TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 1

Approximation of Generalized Processor Sharing
with Interleaved Stratified Timer Wheels -
Extended Version

Martin Karsten
David R. Cheriton School of Computer Science
University of Waterloo
nmkar st en@s. uwat er| 0o. ca
Technical Report CS-2009-24, University of Waterloo

Abstract—This paper presents Interleaved Stratified Timer
Wheelsas a novel priority queue data structure for traffic shaping
and scheduling in packet-switched networks. The data strucre
is used to construct an efficient packet approximation of Geeral
Processor Sharing (GPS). This scheduler is the first of its kid
by combining all desirable properties without any residualcatch.
In contrast to previous work, the scheduler presented here &s
constant and near-optimal delay and fairness propertiesand can
be implemented with O(1) algorithmic complexity, and has a low
absolute execution overhead. The paper presents the pridyi
gueue data structure and the basic scheduling algorithm, aing
with several versions with different cost-performance trale-offs.
A generalized analytical model for rate-controlled roundel times-
tamp schedulers is developed and used to assess the schedyli
properties of the different scheduler versions. Some illusative
simulation results are presented to reaffirm those propertes.

Index Terms—Communication systems, Computer network
performance, Packet scheduling, Data structures, Algorttms

I. INTRODUCTION

fractions are termedeightsand the GPS scheduler guarantees
fluid service in proportion to a flow’s weight compared to
the sum of all other active flows’ weights. In reality, packet
are atomic units and thus a packet scheduler always deviates
somewhat from perfect GPS service. A large variety of GPS
emulation algorithms have been proposed, but no algorithm
exists so far that combines very close GPS approximatidm wit
constant algorithmic complexitgnd low execution overhead.

This paper presents a novel data structure cdiiestleaved
Stratified Timer Wheel$ISTW) and appropriate access op-
erations. This design enables the construction of a set of
novel packet schedulers with effectively constant comiplex
and constant fairness and delay characteristics in aNaate
dimensions. The ISTW data structure is used as a compact
and efficient priority queue that enables the virtual traffic
shaping necessary for achieving these characteristicst@ot
complexity in this context is defined as amortized execution
cost over a certain amount of input traffic. Amortized cost ca

Packet scheduling algorithms are a cornerstone for t3g yransiated into extra buffering and as such, additioekalyd

future development of packet-switched networks as ubbgsit
communication infrastructure, integrating a wide rangeetf

In contrast to previous work [4] however, the amortization
period for the schedulers presented here is tightly limited

work technologies and offering a wide variety of applicatiogng practical. In particular, the worst-case executiort tms
services. Packet scheduling algorithms increase the levely)| per-packet operations is proportional to the size of the
control over packet transmissions and permit the support &frresponding packet. In an earlier version of this work {5
different service policies. There are many applicationasres|.\wr2Q scheduler has been proposed and analyzed, which

for packet scheduling, ranging from detailed quality ofvées

requires an additional small but nontrivial amortizatiarifer

guarantees for individual application flows [1] to servicgy achieve constant execution complexity. The schedulers p

assurances for aggregates [2]. In each of these scenariogeged here overcome this limitation. In short, the coutiiins
more precise scheduler translates into more efficient resougs this paper are:

usage in relation to the “quality” of the service guarantees
Because of the significant complexity and execution cost ofe We describe the basic ISTW data structure, and summa-

packet schedulers, the architectural sweet spot of netewodk

capacity planning has been in configurations with very sampl

rize and slightly improve the previous SI-\¥B proposal.
Based on this work, we generalize and improve the

schedulers, so far. A feasible packet scheduler with perfec
or near-perfect service properties has been elusive. Iglear «
the availability of such a packet scheduler will go a long way
towards establishing accurate traffic control as a basidibgi
block for packet-switched communication networks.

General Processor Sharin(GPS) has been introduced in
[3] as a conceptual scheduler with many desirable proertie
In very basic terms, GPS scheduling works by assigninge
fractions of the overall forwarding capacity to flows. These

analytical model, and demonstrate its applicability.

We present a new packet scheduler terniedPacket
Schedulerthat avoids the search problem of SI-WF

in exchange for only a minor increase of the worst-case
fairness bound. This scheduler is thus the first of its kind
by combining a near-optimal packet approximation of
GPS with constant and low execution overhead.

We also present a simpler variant of the K Packet
Scheduler that further reduces the memory footprint and

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 2

complexity in exchange for slightly higher error terms. cannot avoid a certain service deviation from the fluid GPS

The rest of the paper is organized as follows. In Section fllodel. _ _ B
we review previous work and its relation to the approach pre-EXisting GPS emulation algorithms can be classified as
sented here. In Section I1l, we introduce and analyze a géndimestamp schedulers, round-robin schedulers, and hybrid
model for rate-controlled timestamp schedulers that dpeva Sions. Different schedulers provide different combinasiof
rounded deadlines. This is followed by the specification of§e aforementioned scheduling quality characteristidsilew
new priority queue data structure in Section IV and resgltifione of the existing proposals is optimal in all quality di-
packet scheduler designs and their assessment in Sectiod@nsions and also of low complexity and execution over-
We present canonical simulation results to verify and itate head. There is a class of fundamentally different schesluler
the new schedulers’ service properties in Section VI and di§rmedService Curve Schedulefs3], [14], which can provide
cuss further interesting details in Section VI, beforediing delay bounds independently of throughput guarantees.eThes

the paper with a conclusion in Section VIII. This paper is apchedulers are inherently more complex than GPS emulation
extended version of [6]. schedulers, so it seems hopeless to think about efficierieimp

mentation before solving the GPS emulation problem. Hence,
although the techniques presented here may be applicable to
Il. BACKGROUND AND RELATED WORK such schedulers, details are out of scope for this paper.

A. Generalized Processor Sharing

Generalized Processor Sharing (GPS) [3] is a conceptfal Timestamp Schedulers

scheduling discipline defined for a set of flows F, suchthat ~ Timestamp schedulers approximate GPS behaviour by sim-
each flow: is allocated a weighd;. At each time, assuming ulating the virtual system time in the equivalent GPS system
a fixed server capacit§ and a set of backlogged flows; the The respective start and/or finish times of packets in the
service for each backlogged floive B is guaranteed to be reference GPS system are used to decide the order in which
packets receive service. By the same token, the simulated
LC_ virtual time is used as a starting point for newly arriving
ZjeB bj flows, which is necessary to achieve at least some bound on
In other words, GPS always shares the available link capay fairness and burstiness. This challenge is well-knowoesi
ity in perfect proportion to the flows’ weights. Because GP%%] e?lrg(]estN%rt(;p?;;Istrl:gr é?éi}pg?po;gigg F\:ﬁtchki(net :cm i
cannot be implemented in reality, there is a class of sckmes{uln 'aﬁecfed by the scheduler o efation Therefore, ondy th
that attempt to approximate GPS as good as possible. Tthé ket i y h flow’ P d) b ,'d df
schedulers are primarily assessed through quality metrats Irst pac etin eac OW,‘T’ queue nee s”tc.) € considered for
scheduling and the term “flow timestamp” is often used when

describe their deviation from perfect GPS service. On therot eferring to the packet timestamo at the head of a flow’s aueue
hand, the respective algorithmic complexity determines th N9 b : P WS queu

practical feasibility of each scheduler.))))

