Deep Learning - Financial Time Series application

Use Deep learning to learn an existing strategy
Warning

- Don’t Try this at home!
- Investment involves risk. Make sure you understand the risk before investing.
A little background about me

❖ I am working for YiBei Investment and Management LTD

❖ Started in 2012 with 4 people all with CS background, grow into 12 people with different backgrounds

❖ YiBei is managing around 60-70 Million Yuan (~10 Millions in USD)

❖ Published Two funds to public in 2017

❖ Focus on quantitive trading models on commodity, stocks.

❖ 2017 started VC.
Agenda

❖ Introduction on common quantitative trading strategies
 ❖ Background
 ❖ Trading Model development
 ❖ Challenges
❖ Can deep learning help?
 ❖ LSTM to learn from an existing strategy
 ❖ LRCN network to learn from an existing strategy
❖ Can deep learning help generate trading strategies?
Terminology

❖ Future - a financial derivative with leverage option, usually based on some assets, e.g Copper Future
❖ Price - Price of a single asset. e.g price of 50 bushel Corn
❖ Feature - a processed input to Model.
❖ Model - processing features and produces position
❖ Position - The number of assets holding at any given time
❖ Actions
 ❖ Long - buy
 ❖ Sell - sell previous purchased asset
 ❖ Short - sell asset by borrowing the asset
 ❖ Cover - buy asset back and return the borrowed asset
Trading Strategy is a program that automates the decision to buy/sell financial assets.

- Input Data
- Trading Features
- Trading Model
- Trading System

- e.g. Price
- Feature Strength
- Produce position vector
- Metrics, e.g. Profits
Background - Trading Feature

- **Input Data**
 - e.g. Price

- **Trading Features**
 - Feature Strength

- **Trading Model**
 - Produce position vector

- **Trading System**
 - Metrics, e.g. Profits
Background - Trading Feature

- Treading Feature provides as input to trading model.
 - e.g. many technical indicators
 - Feature has a strength level
 - A good feature should have a **large absolute** correlation between feature strength and price movement in the near future.
Background - Trading Feature
Background - Trading Model

Input Data \rightarrow Trading Features \rightarrow Trading Model \rightarrow Trading System

- e.g. Price
- Feature Strength
- Produce position vector
- Metrics, e.g. Profits
Trading Model take input from the features and decides what to do with them.

- It output positions, which later translated by the trading system and produces trading actions.
- Trading Model is mostly concerned with the trading logic.
Background - Trading Model

```python
bcond1_1 = Close > trendline && Close > shortline;
bcond1_2 = trendline < shortline;
bcond1_3 = abs(shortline - trendline) > myThreshold;
bcond1 = bcond1_1 && bcond1_2 && bcond1_3;
AddColumn( bcond1, "bcond1", format=1);

bcond2 = LinRegSlope(C, myS) > LinRegSlope_coeff * cond3_coeff * lastCoupleDaysATR;
AddColumn( bcond2, "bcond2", format=1);

bcond3 = shortSlope > (LinRegSlope_coeff * lastCoupleDaysATR);
AddColumn( bcond3, "bcond3", format=1);

BSIG = bcond1 && bcond2 && bcond3;
AddColumn( BSIG, "BSIG", format=1);
```
Background - Trading System

- **Input Data**: e.g. Price
- **Trading Features**: Feature Strength
- **Trading Model**: Produce position vector
- **Trading System**: Metrics, e.g. Profits
The main functionality of the trading system is to calculate different metrics, e.g.

- Return
 - NetProfits
 - Annual Return
- Risk
 - Max Drawdown (MDD)
 - Standard Error
- Risk adjusted Return
 - CAR/MDD
 - Profit Factor
- Frequency(Number of Trades)
- Overfitting Prevention
 - Consistency (K-ratio)
 - Robustness
Background - Equity Curve

Equity Curve is the only truth

❖ Metrics can be deceiving.
❖ For example, sharpe ratio misses max drawdown.
❖ Evaluate a strategy involves evaluating multiple metrics are the same time.
❖ The objective function involves multiple metrics.
❖ objective function surface is very spiky!
Trading is not only a technical challenge, but also a *psychological* challenge.

Under a working strategy, within certain timeframe, the strategy could perform worse.

How to handle the pressure and take courage to bet is beyond trading strategy development.
There are many ways to develop a model. Common models based on prices includes:

- Trend Following
- Mean Reversion
- Pattern Matching/Statistical Methods
Trend following is based on the belief that price movement has momentum, the direction of the price moment won't change too soon.

It’s relatively easy to compose a trend following model.

There are many trend following models because trend can be defined in many ways.
Mean reversion is based on the assumption that the price will often overshoot and revert back to its mean.

