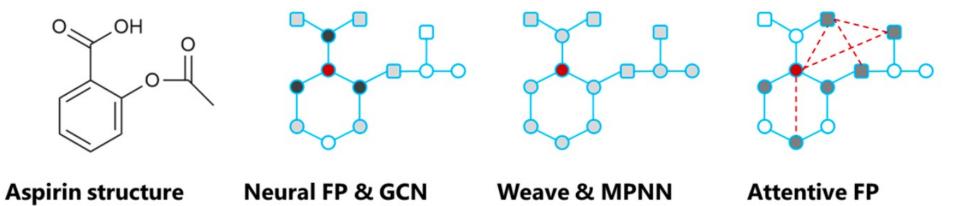


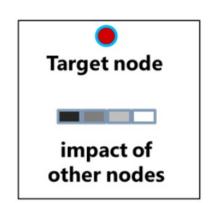
Locality Comparison

• Neural FP & GCN: Highly local

Weave & MPNN: Averaged globally

• Attentive FP: Could be affected from any atom





Graph Neural Network

Messaging:

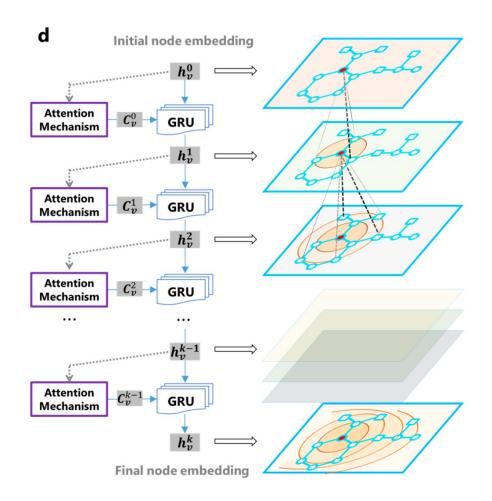
$$C_{v}^{k-1} = \sum_{u \in N(v)} M^{k-1}(h_{u}^{k-1}, h_{v}^{k-1})$$

Readout:

$$h_v^k = GRU^{k-1}(C_v^{k-1}, h_v^{k-1})$$

Generating the State Vector for Target Atom

- The framework that generates a state vector (embedding) for a target atom
- h^k and C^k are the state vector and attention context vector at time step k for atom v, respectively
- In higher time steps, target node embedding will include information from further nodes recursively



Graph Attention Mechanism

Alignment:

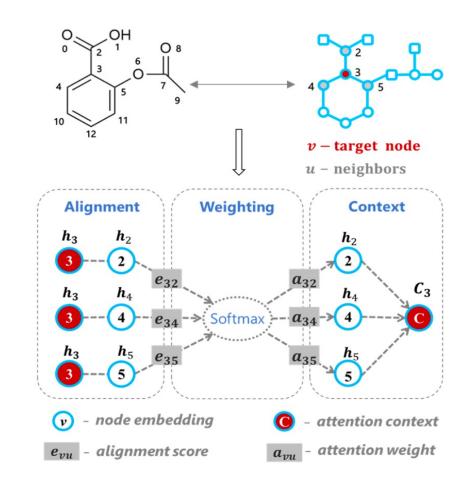
$$e_{vu} = leaky_relu(W \cdot [h_v, h_u])$$

Weighting:

$$a_{vu} = softmax(e_{vu}) = \frac{\exp(e_{vu})}{\sum_{u \in N(v)} \exp(e_{vu})}$$

Context:

$$C_v = elu \left(\sum_{u \in N(v)} a_{vu} \cdot W \cdot h_u \right)$$



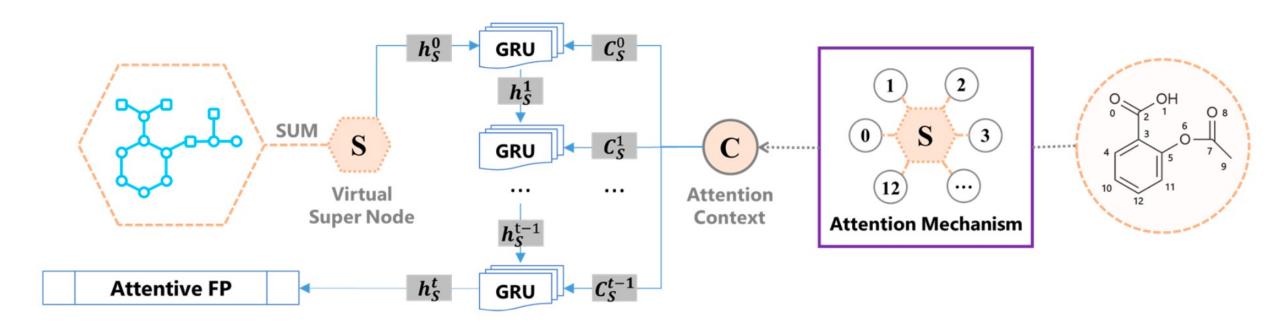
Graph Attention Mechanism

(1)

(2)

(3)