The main quality metrics of a GPS approximation packét: Worst-case Fair Weighted Fair Queueing (Y
scheduler are thelelay bound especially in a form that An optimal packet-based approximation of GPS is given by
can be used to determine an end-to-end delay bound Visrst-case Fair Weighted Fair Queueif@/F?Q) [12]. The
shown in several analytical frameworks [2], [7], [8], [9]s a deviations from GPS scheduling are bound by strictly rate-
well as two fairness measureRelative fairnesqintroduced dependent values for the respective flow (or two flows in the
in [10]) denotes the capability of a scheduler to distributease of relative fairness) with provably optimal coeffi¢gern
excess capacity between different sessions in proportionparticular, all scheduling errors are independent of thaler
their allocated service rate®orst-case fairneséintroduced of flows in the system. Earlier attempts at approximating GPS
in [11] and refined in [12]) expresses the maximum deviatisguch as proposed in [3], [10], [15], [17], incur a potentidilh-
from perfect GPS scheduling. While the delay bound onkyar deviation from GPS scheduling, in terms of either fasne
characterizes how far the actual service for a session candselelay behaviour. In fact, it turns out that when consiugri
behindthe ideal GPS scheduler during a busy period, worsinly packet start times for scheduling, the startup delayoa
case fairness essentially provides an integrated bounawan tbe limited effectively and the delay bound depends on the
far aheador behindthe actual service can be. Fairness thusumber of flows in the system. When scheduling packets only
also describes the burst characteristics of the servioealbn by increasing finish times, packet bursts and unfairness can
in relation to the ideal smooth service of GPS. The key metrizcur, also bound only by the number of flows.
for describing the quality of these service charactesstis Conceptually, the WA algorithm works by combining
well as the computational complexity of a packet schedwerltioth criteria, start and finish time. In a first shaping step
the asymptotic relation between the respective charatiteri all eligible packets are selected, that is all packets with a
and the number of flows in the system, which is described start time not later than the current system virtual timenfr
constant, logarithmic, or linear. For example, constar&ye all these packets, the one with the smallest finish time is
describes the property that the delay bound is independensent next. This packet selection policy, term@thrt-eligible
the number of flows. Any real-world packet-oriented schedulEarliest Finish-time First(SEFF) ensures tight bounds for
needs to operate on packets as atomic service units and thliquality indices. Stiliadis and Varma [18] independgntl

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 3

arrive at the same conclusion that the combination of traffite other in between the processing of two consecutive pscke
shaping and finish-time service results in optimal scheduli Since all flows may end up with the same or very close start
characteristics. While [18] only describes a very simglifietimes, this number cannot be limited and effectively resiunt
implementation in the context of fixed-size packet network3(V) worst-case complexity. While the transfer cost could be
(ATM in this case), the original WA proposal [12] is not amortized over the number of packets transferred, this amor
at all concerned with algorithmic complexity or executiotization would requireD(N) buffer space between scheduler
overhead. and output link and result in a corresponding schedulingrerr

D. WFQ Approximation

There are two proposals for implementing an approximatidri VI"1@! Time

to WFQ with lower complexity: WFQ+ [19] and Leap Traditionally, the precise simulation of GPS virtual timash
Forward Virtual Clock(LFVC) [4]. The work by Stiliadis and been considered as being an operation with linear complexit
Varma [18] contains a similar concept, but does not elakorafince it needs to keep track of all changes in the set of flows
on all details. In general, all SEFF-based algorithms dontaacklogged in the GPS reference system. A recent proposal
three parts that are relevant for their execution overhead g23] allows for the exact simulation of GPS virtual time with
complexity: O(log N) algorithmic complexity in the number of flows.
« Flows are sorted according to timestamps. Independent analysis show(log V) to be a lower bound
« The SEFF policy requires consideration of both the stgd@4]. Both WFQ+ and LFVC (along with other algorithms)
and the finish timestamp for the scheduling decision. use a simpler approximation of GPS virtual time. Basically,
« The virtual time of the GPS reference system needs tiwe approximated virtual time progresses with real timerdyr
be simulated or approximated. actual service, that is, it is incremented by the duratiothef

Sorting and priority queues are among the best-studigdrrent packet at each scheduling step. If however the estall
problems in Computer Science. Without further restricsionstart time of all backlogged flows (which is readily avaikabl
maintaining a sorted container ha¥log N) complexity in in WF2Q+ and LFVC) is larger than the current virtual time,
the number of elements. In the context of GPS emulatidfe Virtual time jumps forward to this minimum start time.
schedulers, however, it can be a very acceptable tradesoff t This approximation of GPS virtual time has some negative
use rounded time values (and incur some additional schegluleffects on the scheduling quality of W&+ and LFVC [23].
error) in exchange for a finite universe of sorting value$)nder certain circumstances, the approximation of virtinad
which enables more efficient solutions to the sorting pnoble could lead to unfairness and burstiness being linear in the
For example, the van Emde Boas priority queue [20] hasimber of flows. This observation is not a contradiction of
O(loglog N) access complexity for insertion, removal andhe findings for WEQ+ and LFVC, but results from different
finding the lowest value. Similarly, a timer wheel [21] couldssumptions. Normally, GPS emulation schedulers are con-
operate inO(1) for insertion or removal and, in combinationsidered in a context where some kind of delay guarantees
with hierarchical bitmaps and a priority encoder of widkh are sought. Such delay guarantees can only be given if the
with O(log; N) complexity for searching the lowest valuesum of rates of all flows does not exceed the link capacity.
(see Section 5 in [22] for a brief discussion). In both cagses|n terms of the GPS definition, this denotes a situation where
finite time horizon must be assumed, which translates intott®e sum of weights is less than or equal to 1. In this case, all
maximum specifiable inter-arrival time of packets. Since thprevious results about WR+ and LFVC hold, and burstiness
maximum packet inter-arrival time is part of the lower bount$ independent of the number of flows. If this restriction
on the startup delay, one can assume that there is an uppefemoved, then the observations reported in [23] become
limit to this value and it will not change in future networksan issue. However, it is somewhat questionable whether any
Then, if the desired delay precision is also fixed in terms @pplication scenario requires the support for sum of weight
wall-clock time, one could argue that these algorithms afger exceeding 1. Certainly, all scenarios that aim at providing
with constant complexity in all relevant dimensions. Thigor some form of delay guarantee do not qualify. Furthermore,
inal LFVC work [4] presents generalized proofs for roundethe maximum spread between the highest and lowest service
timestamps, but it requires uniform routing of all timespmn rate is typically limited. For such a scenario, it is possito
which in turn prohibits a constant-time implementation. ~ find a better scheduling solution with a small and constant

Unfortunately, the SEFF policy makes the above consideigxecution overhead, as demonstrated in this work.
tions somewhat irrelevant. It basically requires keepiog/$l There is another seeming contradiction between the results
in a two-dimensional container where they are sorted by batported by Xu and Lipton [25] and the results presented.here
their startand finish times. This approach has been chosérhis discrepancy is explained by the computational model by
for WF2Q+, but inevitably requires a tree-based data structuxal and Lipton, which does not allow for the floor or ceiling
and consequentlp(log N') access complexity. Alternatively, function to be used. The lower bounds are critically linked
flows can be kept in two one-dimensional containers, &s this assumption. In contrast, our algorithm is based on
proposed for LFVC, and exploit the lower access complexitpunded timestamps using the floor function and provides a
discussed above. However, this two-container solutionireg superior combination of scheduling properties and alborit
the transfer of all newly eligible flows from one container t@omplexity.