It’s slightly more difficult to compose compared to trend following.

There are many mean reversion models as it can be defined differently.
Trend Following is the completely opposite of the Mean reversion.

Under market efficient theory, neither of the strategy would work out.

However, does the data show that market is efficient?
Model Development
Model Development

❖ After a model has been created, an optimization is performed to decide what parameters are the best suitable for certain assets.

❖ The optimization is based on a objective function, which could be a linear combination of different metrics.

❖ Then we looked at the top 200 optimization results and hand-pick a couple parameters to trade.
Comparison

<table>
<thead>
<tr>
<th>Model</th>
<th>Trading Strategy</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>mathematical model</td>
<td>hand-crafted</td>
<td>Neural Network, etc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HyperParameter</th>
<th>Grid Search</th>
<th>Gradient Decent, Adam, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Search</td>
<td></td>
<td>Grid Search, Bayesian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimization, etc</td>
</tr>
</tbody>
</table>
Deep Learning Application in Time Series

❖ In 2012, I’ve tried deep neural network as well as reinforcement learning to see if they can be a good model for trading

❖ The results is not promising. reinforcement approach didn’t coverage and deep neural network doesn’t produce a results that is tradable after slippage and commission.

❖ This time I am trying to see if neural network is able to learn trend following strategy.
First, we picked one of our current trading trend-following strategy based on moving average and an extra linear regression line.

Two moving averages and linear regression line decides whether a trend is formed from past data.

Once the condition met, place the trade in the direction of the short moving average.

Exit the position when maximum drawdown for this specific position exceeds a certain threshold.
Deep Learning - Target function

```python
def strategy(self):
    
    # Long logic
    bcond1_1 = (self.C > long_line) & (self.C > short_line)
    bcond2_1 = long_line < short_line
    bcond3_1 = max(short_line - long_line) > threshold
    bcond1_2 = bcond1_1 & bcond2_1 & bcond3_1
    bcond2_2 = LinRegStope(self.C, short_period) > linreg_slope_coeff = self.optimize("linreg_slope_coeff") * recentATR
    bcond3_2 = short_slope > linreg_slope_coeff = recentATR
    BSIG = bcond1_1 & bcond2_1 & bcond3_1
    # Short logic
    bcond1_3 = (self.C < long_line) & (self.C < short_line)
    bcond2_3 = long_line > short_line
    bcond3_3 = abs(short_line - long_line) > threshold
    bcond1_4 = bcond1_3 & bcond2_3 & bcond3_3
    bcond2_4 = LinRegStope(self.C, short_period) < (1) = linreg_slope_coeff = self.optimize("linreg_slope_coeff") * recentATR
    bcond3_4 = short_slope = (1) = linreg_slope_coeff = recentATR
    SSIG = bcond1_4 & bcond2_4 & bcond3_4

    self.BUY = BSIG
    self.SHORT = SSIG

    sigs = MoveStop(self.C, self.BUY, self.SHORT, self.SELL | self.COVER, 100)

    return sigs.values
```

This is the target function.

Equity Curve from 2004

Equity Curve from 2012
LSTM - Financial Time Series

- **input**: Copper minute prices in the format of OHLC (Open, High, Low, Close) of Shanghai Future Exchange from 2012 to July 2017, total of 500310 records.

- Training data is compose the first 35000 records, and testing data is the reset 15000 records. The last 310 records are ignored due to batch size. 20% Training data is further split into validation set without shuffle.

- **output** the positions as a vector.
LSTM - Time Series

- One of the structures that come to mind for time series would be LSTM.
- It is capable to learn from past experience to predict time series.
Results - Learning from a Strategy

<table>
<thead>
<tr>
<th>Target: Strategy</th>
<th>Accuracy</th>
<th>Metric</th>
<th>Optimizer</th>
<th>Config</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM (Regression)</td>
<td>30.03%</td>
<td>0.3737 (MSE)</td>
<td>SGD</td>
<td>LR: 1e-8, Decay: 1e-9, Momentum: 0.9</td>
<td>LSTM-128 LSTM-128 LSTM-32</td>
</tr>
<tr>
<td>LSTM (Classifier)</td>
<td>28.25%</td>
<td>1.0989 (CrossEntropy)</td>
<td>SGD</td>
<td>LR: 1e-8, Decay: 1e-9, Momentum: 0.9</td>
<td>LSTM-128 LSTM-128 LSTM-32</td>
</tr>
</tbody>
</table>
Learning - Trading Strategy

- It seems that LSTM is not able to learn the strategy function.
- What part of the strategy can’t be learned?
- The strategy is composed of features, entry logic and exit logic.
- Each part is tested to see if they can be learned.
Features Learning