Entire Molecular Graph Embedding



Results I

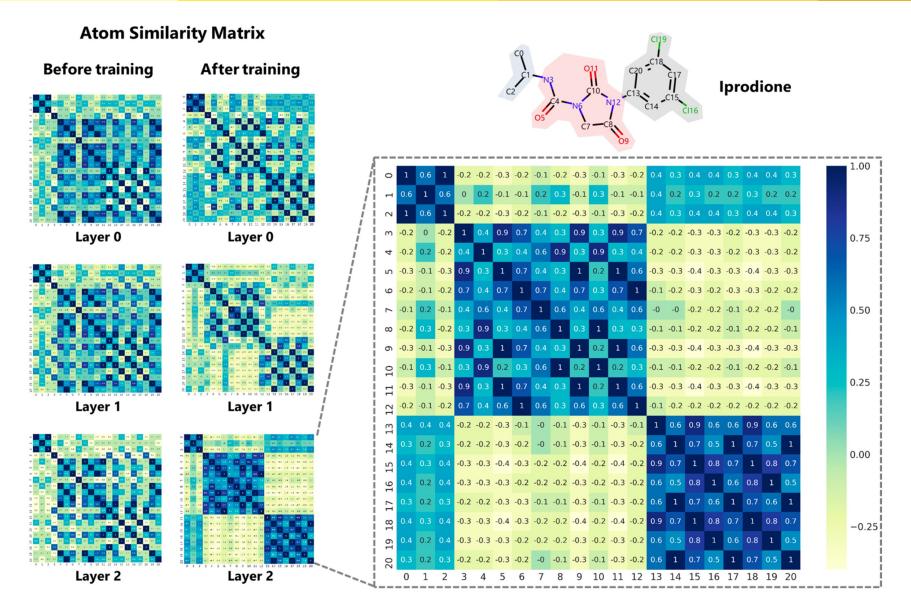
Table 3. Predictive Performances on Data Sets Relevant to Drug Discovery

category	data sets	no. of compounds	metrics	splitting	*previous best	Attentive FP
physical chemistry	ESOL	1128	RMSE	random	MPNN: 0.58	0.503
	FreeSolv	643	RMSE	random	MPNN: 1.15	0.736
	Lipop	4200	RMSE	random	Neural FP: 0.655	0.578
bioactivity	MUV	93,127	PRC	random	MultiTask: 0.184	0.221
			ROC	random	GC: 0.775	0.843
	HIV	41,913	ROC	scaffold	SVM: 0.792	0.832
	BACE	1522	ROC	scaffold	RF: 0.867	0.850
physiology or toxicity	BBBP	2053	ROC	scaffold	SVM: 0.729	0.920
	Tox21	8014	ROC	random	Neural FP: 0.829	0.858
	ToxCast	8615	ROC	random	Weave: 0.742	0.805
	SIDER	1427	ROC	random	RF: 0.684	0.637
	ClinTox	1491	ROC	random	Weave: 0.832	0.940

Results II

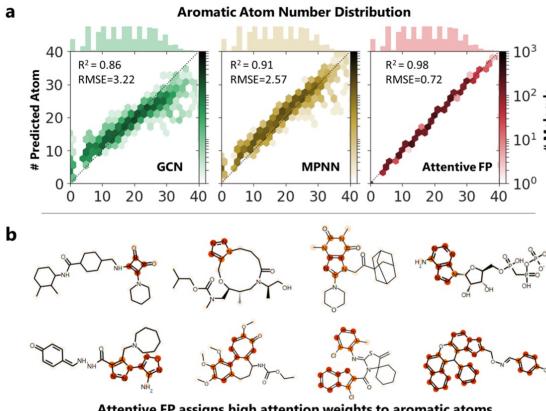
Table 4. Predictive Performances on the qm9 Data Set Quantum Properties (MAE)

			geometry-based		graph-based			
task	unit	sample MAD	*CM	*DTNN	*ECFP	*GC	*MPNN	Attentive FP
mu	D	1.189	0.519	0.244	0.602	0.583	0.358	0.451
alpha	b^3	6.299	0.85	0.95	3.1	1.37	0.89	0.492
НОМО	hartree	0.016	0.00506	0.00388	0.0066	0.00716	0.00541	0.00358
LUMO	hartree	0.039	0.00645	0.00513	0.00854	0.00921	0.00623	0.00415
gap	hartree	0.040	0.0086	0.0066	0.01	0.0112	0.0082	0.00528
R2	b^2	202.017	46	17	125.7	35.9	28.5	26.839
ZPVE	hartree	0.026	0.00207	0.00172	0.01109	0.00299	0.00216	0.00120
U0	hartree	31.072	2.27	2.43	15.1	3.41	2.05	0.898
U	hartree	31.072	2.27	2.43	15.1	3.41	2	0.893
Н	hartree	31.072	2.27	2.43	15.1	3.41	2.02	0.893
G	hartree	31.072	2.27	2.43	15.1	3.41	2.02	0.893
Cv	cal/mol/K	3.204	0.39	0.27	1.77	0.65	0.42	0.252



Example: Aromatic Atoms Predictions

The example shows the superior performance of Attentive FP in identifying aromatic atoms



Attentive FP assigns high attention weights to aromatic atoms

Future Work

- The current models mostly predict the properties
- T is still not the real problem!
- There is a need for a model that can generate a suitable molecular structure directly

Questions

References

- Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., ... & Zheng, M. (2019). Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. *Journal of medicinal chemistry*, 63(16), 8749-8760.
- Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, July). Neural message passing for quantum chemistry. In *International conference on machine learning* (pp. 1263-1272). PMLR.
- Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. *arXiv preprint arXiv:1710.10903*.
- Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. *arXiv* preprint *arXiv*:1609.02907.
- Mullard, A. (2017). The drug-maker's guide to the galaxy. *Nature*, *549*(7673), 445-447.
- Jiang, D., Wu, Z., Hsieh, C. Y., Chen, G., Liao, B., Wang, Z., ... & Hou, T. (2021). Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. *Journal of cheminformatics*, 13(1), 1-23.
- Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining* (pp. 785-794).
- https://www.chemistryworld.com/podcasts/human-growth-hormone/7912.article