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 4

F. Low Complexity Implementation SRR is linear in the number of flows. The G-3 scheduler

A number of techniques for the efficient implementation d#9] is an extension of the SRR scheduler [28] to overcome
timestamp schedulers are presented and discussed by SsepHe restrictions of a fixed weight matrix. Recent proposals,
et al. [26]. For the particular case of fixed packet sizes f'chStratified Round Robi(STRR) [30], Fair Round Robin
ATM networks, the article presents an implementation ¢FRR) [31], andGroup Round RobiGRR) [32], use flow
WF2Q+ with constant execution overhead. In the case g?ratn‘lcatlon along service rates and a tw_o-level sc_heguh
variable packet sizes, a different solution is presentddghv Nierarchy to solve the problem of dynamically adding and
technically can be regarded as havifgl) complexity in the rémoving flows. The VWQGRR scheduler [33] proposes a
number of flows, but there are shortcomings. The schedult§W grouping strategy for the GRR scheduler [32] to improve
implementation uses stratification in the virtual serviceetof ~delay bounds, but does not change the fundamental propertie
packets to reduce the complexity of the one-containerissiut "€ critical parameter determining the trade-off between
proposed for WEQ+ [19]. This results in a number of strati-uality and complexity of a round ropln scheduler is the size .
fied groups which is logarithmic to the ratio of the maximuri€ guantum used for each scheduling round. Any round robin
over the minimum supported service rate. For example, Seheduler has an error term &= due to the minimum
the system were to support service rates between 16 Kbfanium. Such a scheduling error poses a problem for low-
and 40 Gbit/s at packet sizes ranging from 64 to 1500 byté's‘,te flows W|th small packet sizes, su.ch as voice. Furthe.r, if
this would result in 26 stratified groups. The algorithm thel!€ quantum is chosen too small, this can lead to multiple
specifies that between each scheduling step, it is necetssa:zrocess'ng steps without outpuslip processiny and thus
inspect the start and finish times of the front flow in each grodPréakO(1) complexity. On the other hand, a larger quantum
to determine the next one to receive service under the SEfESUIts in larger error terms.
policy. This sequence of comparisons is a nontrivial andigos STRR uses a large quantum and has pexd&at) complex-
operation and is hardly possible within the strict iminginds ity. However, the algorithm’s general delay bound and worst
of high-speed links. Instead, the paper refers to hardwafése fairness is linear in the number of flows. FRR does not
based timestamp sorting. In other words, this sequence SPECify a particular quantum, but any quantum that can avoid
comparisons introduces too high an absolute constant eadrhlinear scheduling errors inevitably leads to slip proaegsn
per scheduling step. Also, the proposal requires additiortB€ round robin loop. This effectively break1) complexity.
sorting, since flows change their group association. FinalGRR is a general technique for hierarchical schedulinggusin
the theoretical treatment of rounded timestamps is not 4Ind robin as intra-group scheduler. The quantum probéem i
comprehensive as the model and analysis presented in @pproached differently than in other hierarchical rounklimo
paper. However, the work by Stephens et al. provides vetghedulers. GRR allocates a large quantum to each group,
interesting insight into the implementation details of @ket but interleaves group service according to the inter-group
scheduler at high line rates [26]. scheduler. While this results in the best scheduling prtagser

The practical implementation of VWB+ by Rouskas and of all round robin schedulers, it poses the risk of breaking
Dwekat [27] relies on the fact that certain packet sizes donf?(1) complexity through slip processing: A flow that becomes
nate the overall traffic. The existence of other packet sizesnOn-backlogged cannot be removed from the round robin list
mentioned, but not addressed thoroughly and no quanétati?Mediately. Instead, if it is still non-backlogged duritie
results are given for this case. Also, it seems that the sdhied Next round, it is considered departed and effectively regdov
can only support a fixed set of flow rates, although the detaff@m the list. However, the number of departed flows may
of this are not completely discussed. As such, the propo% arbitrarily large in any round and therefore, may result
presented there is not as general as ours. Furthermore, ifh&’ (V) processing steps between the processing of two
algorithm depends on the ability to sort timestamps in ctst consecutive packets. Derived proposals such as VWQGRR and

time in hardware, which is a much stronger requirement th&3 improve the respective basic versions, but still siffiem
a priority encoder. the same general quantum-related problems.

G. Round Robin and Hybrid Schedulers H. Hierarchical Scheduling

Round robin schedulers take a fundamentally different aimHierarchical scheduling allows for increased control over
at emulating GPS scheduling. Instead of timestamp compuliak sharing and resource allocation. Some of the shortngmi
tions and sorting, service slots are assigned in some mddifaf the early fair-queueing schedulers become very apparent
round robin fashion. This dramatically reduces the alpamit the context of hierarchical packet scheduling [19]. Hiehazal
complexity of such schedulers, but most early proposafesufrate-based scheduling invariably increases the delay doun
from rather large error terms in their fairness and deldpr leaf classes and as such, service curve schedulers such
properties. A more recent examplemoothed Round Robinas SCED [13] and HFSC [14] are more suitable to achieve
(SRR) [28], uses a fixed weight matrix to achieve very lowoth link sharing and tight delay goals at the same time,
computational complexity. Its relative fairness only dege albeit with increased complexity. For the purpose of this
on the order of the weight matrix and is thus independewbrk, we do not argue in favour or against the usefulness of
of the number of flows. However, the weight matrix canndtierarchical scheduling. However, as noted in [19], hienaral
be changed easily and the delay and worst-case fairnescarffigurations can be regarded as an excellent litmus test fo

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 5

the fairness characteristics of a packet scheduling dlgari The flow selection policy can be considered rasnded
It is strictly for this reason that the simulation experirteense SEFF, i.e., among the active flows, the one with the smallest

hierarchical scheduling. rounded finish timef; is chosen for service. We s_how that
Eased on these definitions and assumptions, the t&tnasd
I1l. M ODEL AND ANALYSIS F; are sufficient to characterize the scheduling properties of

any specific GRPS instance in relation to YF
We present a model for &eneral Rate-controlled Packet y sp Y

Service(GRPS) scheduler that uses some form of timestamp
rounding to reduce algorithmic complexity and analyze tH8. Analysis

scheduling properties of the general model. The basic modeyr analysis closely follows the proof structure from pre-

and Lemmas 1-4 are defined entirely in terms of byte timgioys work [5]. However, the analysis is more general and
independent of the link speed or real time. Therefore, thgyjies to a whole class of schedulers. We have fixed a number

model applies to fixed and variable bitrate links. of minor inaccuracies and improve the relative fairnessndou
given before [5].
A. System Model Lemma 1:For a set of flowsj with Vi € G : S; > V, the
The system model is a generalization of the analytical moJ8|"°W'”9 inequality holds for allv” > V-
used for SI-WEQ [5], which in turn is based on Bennett and Z I + Z(V/ —F)r; <V' -V @)
Zhang'’s work on WEQ+ [19] as well as Suri et al.'s work on v v o
LFVC [4].