- Features calculation is highlighted to the left
- We picked Moving Average since it’s the most commonly used technical indicator and also a basis for most other indicators

$$\bar{P}_{SM} = \frac{P_M + P_{M-1} + \cdots + P_{M-(n-1)}}{n}$$
$$= \frac{1}{n} \sum_{i=0}^{n-1} P_{M-i}$$

```python
def strategy(self):
    threshold = self.optimize("threshold_multiplier") * recentATR
    linreg_slope_coeff = self.optimize("linreg_slope_coeff")
    linreg_lookback = int(self.optimize("linreg_lookback"))
    long_period = int(self.optimize("longPeriod"))
    short_period = int(self.optimize("short_ratio") + long_period)
    short_line = MA(self.C, short_period)
    long_line = MA(self.C, self.optimize("longPeriod"))

    close_slope = LinRegSlope(self.C, short_period)
    short_slope = LinRegSlope(short_line, linreg_lookback)

    # Long logic
    oncond1_1 = (self.C > long_line) & (self.C > short_line)
    oncond1_2 = long_line < short_line
    oncond1_3 = max(short_line - long_line) > threshold
    oncond2_1 = oncond1_1 & oncond1_2 & oncond1_3
    oncond2_2 = LinRegSlope(self.C, short_period) > linreg_slope_coeff = self.optimize("cond3_coeff") * recentATR
    oncond3 = short_slope > linreg_slope_coeff = recentATR
    BSIG = oncond1 & oncond2 & oncond3

    # Short logic
    scond1_1 = (self.C < long_line) & (self.C < short_line)
    scond1_2 = long_line > short_line
    scond1_3 = abs(short_line - long_line) > threshold
    scond1_4 = scond1_1 & scond1_2 & scond1_3
    scond2_1 = LinRegSlope(self.C, short_period) < (-1) * linreg_slope_coeff = self.optimize("cond3_coeff") * recentATR
    scond2_2 = short_slope < (-1) * linreg_slope_coeff = recentATR
    SSIG = scond1 & scond2 & scond3

    self.BUY = BSIG
    self.SHORT = SSIG

    signs = MoveStop(self.C, self.BUY, self.SHORT, self.SELL | self.COVER, 100)
    return signs.values
```
Results - Learning Features

<table>
<thead>
<tr>
<th>Target: SMA 20</th>
<th>Metric (MSE)</th>
<th>Optimizer</th>
<th>Config</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM (Regression)</td>
<td>3.9949 (Doesn’t Converge)</td>
<td>SGD</td>
<td>Adam AdaDelta</td>
<td></td>
</tr>
<tr>
<td>FullyConnected (Regression)</td>
<td>6.9339e-04 (MSE)</td>
<td>SGD</td>
<td>LR: 1e-7 Decay: 1e-8 Momentum: 0.9</td>
<td>Dense128 Dense64 Dense32 Dense1</td>
</tr>
</tbody>
</table>
Entry Logic Learning

- Entry logic contains both Long and Short direction
- The basic logics are the same but opposite between long and short.
- The operators used in the entry logics includes, less operator, and operator, multiplication,
Results - Learning Entry Logic

<table>
<thead>
<tr>
<th>Target: Entry Logic</th>
<th>Metric (Accuracy)</th>
<th>Optimizer</th>
<th>Config</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM (Regression)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>FullyConnected (Regression)</td>
<td>96.057%</td>
<td>Adam</td>
<td>LR: 1e-9</td>
<td>Dense-128, Dense-64, Dense-32, Dense-3</td>
</tr>
</tbody>
</table>
Exit Logic Learning

Trailing stop is one of the common exit strategy.

Position is exited when the maximum drawdown exceed a certain threshold.

The position can be open for a long time if maximum drawdown never exceeded the threshold.
Results - Learning Exit Logic

<table>
<thead>
<tr>
<th>Target: Exit Logic</th>
<th>Metric (Accuracy)</th>
<th>Optimizer</th>
<th>Config</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM (Classifier)</td>
<td>79.21%</td>
<td>Adam</td>
<td>lr:1e-9</td>
<td>6 LSTM Layers + 2 Dense layer</td>
</tr>
<tr>
<td>FullyConnected (Classifier)</td>
<td>77.68%</td>
<td>Adam</td>
<td>lr:1e-9</td>
<td>Dense-128 Dense-128 Dense-128 Dense-3</td>
</tr>
<tr>
<td>LSTM + Dense (Classifier)</td>
<td>79.21%</td>
<td>Adam</td>
<td>lr:1e-9</td>
<td>6 LSTM Layers + 2 Dense layer</td>
</tr>
</tbody>
</table>
The End

❖ Q&A