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Challenge of Deep IQA

Current Status
The TID2013 [Ponomarenko, 2015] database: 3, 000 distorted images,
25 reference images;

The ImageNet [Deng, 2009] database: 14, 197, 122 images.
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Existing Deep IQA

Solutions
Transfer learning;

Patch score assignment;

FR-IQA learning.
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Strategy

Problem Decomposition
Subtask I: Identifying distortion type;

Subtask II: Predicting quality score.

Motivation
Infinite distorted image (distortion simulation);

Limited human-labeled image.
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Generalized Divisive Normalization

Formulation [Balle, 2017]

yi(m, n) =
xi(m, n)(

βi +
∑S

j=1 γijxj(m, n)2
) 1

2

. (1)

S: depth dimension

x(m, n) = (x1(m, n), · · · , xS(m, n)): linear convolution activation at
spatial location (m, n)

y(m, n) = (y1(m, n), · · · , yS(m, n)): normalized activation vector at
spatial location (m, n)

γγγ: symmetric trainable weight matrix

βββ: trainable bias vector
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Generalized Divisive Normalization

Comparison of Rectifiers

Table: Comparison of Rectifiers

Nonlinear Spatially Adaptive Trainable Biologically-inspired
Relu [Nair, 2010] X 7 7 7

Batch Norm [Ioffe, 2015] 7 7 X 7

LRN [Krizhevsky, 2012] X X 7 X
GDN [Balle, 2017] X X X X
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Cascaded Layer

Cascaded Layer

g(p̂(k), s(k)) = p̂(k)Ts(k) =

d∑
i=1

p̂(k)i · s
(k)
i . (2)

s(k): score vector

p̂(k): distortion type probability vector
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Loss Functions

Loss Functions

`1({X(k)}; W,w1) = −
K∑

k=1

C∑
i=1

p(k)i log p̂(k)i (X(k); W,w1) . (3)

`2({X(k)}; W,w2) = ‖q− q̂‖1 =

K∑
k=1

|q(k) − q̂(k)| . (4)

`({X(k)}; W,w1,w2) = `1 + λ`2 , (5)

{X(k)}: k-th raw input image

W: Shared parameters

w1: Subtask I-specific parameters

w2: Subtask II-specific parameters
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Implementation Details

Pre-train
Batch size: 40

Learning rate: 10−2, lowered by a factor of 10 when the loss plateaus,
until 10−4.

Fine-tune
Learning rate: fixed to 10−4

λ: 1
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Pre-train Images

(a) (b) (c) (d)

(e) (f) (g)

Figure: Sample source images used for pre-training. (a) Human. (b) Animal. (c)
Plant. (d) Landscape. (e) Cityscape. (f) Still-life. (g) Transportation. All images are
cropped for better visibility.
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Distortion Simulation

Pre-train Images
840 (source) × 5 (distortion types) × 5 (distortion levels)
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Fine-tune Images

LIVE Image Quality Database [Sheikh, 2006]
779 subject-rated images

train(23 source images and their distorted version)/validate(6 source
images and their distorted version)

1,000 random splitting, pick the best model

4 distortion types
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Testing Database
CSIQ [Larson, 2010]: 866 subject-rated images

TID2013 [Ponomarenko, 2015]: 3000 subject-rated images
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Evaluation Criteria
Spearman’s rank-order correlation coefficient (SRCC):

SRCC = 1−
6
∑

i d2
i

I(I2 − 1)
, (6)

where I is the test image number and di is the rank difference between
the MOS and the model prediction of the i-th image.

Pearson linear correlation coefficient (PLCC):

PLCC =

∑
i(qi − q̄)(si − s̄)√∑

i(qi − q̄)2
√∑

i(si − s̄)2
, (7)

where qi and si stand for the MOS and the model prediction of the i-th
image, respectively.
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Experimental Results on CSIQ

Table: SRCC results on CSIQ

SRCC JP2K JPEG WN BLUR ALL4
DIIVINE [Moorthy, 2011] 0.844 0.819 0.881 0.884 0.835
BRISQUE [Mittal, 2012] 0.894 0.916 0.934 0.915 0.909
CORNIA [Ye, 2012] 0.916 0.919 0.787 0.928 0.914
ILNIQE [Zhang, 2015] 0.924 0.905 0.867 0.867 0.887
BLISS [Ye, 2014] 0.932 0.927 0.879 0.922 0.920
HOSA [Xu, 2016] 0.920 0.918 0.895 0.915 0.918
dipIQ [Ma, 2017] 0.944 0.936 0.904 0.932 0.930
deepIQA [Bosse, 2017] 0.907 0.929 0.933 0.890 0.871
Proposed 0.898 0.948 0.951 0.918 0.932
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Table: PLCC results on CSIQ