A GRPS scheduler system is comprised of a set of rov\’/Vs';th i being the size of the first packet in flois queue.

i € F. Each flowi is allocated a positive rate fraction with Proof: By definition, I; = (F; — S;)r; for all flows and
thus,i; < (F; — V)r; for flows with S; > V. Therefore,

d o<l (1) S5 < S(E -V (8)

ieF
Flows are assigned start and finish time labels according i €9) /
to the first packep in their respective queue and the current = Z(V = V)ri — Z(V — Ey)r; 9)
system virtual timeV/: iegl ileg
g gP_ { max(V, FP~') arrival to empty queue @ <(V'=V) gg:(V Fy)r; (10)
T P otherwise

. 1 _ which directly leads to the lemma. The first step uBpsV =
Fy=F = SP+ 3 for next packet with length’ (3) v/ — v — (v’ — F;) and the second step usgs, ;; < 1,
We assume the existence of per-flow rounding functioﬁésed on (1_)')) .
hS (2 for start times and? (z) for finish times, such that the -€Mmma 2:At any virtual time V7, {he Back/log Inequality

rounding error is limited. In particular, start times aremded 1°lds for all virtual time value$’" with L + V" > V:
down and finish times_ are rounded up. It hgs be_en observed Z I + Z (V' —F)ry <L+V' -V (11)
before that rounded timestamps work well in this case [4],

[26]. The rounding functions are characterized by maximum
rounding errorsS; and F'; as with I; being the size of the first packet in flois queue and

. . _ L being the maximum transmission unit (MTU). If a flow
Si = hi(Si) with S; > S; > 5; — S;, and (4) is not backloggedi; = 0 and F; > V.
E; = WP (Fy) with F; < F; < F, + F;. (5) Proof: The proof is by induction over those events that
change variables. The base case is trivial.
Packet enqueue: Denote the size of new pagketh /¥ and
the finish time after enqueue witA”. If £ > V', nothing
changes and the lemma holds. Otherwise, sie< V' after
e arrival of the packeiﬂ- < V' before the packet arrival and
the flow is already part of the set. In this case, the first term
on the left side of (11) is incremented By, but since the
flpow’s finish time F; is incremented by the virtual packet time
V = max(V + zp,mm(gi)), (6) i— the second term left is reduced By
ieB Virtual time jump: After a virtual time jump as in (6), all
Backlogged flows are separated inbdocked and active flows in the system havs; > S; > V and Lemma 1 applies
flows, depending on their respective start times in relaton for all V/ > V. ForV” in [V — L, V|, the additionall term in
the system virtual time. The following requirements must b@1) absorbs any decrement on the right hand side. Therefore
satisfied by the scheduling algorithm: the lemma holds.
Requirement 1:Flow i blocked=-V < §. Packet service: Assume floyvreceives service. Denote the
Requirement 2:Flow i active= V > ;. size of the current packet for service with flow rate with

BB <V BB <V

We denote withB the set of backlogged flows. Ausy
period is defined as a period wher8 is continuously not
empty. In contrast to WFQ or WR, but similar to WEQ+
or LFVC, virtual time progresses with the real link speed, b
it jumps forward when necessary, so that it never falls bethi
the smallest rounded start time. After serving pagketith

sizel,, virtual time increases as

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 6

r;, and rounded finish time with;. We have to distinguish Case 3: Packej is not active after service tp, therefore

two cases, depending dri’ and Fj. V5 is reached by a virtual time jump befogecan be served.
Case 1: IfV’ > F}, then the first term on the left sideln this case:

of (11) is decremented bj;. SinceV is incremented by, By >8,>Ve>Vo— L (20)

the right side of (11) is decremented by the same amount.

Therefore, the lemma holds. For the next packet in figsy This concludes the proof. u

queue, the case 'Packet enqueue’ applies. Finally, we need to establish a bound between virtual time

Case 2: IfV’ < Fj, then all flowsi with F; < V/ have V and real timeR, assuming a fixed link capacity. .
F, < F}. All of these flows must have been blocked, otherwise Leémma 4:Let I be the last time when the system was idle
the current packet would not have been chosen. Therefc?@d let.J be the amount of virtual time “jumping” that has
Requirement 1 applies ang > V holds for all flowsi with been done during the curre_nt busy period. Then, whenever a
F; < V' before the packet service. Assume the virtual timeacket has completed service:
before service is/; and after servicd’;. Lemma 1 applies o
then for allV’ > 14, i.e. V+i-J=E (21)
Proof: At the beginning of a busy period, = R and
L+ V' —F)r <V' = 1. 12) :
Z Z (ri ! (12) V = J = 0. Whenever a packet is chosen for service and
transmitted,V and R increase by the same amount. When
Becausel, = V; +[; and we assumé + V' > V5 after virtual time jumps forward) and J increase by the same

<V <V

service, we only need to considet with L + V' > V; + I; amount.]

before service. Therefore Using the above lemmas, we can now prove the main theo-
VeV <(L—1)+V —(Va—1;) =L+ V' —Vy (13) irr?rglser?;z?rlbmg the service characteristics of GRPS sédesdu

and the lemma holds after service. [| Theorem 1:(End-to-End Delay) GRPS is &uaranteed

The Service Timdemma establishes that a packet is serveRlate (GR) scheduler [7] with an error term; for flow ¢ as
when the virtual time reaches its rounded finish time with an _
error term of at most one maximum packet sizén addition Bi <L+ Fi (22)
to the rounding error.

. j J ; ;
Lemma 3: For any backlogged flow Proof: Let p] andl! denote thejth packet of flowi and

its size. LetA =(p}) denote the real-time arrival time of packet
V<F+F;+L. (14) p]. The guaranteed rate clock values are defined as is [7]:

Proof: We proveV < F; 4+ L, which directly implies ; ; i1 z{

the lemma. The proof is by contradiction. The only event ~GRC(P;) = maX(Ar(p;), GRC(p; ")) + T (23)
that could lead to a violation of the assumption is serving.
a packet during a busy period. Assume thavathe lemma with GRO(p2> =0. o) ,
holds. A packep with rounded finish timeF; and lengthi,, Denote with F/ the finish time of thejth packet. Let
is served and afterwards &, there is a packet with finish £ (p;) and.J(p;), respectively, be the values éfand.J from
time Fy, such thatfh, + L < Vs. Denote withS; and S, the Lemma 4 when service of; is completed. Letl’(p}) and
corresponding start times. We need to distinguish threescas/’ (1)), respectively, be the values éfand.J whenp; arrives

Case 1: Packey is active atV;. Then, B> I (both at the head of its queue. We first prove that during a busy
packets were eligible at; and p was chosen). Applying Period

Lemma 2 withV = V; andV’ = F}, results in F/ +1(pl) — J(p]) < GRC(p)) (24)
Z I + Z (FQ —F)r; <L+ - (15) We prove (24) by induction op. The base case is trivial. The
B < By B <Py virtual time of a packet arrival is denoted by(p}).

