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Goals 
Find location and class of all cell nuclei:

● Lymphocyte Cells
● Normal Epithelial Cells
● Malignant Epithelial Cells 

Why:

● Test effectiveness of pre-surgery treatment

● Doing this manually is time consuming and 
costly

Sample slide with malignant cells labelled in red
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Data
154 images of post-op breast cancer tissue samples:

● Subsections of whole slide images of about 
512x512 pixels

● Selected to have a mix of Lymphocyte, normal 
epithelial, and malignant epithelial cells (not 
random)

● Only the center of the cells are labelled, no 
segmentation.

● Some cells may be missing labels
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Human Classification
● Lymphocytes are small, dark round 

nucleus

● Normal epithelial cells are lighter and 
slightly bigger than lymphocytes

● Malignant epithelial are 2-3 times bigger 
than normal, and have irregular 
boundaries

● Structural information is also important

4



Classification
● Classification is easier than localization
● Crop a 32x32 box around each nucleus to create a classification training set
● Add some random non - nucleus samples to create a fourth class

32x32
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Model 
Nothing complex:

Usual Architecture:

● 3 Convolutional layers
● 2 FC layers
● Batchnorm 
● Relu

Hyperparameter optimization the easy 
way:

● for model in model_list:

● for parameter in paramater_list: 6



Augmentation
Rotations and flips

● Standard augmentation, because we want consistent classification 
independent of the orientation

Small crops

● The data centers aren’t labelled perfectly, so we want consistent classification 
after small changes 

No max-pooling 

● Little benefit to reducing image size but there is a significant cost. Empirically 
this was true. 7



Results
Using 32x32 images:

● 88% classification accuracy

Using 64x64 images:

● 90% classification accuracy

What about localization?

Now localization!
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Localization
Popular methods use bounding boxes, like 
faster RCNN or YOLO

● Need segmented training data

● Designed to perform best on larger 
objects, but cell nuclei are very small

● These methods will require major changes 
to be useful in this problem
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Localization
Detecting Cancer Metastases on Gigapixel 
Pathology Images

● They use a sliding classifier to create a 
heatmap of cancer probability

● Both about cancer detection, but they 
detect tumors, not individual cells

● They had a much larger training set

● Also designed to work on segmented data, 
but can be more easily fit to this problem

Example segmentation of cancer vs. non-cancer
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Heatmaps

● Apply the trained classifier to the 
entire image, with a stride of 2. 

● For each location the classifier is 
applied, we get 4 class 
probabilities 
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Non-Maximum Suppression 
● How to turn this heatmap into point predictions for cell 

locations?

● Use the cell probability heatmap, and find the most likely 
cell locations

Procedure:

While max_cell_probability > cutoff:

1. Find maximum pixel value (probability of nucleus)
2. Set all other pixel values within radius r to 0
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Choosing the radius
● Ideally all cells would be the same 

shape and size, r would be obvious True 
labels

r = 4 r = 16
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Choosing the radius

Radius of 10 is best
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Radius conditional on class
The three cell types are different sizes, so we 
can choose the radius conditional on the class
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Radius conditional on class
● Histograms didn’t show any clear results

● Testing out a few combinations also 
shows it is best to keep the radius as the 
same for all classes

16



Basic Localization and Classification Results
Localization accuracy is difficult to assess:

● Unlabelled cells cause high false positive rate

● 88% of true cells detected

● 30% of those detected were false positives

Classification accuracy on segmented images: 85.6%
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Improving Classification 

CNN

● Try training the CNN on a larger image size

● Make a CNN to update the classifications 
after the heatmap is made

Smoothing

● Useful if we think distance is the most 
important factor

● KNN

● Laplacian Smoothing

● People use more information than the 32x32 window surrounding the 
cell for classification. 

● For example, it is unlikely to have a cluster of all normal cells with one 
malignant
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Results
KNN

● Terrible

Neighbours Accuracy

1 85%

2 67%

3 59%

4 59%

5 56%
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Bigger CNN

● 64 x 64

● Better classification accuracy: 90%

● Worse localization accuracy
○ 88% of true cells detected

○ 34% of those detected were false 
positives



CNN on Heatmap
If other cell’s class and location are the most relevant 
information for classification, we can:

● Downsample the cell probability heatmap

● Training set will be cropped cell probability maps, 
centered at the cell we want to update

● Non-maximum suppression is still used to generate 
locations

● Output classification is classifier output at cell 
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CNN on heatmap
● Not effective

● Similar accuracy to taking max heatmap 
value

Other uses:

● Possibly useful for other problems where 
the sparsity of information may be even 
greater

● Very high resolution images that can’t be 
fully fed into CNN
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Conclusion and future work
● Deep learning is at least as good as traditional ML methods for this problem

● Information within and between cells is relevant for classification

● Issue is in taking into account global information, without drowning out the important local 
information of the small cells

● For sparser higher resolution images, it may be useful to look at this as an attention problem. 
Focus on a few areas of importance and combining it together without applying the CNN model to 
every pixel.
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