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Goals

Find location and class of all cell nuclei:

e Lymphocyte Cells
e Normal Epithelial Cells
e Malignant Epithelial Cells

Why:

e Test effectiveness of pre-surgery treatment

e Doing this manually is time consuming and
costly
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Data

154 images of post-op breast cancer tissue samples:

e Subsections of whole slide images of about
512x512 pixels

® Selected to have a mix of Lymphocyte, normal
epithelial, and malignant epithelial cells (not
random)

e Only the center of the cells are labelled, no
segmentation.

® Some cells may be missing labels




Human Classification

e Lymphocytes are small, dark round
nucleus

e Normal epithelial cells are lighter and
slightly bigger than lymphocytes

e Malignant epithelial are 2-3 times bigger
than normal, and have irregular

boundaries

e Structural information is also important




Classification

e Classification is easier than localization
e Crop a 32x32 box around each nucleus to create a classification training set
e Add some random non - nucleus samples to create a fourth class
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Model
model = Sequential()

NOthlng Complex: model.add(Conv2D(32, (3, 3), padding='same', input_shape=(im_size, im_size, 3),
kernel_initializer='he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))

Usual Architecture: model.add(Dropout(dropout))

model.add{Conv2D(32, (3, 3), padding='same', input_shape=(im_size, im size, 32),
. kernel_initializer="he_normal'))
3 Convolutlonal Iayers model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
2FC Iayers model.add(Dropout(dropout))

BatChnorm model.add(Conv2D(16, (3, 3), padding='same', input_shape=(im_size, im_size, 32),
Relu kernel_initializer="he_normal'))
model.add(keras.layers.normalization.BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))

model.add(Flatten())
imi i model.add(Dense(512, kernel_initializer="he_normal"))
Hyperparameter Optlmlzatlon the easy model.add(keras.layers.normalization.BatchNormalization())
Way' model.add(Activation('relu'))
' model.add(Dropout(dropout))

. . model.add(Dense(4, kernel_initializer="he_normal™))
[ ) for mOdel 18] mOdel ||St: model.add(keras.layers.normalization.BatchNormalization())
- model.add(Activation('softmax'))

. . Adam = keras.optimizers.Adam(lr=1learning_rate, beta_1-0.9, beta_2-0.999, epsilon=1e-08
[ J for parameter 18] paramater_llst: model.compile(loss="categorical_crossentropy", optimizer=Adam, metrics=['accuracy'l])




Augmentation

Rotations and flips
e Standard augmentation, because we want consistent classification
independent of the orientation
Small crops
e The data centers aren'’t labelled perfectly, so we want consistent classification
after small changes
No max-pooling

e Little benefit to reducing image size but there is a significant cost. Empirically
this was true.



Results

Using 32x32 images:
e 88% classification accuracy
Using 64x64 images:

e 90% classification accuracy

What about localization?
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Localization

Popular methods use bounding boxes, like
faster RCNN or YOLO

e Need segmented training data

e Designed to perform best on larger
objects, but cell nuclei are very small

e These methods will require major changes
to be useful in this problem




Localization

Detecting Cancer Metastases on Gigapixel
Pathology Images

e They use a sliding classifier to create a
heatmap of cancer probability

e Both about cancer detection, but they
detect tumors, not individual cells

e They had a much larger training set

e Also designed to work on segmented data,
but can be more easily fit to this problem

Example segmentation of cancer vs. non-cancer
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Heatmaps

e Apply the trained classifier to the
entire image, with a stride of 2.

e For each location the classifier is

applied, we get 4 class
probabilities
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Non-Maximum Suppression

e How to turn this heatmap into point predictions for cell
locations?

e Use the cell probability heatmap, and find the most likely
cell locations

Procedure:
While max_cell_probability > cutoff:

1. Find maximum pixel value (probability of nucleus)
2. Set all other pixel values within radius rto O
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Choosing the radius

e Ideally all cells would be the same
shape and size, r would be obvious
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Choosing the radius

100

0.95 {

True Positive Rate

0.75 {

0.70

0.90 1

0.85 1

0.80 1

Radius vs. Performance

radius = 8

radius = 10
radius = 12
radius = 14

0.0

0.2

04 0.6 08
False Positives / Total Nuclei

Radius of 10 is best

10

Distance between cell and nearest neighbour

2000 1

G
=)
)

1000 A

Probability

500 4

14



Radius conditional on class
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Radius conditional on class

Histograms didn’t show any clear results

Testing out a few combinations also
shows it is best to keep the radius as the
same for all classes
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Basic Localization and Classification Results

Localization accuracy is difficult to assess:
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Improving Classification

e People use more information than the 32x32 window surrounding the
cell for classification.

e For example, it is unlikely to have a cluster of all normal cells with one

malignant
CNN Smoothing
e Try training the CNN on a larger image size e Useful if we think distance is the most
important factor
e Make a CNN to update the classifications e KNN

after the heatmap is made
e Laplacian Smoothing
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Results

Bigger CNN

e 064x64
e Better classification accuracy: 90%

e \Worse localization accuracy
o 88% of true cells detected

o 34% of those detected were false
positives

KNN

Terrible
Neighbours Accuracy
1 85%
2 67%
3 59%
4 59%
5 56%
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CNN on Heatmap

If other cell’s class and location are the most relevant
information for classification, we can:

e Downsample the cell probability heatmap

e Training set will be cropped cell probability maps,
centered at the cell we want to update

e Non-maximum suppression is still used to generate
locations

e Output classification is classifier output at cell
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CNN on heatmap

e Not effective

e Similar accuracy to taking max heatmap
value

Other uses:

e Possibly useful for other problems where
the sparsity of information may be even
greater

e Very high resolution images that can’t be
fully fed into CNN
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Conclusion and future work

e Deep learning is at least as good as traditional ML methods for this problem
e [nformation within and between cells is relevant for classification

e |[ssue is in taking into account global information, without drowning out the important local
information of the small cells

e For sparser higher resolution images, it may be useful to look at this as an attention problem.
Focus on a few areas of importance and combining it together without applying the CNN model to
every pixel.
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