Inductive Step: Assume (24) holds fgr— 1. We need to
stinguish two cases.
Case L:A(p]) > F/~". Then

BecauseF; < F;, the second term on the left side of thqji
inequality is non-negative and therefore

< > L<L+B-W (16) . P
iy < P F = A(p]) + +. (25)
Vo— Vi <L+ Ey—V, 17 ,) -
? = ° ! (17) Using Lemma 4 we can characterize the packet arrival time
Vo<Fy+ L (18) s
The step from (16) to (17) usd§ + I, = Va. A(pl) +I'(p]) = J'(p]) < Ar(p]) (26)

Case 2: Packe is not active atV;, but becomes active .

betweenV; andVs. Then, S > V. Virtual time advances by Adding ;= results in
at mostL and therefore: y

Fy>8,>Vi>Va— L (19) A(Pf)"‘r—i'*‘fl(]?f)—f@f)SAR(P?)"‘7, (27)

%

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 7

Rearranging the terms using (25), and replacingby a trivial Theorem 3:(Worst-case Fairness) L&t (p) be the backlog

maximum expansion, results in of an arbitrary flowi immediately after packet arrives. The
. time ¢ to clear this backlog is bound as
FI4+T'(p))—J (p)) < maXAg(p!), GRC(p} 1))+, (28 - o
LI (p])—J (py) < max(Ar(p;), (i)+, (29) <@ b5 T 37)
_ r

2 K3

The right hand side shows the definition GIRC. Since we
are considering a busy period,(p!) = I(p]) and J'(p]) <
J(p]). Therefore

Proof: Consider a packep for flow i. Suppose that
immediately aftepp arrives, the packet at the head of flow
queue i’ . Further assume that there ane> 0 packets in the

o4 I(p‘j) _ J(pq') < GRC(p‘j) (29) Queue in front ofp, meaningy = p{*m. Let R; denote the real
! ! v v arrival time andR, the real time whep’s service is complete.
which establishes (24) for Case 1. ~ Let Vi, V2 denote the virtual times corresponding to the real
Case 2:A(pj) < FV'. In this case FV = Fi~! 4+ L timesR; and Ry, andFi, F; the flow’s finish times af?; and
Through the induction hypothesis, we obtain "' R, respectively. (35) guarantees the following inequality:
. . . . L =
FI7 w1l —Jpl ") < GRC(p! ™) (30) Fr<Vi+—+45; (38)
Adding lr—] and replacingzRC' by a trivial maximum expan- or L, —
sion results in “Vis-Fi+—+5 (39)

i
J

Fi+ I(pg—l) _ J(pf_l) < max(Ag(p)), GRC(pg—l)) b Lemma 3 gives the bounth, < Fs + F'; + L. Subtractingl’;

(§i) from V5, i.e. adding (39) to the bound fdr, results in
The right hand side shows the definition@fC'. Since we are Vo—Vi<Fy—F +L+ Li +S,+F;. (40)
considering a busy period(p; ") = I(p]) and J(p!" ") < T
J(p}). Therefore Since flow: is backlogged during the interval, F»], we get
. . . . - m lz+"
FI 4 1(p)) — J () < GRO(p?) (32) Fy =F + 3, =—, which can be inserted into (40):
m gj+n)
which establishes (24) for Case 2. } Vo —Vi < i + L+ Li +S,+F;. (41)
We can now prove the theorem. A packétis served no ne=t Ts

later thanﬂ-j—i—ﬁ—l—L (Lemma 3). At the end of transmission

! Pk i i "The queue siz€);(p) satisfies
the real time equals? + F; +L+1(p])—J(p]) by Lemma 4.

By (24), this is bound byGRC(p!) + F; + L. n i A 0:(p) 42)
Theorem 2:(Relative Fairness) The relative fairness [10] of =i i
GRPS between any two flowisand j is bound by, ; with _ . .
- Plugging this into (41) yields
L, —
0 < 2L + Z‘(Tm + 5, +Fy). (33) Vo Vi < Qr(p) e (43)
r=1,j i %

with L, being the maximum packet size for flaw Using the bounds between virtual time and real time from

Proof: We can determine the earliest and latest possidi€mma 4, we can obtain a lower bound #f and an upper
finish times for a packet from flovthat receives service at aPound for Ry:

virtual time V' as follows: Vit I—J <RyandVo+1—Jy>Ry (44)
F>F"—vV_F, - L (34) with J, > J;. Therefore
_ L
FgFmé‘X:VjLSmL7 B Re—-Ri<Vo+I—Jo—Vi+I-1) (45)
_ =Vo—=Vi—(J2—J1) (46)
F™" follows from Lemma 3 andF™# follows from Re- Qi(p) L, — —
quirement 2. Consequently, for any interyad, V5] during S AL+ =+ St Fi— (2= 1), (47)
which a flow is backlogged its maximum service is bound bg, L !
Vo — V; 4+ FMax_ pmin \while the minimum service is bound inceJy — J1 > 0, this concludes the proof. [|

by Vo — V; + F™n _ FmaX The maximum deviation between NOte that the relative fairness bound between two flows is
two backlogged flows andj can be computed by subtractindighter than reported earlier [5]. It is the sum of error teraf

both terms from each other: the absolute fairness bounds of both flows. This is condisten
‘ _ with intuition and previous findings [34]. In comparison to
(Fmax _ pminy _ (ij'“ — ijax) (36) the properties of WKQ [19], the additional error terms can

be directly related to the timestamp rounding err§tsand
Inserting (34) and (35) into (36) gives the lemma. 7,

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 8

time in slots
[7 \910\11 [13 \15\17\192(\)21\23\25\27\ 23(\) 31] 33 a537 function ISTW:: insert(SIOt, elem){
[6 [10 [14 [18 [22 [26 [30 IE] _)
T — m— ——— s k = ffs(slot);
Level 5 i levelCount[k-1] += 1;
sethit(levelbits , k);
getBucket(slot). pushback(elem);

1
Level1[1 [3 [5
Level2 |2

Level 6 32
Level 7

bucket/slot numbers

Level K

Fig. 1. Interleaved Stratified Timer Wheels (ISTW) }
Fig. 2. ISTW Insert Operation

IV. INTERLEAVED STRATIFIED TIMER WHEELS
start searcl current time slot time in slots
The key Cha”enge resulting from the SEFF pO“Cy (Cf Leve\l‘i‘ [3 \5‘H 7 \910\11 \1;\ 15 [17 \192(\) 21 [23 st\ 27\)2:\;:(\) 31] ‘33\ 35[37
2 & 4 i 0 4

Section II-A) is that the next flow for service is chosen e T3 R) e S Yo

from the set of backlogged flows based on two criteria atees - 3 =
the same time: the smallest finish time among those flowsa
with a start time less or equal the scheduler's current &irtu Leveix
time. For WEQ+ [19], it is proposed to use a tree-based data _ ,
structure to accommodate both criteria, while LFVC [4] had9 3 Zi97ag Search in ISTW
introduced the idea of two containers to hold blocked vsvact
flows. Any tree-based data structure can only be maintained
with logarithmic complexity, while the two-container stn An ISTW container maintains a bitmaskevel bits to
suffers from a transfer problem, if the system virtual tir¢ (indicate whether any bucket in a particular level is occdpie
crosses the start time threshold of many flows in one step.The i nsert operation is shown in Figure 2. It assumes a
We proposdnterleaved Stratified Timer Wheel§STW) as functionget Bucket that retrieves the bucket corresponding
a priority queue that supports efficient searching for trerest to a given rounded time slot number.
future event and controlled scanning for past events, iB8€C gearching for the next occupied slot in an ISTW container
sary. For rate-proportional scheduling, one ISTW contaise ks by first locating the smallest occupied level number in
used tp.sort finish times aqd search for the next_ flow to servighe |STW container by using the ffs operationloevel bi t s
To facilitate the SEFF policy, a second ISTW instance keepfq then performing a linear search of buckets. Because the
flows sorted by start times. Besides searching for the next st;i,or wheels are interleaved, iterating through bucket ers
time, if necessary for (6), ISTW supports scanning for pagfith a step width of half the bucket size of the smallest
start times with a meaningful bound for lateness, but withoyqcpied level results in a search pattern where the srhalles
the need to transfer many flows at the same time. occupied level is searched linearly, but every second kearc
An ISTW container is a collection of timer wheels whergtep, considers a bucket from a bigger numbered level. This
time is measured in fixed base time slots and the bucket wid{f5,ch pattern ensures that any bigger-level bucket aluag t
is doubled for each level. The top-most wheel in Level 1 h%y is visited as well. In Figure 3, the complete search
a bucket width of two base time slots. Furthermore, the timggi, is jllustrated, although in this example the searchlgvou
wheels are interleaved, such that buckets are never aligigfninate at Bucket 12. Assuming a functiooundsl ot that
with each other across levels. This is shown in Figure 1. Eaﬁ'ﬂplementshk from (48), thesear ch function is described
bucket can be identified by the number of the first time slgf, the pseudo-code in Figure 4. It is easy to see that the worst
that it covers, so that the corresponding rounded slot okdfuc c4se execution complexity of this linear search is propoeti
number for a sloy in level k, £ > 1, can be computed as 5 the number of buckets between the current time and the
j— k-1 first element in the smallest occupied level.
i) =2 |