PLCC JP2K JPEG WN BLUR ALL4
DIIVINE [Moorthy, 2011] 0.898 0.818 0.903 0.909 0.855
BRISQUE [Mittal, 2012] 0.937 0.960 0.947 0.936 0.937
CORNIA [Ye, 2012] 0.947 0.960 0.777 0.953 0.934
ILNIQE [Zhang, 2015] 0.942 0.956 0.880 0.903 0.914
BLISS [Ye, 2014] 0.954 0.970 0.895 0.947 0.939
HOSA [Xu, 2016] 0.946 0.958 0.912 0.940 0.942
dipIQ [Ma, 2017] 0.959 0.975 0.927 0.958 0.949
deepIQA [Bosse, 2017] 0.931 0.951 0.933 0.906 0.891
Proposed 0.925 0.979 0.958 0.946 0.944
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Table: SRCC results on TID2013

SRCC JP2K JPEG WN BLUR ALL4
DIIVINE [Moorthy, 2011] 0.857 0.680 0.879 0.859 0.795
BRISQUE [Mittal, 2012] 0.906 0.894 0.889 0.886 0.883
CORNIA [Ye, 2012] 0.907 0.912 0.798 0.934 0.893
ILNIQE [Zhang, 2015] 0.912 0.873 0.890 0.815 0.881
BLISS [Ye, 2014] 0.906 0.893 0.856 0.872 0.836
HOSA [Xu, 2016] 0.933 0.917 0.843 0.921 0.904
dipIQ [Ma, 2017] 0.926 0.932 0.905 0.922 0.877
deepIQA [Bosse, 2017] 0.948 0.921 0.938 0.910 0.885
Proposed 0.911 0.919 0.908 0.891 0.912

32 / 42



Motivation
Blind IQA via Cascaded Multi-task Learning

Experimental Results
Conclusion and Future Work

Evaluation Criteria
Experimental Results

Experimental Results

Experimental Results on TID2013

Table: PLCC results on TID2013

PLCC JP2K JPEG WN BLUR ALL4
DIIVINE [Moorthy, 2011] 0.901 0.696 0.882 0.860 0.794
BRISQUE [Mittal, 2012] 0.919 0.950 0.886 0.884 0.900
CORNIA [Ye, 2012] 0.928 0.960 0.778 0.934 0.904
ILNIQE [Zhang, 2015] 0.929 0.944 0.899 0.816 0.890
BLISS [Ye, 2014] 0.930 0.963 0.863 0.872 0.862
HOSA [Xu, 2016] 0.952 0.949 0.842 0.921 0.918
dipIQ [Ma, 2017] 0.948 0.973 0.906 0.928 0.894
deepIQA [Bosse, 2017] 0.963 0.960 0.943 0.897 0.913
Proposed 0.924 0.969 0.911 0.899 0.912
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Confusion Matrix

Table: The confusion matrices produced by our method on CSIQ and TID2013. The
column and the raw contain ground truth and predicted distortion types, respectively

Accuracy JP2K JPEG WN BLUR Pristine

CSIQ

JP2K 0.847 0.007 0.000 0.093 0.053
JPEG 0.040 0.820 0.000 0.027 0.113
WN 0.000 0.000 0.947 0.013 0.040

BLUR 0.067 0.006 0.000 0.827 0.100
Pristine 0.067 0.000 0.100 0.166 0.667

TID2013

JP2K 0.944 0.016 0.000 0.040 0.000
JPEG 0.032 0.968 0.000 0.000 0.000
WN 0.000 0.000 1.000 0.000 0.000

BLUR 0.088 0.008 0.000 0.848 0.056
Pristine 0.160 0.000 0.040 0.000 0.800
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Ablation Experiments

Table: SRCC results of ablation experiments on CSIQ and TID2013

CSIQ TID2013
Single task w/o pre-training 0.844 0.850
Traditional multi-task w/o pre-training 0.885 0.871
Cascaded multi-task w/o pre-training 0.894 0.880
Single-task with pre-training 0.923 0.911
Traditional multi-task with pre-training 0.930 0.905
Proposed 0.932 0.912

35 / 42



Motivation
Blind IQA via Cascaded Multi-task Learning

Experimental Results
Conclusion and Future Work

Evaluation Criteria
Experimental Results

Experimental Results

Effect of GDN

Table: Analyzing the effect of GDN on reducing the model complexity in comparison
with ReLU.

CSIQ TID2013
ReLU 0.922 0.891
ReLU + double layers 0.924 0.900
ReLU + double layers + BN 0.930 0.918
Proposed 0.932 0.912
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Conclusion

Contributions
Presented a cascaded multi-task learning framework for BIQA

Demonstrated state-of-the-art performance
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Future Work

Future Work
More distortion types

More image databases

Video quality assessment
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