bucket/slot numbers

ok We define thecurrent bucketfor each level as the bucket

) o that overlaps with the current time slot. Teean operation

We observe that the rounding error is limited by for an ISTW container retrieves an element from the smallest
. . k occupied level that has an element in its current buckes iBhi
J<hi(3) +2% (49) done by maintaining a bitmagk ont bi t s that indicates the

The find-first-set(ffs) operation can be used to determin@ccupancy of the current buckets for all levels. The pseudo-
the level of a given bucket number. The ffs operation find&de is shown in Figure 5.
the position of the least significant bit in a word. It can Similar data structures for sorting and searching have been
be implemented in software at logarithmic cost of the wordsed for other schedulers, such as SRR [28], STRR [30], or
length [35]. Further, a priority encoder can be implementgd@RR [32], all of which are discussed in Section II. However,
in hardware at a very low cycle cost. For example, recesince all these proposals follow the round robin approduy, t
Intel processors implement the ffs operation (termed BRS) @0 not consider a comprehensive combination of searching
1-3 clock cycles at Gigahertz clock rates, depending on thad scanning on both start and finish times. In particular,
architecture [36], while the IXP network processor progide interleaving the timer wheels is an essential feature inWST
one-cycle ffs instruction [37]. for maintainingf r ont bi t s, as discussed in SectionV-B.

J + 2k (48)

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 9

function ISTW:: search(slot){ function enqueue(pkt){
if (!levelbits) return NULL; flow = classify (pkt);
k = ffs(levelbits); flow.Q. push back(pkt);
slot = roundSlot(slot , k); if (flow.Q.size() == 1)¢
step = (1<< (k—=1)); if (flow.S<V) flow.S =V,
while (getBucket(slot).empty()){ else if (!Active.levelbits)
slot += step; V = flow.S;
k = ffs(slot); insertFlow (flow);
} }
levelCount[k-1] —= 1; }
if (levelCount[k-1] == 0)
clearbit(levelbits ,k); Fig. 6. Scheduler Enqueue Operation

return getBucket(slot).popfront();

} function dequeue (){
Vf = Vs = V/g;
if (mainQ.empty())}
if ('Active.levelbits) return;

Fig. 4. ISTW Search Operation

function ISTW::scan(slot){ flow = Active.search (Vs);
k = ffs(slot); 1 else {
if (!getBucket(slot).empty()) flow = mainQ.popfront();
setbit(frontbits ,k); 1
if (!frontbits) pkt = flow.Q.pop front();
return search(slot); transmit(pkt); // in the background
k = ffs(frontbits); V += pkt.size;
if (getBucket(slot).size() == 1) flow.S = flow.F;:
clearbit(frontbits ,k); if (!flow.Q.empty()) insertFlow (flow);
levelCount[k-1] —= 1; transfer ();
if (Ieve_lCount[k—_l] == 0) for (; Vf <V/g; Vf += 1) {
clearbit(levelbits ,k); mainQ.append(Active.getBucket(Vf));
return getBucket(slot).popfront(); }
} }
Fig. 5. ISTW Scan Operation Fig. 7. Scheduler Dequeue Operation

V. SCHEDULERDESIGN Flows are not necessarily taken from thet i ve container

A. Basic Operations directly, but instead for each increase in virtual time, the

SI-WFQ, first described in [5], uses the ISTW data strucdct i ve container is scanned for flows that have an “expired”
ture to implement a two-container solution for rate-basdthish time and these flows are moved to a central service
scheduling. We first show the pseudo-code foréngueue dqueuemai nQ This is a safe operation, since any packets that
and dequeue operations in here, before discussing its exarrive later will have their finish times set to a value greate
ecution complexity and analyzing its scheduling propertiéhan the system virtual time. Only if scanning comes up empty
using the general model from Section IIl. The two containet$., the next available finish time is greater or equal tien t
are termedAct i ve and Bl ocked with obvious semantics. current virtual time, théAct i ve container is searched. This
We assume a functionnser t FI owthat computes the finish procedure is further discussed in the next section.
time F according to (3), rounded timestamBs andFx, and Thetransfer operation, shown in Figure 8 implements
decides whether to insert a new or returning flow into thée transfer of flows that become eligible during the next
Bl ocked or the Acti ve container.V denotes the systempacket’s transmission, as well as a potential jump in virtua
virtual time. time corresponding to (6). Note that virtual time only jumibs

Theenqueue operation, shown in Figure 6 reconciles théhe Act i ve container is empty, therefore it does not interfere
flow’s start time with the system virtual time, before ingsgt with the scanning loop at the end déqueue.

a new flow. If a flow’s start time is “old”, Line 6 implements These operations using two ISTW containers collectively
the max function from (2). Otherwise, if the system is emptymplement the system model from Section Ill. The time
(Line 5), the virtual time is immediately set to the flow'sr$ta period represented by one slot is denoted by the constant
time according to (6), which effectively resets the system. g. To analyze the scheduling properties, compliance with

The dequeue operation, shown in Figure 7 chooses th®equirements 1 and 2 needs to be shown. However, we first

next flow for service and updates state variables as needdidcuss the execution complexity of the operations.

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 10

function transfer (){ just been chosen for service and thus, clearly satisfies the
while (Vs < V/g & !Blocked.empty()) { requirements of packet-amortized constant complexitys Th
if (!Active.levelbits & operation is the essential motivation for interleaving tinger
IBlocked. frontbits) { wheels in ISTW. Only because of interleaving it is possible
tmp = Blocked.search(Vs); to maintainf r ont bi t s smoothly, i.e., for each slot exactly
Vs = tmp.Sx; one bucket in one level needs to be checked.
} else { The overhead of the linear search in an ISTW container de-
tmp = Blocked.scan(Vs); pends on the distance in buckets between the starting pudnt a
Vs += 1; the timestamp found (cf. Section IV). In case of thet i ve

container, Equations (34) and (35) limit the range of rouhde
if (tmp) Active.insert(tmp.Fx, tmp); finishtimesatany virtual imé& to [V—L,V+SZ—+F1-+’;1—;]

} for any flow i. Assuming thatS; and F; are constant and
if (Vs>V/g)V=Vsx(g; not significantly larger than%’, this directly translates into
} packet-amortized constant overhead, because the seasth co
is immediately amortized by transmitting the packet. The
Fig. 8. Scheduler Transfer Operation only caveat is that the search has to starVat L, and L

may be relatively large compared to the other parameters,
especially when comparing to small packets from high rate
B. Execution Complexity flows. Therefore, thedequeue operation is enhanced by
-]) scanning théct i ve container for “expired” finish times that
The scheduler uses stratified rounded timestamps in combjia smaller than the current virtual time. The overhead ef th
nation with the ISTW data structure to keep the exeCUt'%anning loop at the end afequeue is proportional to the
complexity low. Stratification groups “similar” flows basedjze of the packet being transmitted. This guarantees that a
on their service rates and potentially other charactesisti gagrch inAct i ve, if necessary, can start at the virtual time.
The execution complexity of rate-based packet schedwers i gimilar reasoning can be used for tBeocked container.
typically characterized in relation to the number of flowshie The minimum start time is given by Requirement 1 and the
system, which implicitly assumes that per-packet opematio,avimum start time follows from (35) by assuming that a
have a small constant execution overhead. flow is reinserted into the blocked container immediatetemaf
However, in certain existing schedulers, the per-packet opacket service. Thereby, the range of rounded start times in
erations do not have truly constant per-packet overhead, By gcked is limited to [V—5;, V+Li]. The parfV —3;, V] is
occasionally need to execute loops with the worst-case rumBgyered by scanning and transfer,”so Blabcked only needs
of iterations being on the order of the number of flows iy pe searched, if the next start time is greater or equalttiean
the system. Since these occurrences are rare enough, thgjfent virtual time. However, there is a key differencette t
cost is amortized over time and termadhortized constant finish time search discussed above. The linear overheadof th
overhead However, given the tight timing requirements withgegrch (from the% component) corresponds to tipeevious
which packets have to be released to a high-speed output ligkcket of flowi, rather than the next one. The previous packet
it is not possible to ensure that the output link is alwayat causes a search might already be transmitted and thus,
fully utilized when the runtime of the per-packet operaionsearch overhead and packet transmission cannot be directly
cannot be tightly controlled. Examples of schedulers Wi t rg|ated as before. However, the search overhead per flow is
property are LFVC and those round robin schedulers that ggiited to the equivalent of: in buckets and clearly, multiple
subject to slip processing, as discussed in Section II. flows in the same level only increase the density of timestamp
In this work, we use a slightly different notion of “constantind do not add up to a higher search overhead. Since the
complexity”, which works well for packet schedulers. A patk pucket size is proportional t&-, an overall amortization buffer
scheduler typically needs to be designed for a worst-caffeetr of 1, ,,,,,,, for n levels and an MTU size of max, IS Sufficient

mix of only minimum-sized packets. If the cost of processing absorb this worst-case effect of the start search ovdrhea
a packet is proportional to the size of the packet, then the

increased cost for a larger packet is directly offset by #w f Scheduling Properties
that a larger packet keeps the link busy for a longer time.

Thereby, only the amortized cost for processing a packet jsRequirement 2 is Sa_lt'Sf'ed’ becausedlequeue operation
constant, but in contrast to long-term amortization asidised only transfers flows with a rounded start time greater or Equa

above, the amortization period is only one packet. We denc%Fbe y|rtual t!me thhroughs_can, or hse\t; tZe wrtuat\]I tlme tol a

this aspacket-amortized constant complexity particular, for ows stgrt time when usingear ¢ 1. Ve enqtet € tl_me S ot

the schedulers presented below we propose to set the Ieﬁﬁoq with A and s_h_ow that Requirement 1 IS _sat|sf|ed, if the

of a base time slot in the ISTW container to the minimurp ©VINg two conditions are met: For any flowin level &

supported packet size. We then only need to consider the loop

for assessing the execution complexity. > ik and (50)
The flow transfer loop i r ansf er executes in proportion 2

< k
to the increase in virtual time caused by the packet that has Si= 28X (51)

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 11

We show that during any time period without virtual timeanalyzed in [5], we omit the details here.
jumps, each bucket iBl ocked is cleared out, before the IS
virtual time reaches the next bucket in the same level. This %7 (S) = hy (X — 2\ with k = Uogg()J +1 (58)
establishes Requirement 1. A bucket Bhocked in level g
k covers2” time slots. Each flow only occurs once in each A (F) = hi(= + 2%)\ with k = UogQ(—)J +1 (59
bucket of its level inBl ocked, because if the flow’'s start A Ti
time after service falls in the same bucket as before, the flow
stays inAct i ve. Also, each bucket stays as the front buckdt: The K Packet Scheduler (KPS)
(indexed byfront bi ts) for a duration of2* time slots. As discussed in Section V-B, the start time search in the
Every slot in theBl ocked container marks the beginning ofbasic scheduler design incurs an execution overhead propor
new bucket, which may hold several flows. For a bucket #onal to Ll . The key idea to reduce the impact of tﬁeterm
level k, the system hag" time slots to clear the bucket. Ifis to stratlfy not only based on a flow's service rate as in Sl-
we denote the set of flows that are stored in buckatith WF?Q, but to also include the packet length to even out the
E., the number of elements in the set withE,. ||, the set of virtual duration of each packet in a stratified level. In theswv
flows in level k with uy, and the set of flows in levels..k proposal thBl ocked container determines a flow’s stratified
with Uy, we can show by induction ovérthat for any period service level based on the maximum virtual packet sizeerath
of 2¥ slots, the following equation holds. than just the service rate. The rounding function for stares

in the Bl ocked container is defined as

v+2F—1 S ’ L;
. S _ k H o %
> N E <25 mt | B || with 2>k (52) h7(9) = hw(5 — 27)A with &7 = Llogz(—m)J+1 (60)
T=v €U

whereL; is the maximum packet size of flow The rounding
The base casek(= 1) is trivial. One of two slots belongs function for finish times is identical to (59). We observe for

to level 1 and might contain one flowwith 0.5 < r; < 1. start times that Li 2L,
(Inductive Step) Assume (52) holds for k. Then: STA<—— (61)
o2kt Intuitively, the new rounding function in (60) addresses th
Z | E, | (53) start search problem by demoting flows with larger packets to
— lower levels. This effectively reduces the number of busket
vtk 1 ookl _q to search per level to one, regardless of the actual packet
- Z | Es || + Z | B, | (54) size, and thus avoids any linear search. On the downside, it
v —" also slightly increases the fairness bounds. We summadreze t
& ‘ & . characteristics of KPS in the following theorem.
<2 er: rit || B |l +2 er: rit || Bz | (55) Theorem 4:KPS is a GRPS scheduler with
[3 k T k
’ — ’ 4-L7,
= 25Nt | Bey ||+ B, || with 21,20 > k- (56) VAT < 2PN — (62)
€Uy 2\ '
= k
<2MU ST rit || B, || with 2o > k (57) Fi<2A< = (63)
#€Uk+1 S; <V 428) (64)
The first step splits up the time period of lengthit! Proof: Equation (49) in combination with (60) and (59)

into two periods of lengtl2* to prepare the inductive step.direct leads to (62) and (63), respectively. Since (50) is
The second step applies the induction hypothesis. The neatisfied by (60) and (59), and because the left part of (62)
step rearranges the terms and the last step uses the fajlowinidentical to (51), KPS is a GRPS scheduler.
consideration: One of the buckefs,, and E,, belongs to For (64), we observe that the highest possible start time
level k + 1. We assume without loss of general@l. Con- of a flow in theBl ocked container is immediately after its
dition (50) implies that| E., ||< 2¢+! > icuy., Ti- Further, service. Requirement 2 states that for an active flosy < V.
Uky1 = Uk U ugy1, and therefore, (56) can be transformed;mce (61) shows that service mcrea&sby at most2*’)\,
into (57), which confirms the hypothesis. In combinationhwit(64) follows directly.]
(51), this establishes Requirement 1. Therefore, (62) and (63) characterize the scheduling prop-
erties. Finally, (64) shows that rounded start times aresdto
at most one bucket behind the current bucket. Therefore, the
D. SI-WRQ start time search only incurs a small constant overhead.
Compared to SI-WEQ, KPS has slightly increased error
SI-WF2Q [5] implements the basic scheduler design witterms for relative and absolute fairness. However, most im-
the following rounding functions. Its scheduling errornter portantly, all flow-rate dependent error terms only depend o
are very small, but constant complexity requires an amorgach flow’s respective packet sizes and all error terms have
zation buffer as discussed in Section V-B. Since it has beenly small coefficients. This is the typical litmus test for a

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 12

rate allocation

high-quality GPS approximation. However, strictly speaki — _
KPS still has packet-amortized constant overhead, sinee —
t ransf er function must be executed while a packet is being

transmitted and its overhead is proportional to the padket s

F. Simple KPS R =) N cs1)] [csDo
. . . %333 Kbit/s ""%333 waJ % 11 Mhil/i % 333 KbiJﬁ""}“ 333 KbiLLs
In this simpler variant of the scheduler, we apply the new(swxus
stratification method to théct i ve container, as well. This
also reduces théicti ve container to significantly fewer M;;Vl %I'SE’?"
buckets, which reduces the overall memory footprint and [aowows | [Faowbs |

execution overhead. The start container remains the same as
in KPS. The rounding function for start times is identical t&ig- 9. Scheduling Hierarchy
(60) and for finish times it is

hE(F) = hk(X + 2F)\ with & = Uogg(/\—)J +1 (65) As mentioned before, hierarchical scheduling is an excelle
_ _ T _ litmus test to verify and illustrate the worst-case faimes
Theorem 5:Simple KPS is a GRPS scheduler with (62) anglroperties of a packet scheduler. In contrast to the exgerisn

(64), as well as in [19], we only compare to the non-shap8thrting Potential
_ A i Fair Queueing(SPFQ) scheduler from [22]. Its worst-case
Fi <2PA < e (66) faimess properties are comparable to the WFQ, SCFQ, and
B <V 44280 67) SFQ schedulers chosen in [19].

The relevant observation parameters for these experiments
Proof: The considerations are the same as for KPS, excepe the queueing delay variations experienced by the RT-
for (67): Equation (35) states th#; < V +5; + ££. Since 1 traffic during the experiment. The results are shown in
S; < 21X from (62), &£ < 2k from (61), andF; < F, + Figure 10 as the worst-case delay measurement over irgerval
2k \ from (5) and (66), (237) follows directly. m of 50ms. For illustrative purposes, the SI-WF delay is
While the delay error term for Simple KPS is worse thahown excluding the additional amortization buffer. Samil
for KPS, all flow-rate dependent error terms still only degperfo the original results in [19], a non-SEFF scheduler causes
on each flow’s packet size and all error terms have only smaignificant delay variations for the real-time traffic cla¥se
coefficients. The asymptotic execution overhead is the semesuperior worst-case fairness of W@+ resullts in significantly
for KPS, but (67) shows that the absolute memory footprifgéduced delay fluctuations, independent of the type of cross
and search overhead fdkcti ve is significantly reduced, traffic. Omitted here, but shown in [5], SI-W® provides
sinceAct i ve can now be implemented with only five bucketdasically the same service as W+ As predicted by the

in each level, regardless of packet sizes. analysis, KPS and Simple KPS deliver a worst-case fairness
that is almost as good as that of W@+ and SI-WEQ, despite
VI. SIMULATIONS their drastically reduced execution overhead.

We use a modified simulation setup from [12] to illustrate
the worst-case fairness of the schedulers proposed indbisrp VIl. DISCUSSION

in comparison to WEFQ+ and a pure finish-time scheduler. A)])
hierarchical scheduling setup is an ideal test to exposstwor 1S Work introduces the concept of packet-amortized con-

cast fairmess characteristics of a scheduler. We uséQafas Stént complexity. Execution complexity is not defined in
a benchmark with known excellent scheduling properties, §2ation to an arbitrarily sized unit of work. Instead, asgas

well as SPFQ [22] as a scheduler that lacks proper mechanidfifs Overhead is strictly proportional to the size of the wifit
to guarantee low worst-case faimess. work (a packet in this case), it is considered constant. Nate

The simulation setup uses a dumbbell topology with the basic complexity consideration is independent of wéreth

single bottleneck and multiple sender and receiver nod&d€ actual execution speed on any particular platform is fas
The bottleneck link is configured with a hierarchy of servicENough to achieve line speed. o
classes as shown in Figure 9. The figure also shows the actuaﬁ‘;"w'jQ_ and the other schedulers proposed in this paper
sending rate per service class. For each leaf class, ther@ff§" Superior properties compared to all other known packe
one sender sending at the specified rate. The CS send&Redulers. Their main benefits are:

send at a constant bitrate, while the PS sources send Poissan The KPS scheduling algorithm can be executed with true
traffic with an on-period of 75ms and an off-period of 25ms. packet-amortized constant complexity. This is the key
The BE-1 service class is always backlogged and the RT-1 improvement over SI-WH) and WFQ+. For Simple
sender sends CBR traffic with a pattern of 75ms on-period and KPS, the execution overhead is even smaller.

25ms off period. All packet sizes are set to 8000 bytes. Thise The absolute execution overhead and memory footprint
represents the scenario “with correlated background dfaffi is small. At the core of the algorithm, treear ch and
from [12], since it provides the most challenging enviromtne scan operations only access ISTW bitmaps frequently.

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 13

01 T T T T 0.1 T T T T
RT-1 Delay for WF2Q+ RT-1 Delay for SPFQ

0.06 - B 0.06 - B

Delay (sec)
Delay (sec)

0.02 - B 0.02 1 H

0 I I I I 0 I I I I
] 2 4 6 8 10 0 2 4 6 8 10

Time (sec) Time (sec)

0.1 T T T T 0.1 T T T T
RT-1 Delay for KPS RT-1 Delay for Simple KPS

0.08 - B 0.08 - B

Delay (sec)
Delay (sec)

v MWWWNWWWM " WMWMW/WVMMW

0 2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec)

Fig. 10. RT-1 Delay with Different Schedulers

Interleaving and stratification of timer wheels allows foacross its delay and fairness properties, the average texecu
controlled but timely processing of timers. This is the kegverhead, as well as the necessary time period for amagtizin
improvement over LFVC. the worst-case execution overhead, if applicable. Thelexec
The schedulers have constant small scheduling erraisn overhead does not necessarily follow from the respecti
only depending on per-flow characteristics and constartgginal proposal, but is determined using the best avilab
depending on the link speed. In particular, there is rtechniques for virtual time maintenance [23], as well as van
MTU error term of Lmax/7:, @s in round robin schedulers.Emde Boas priority queues [20] with a finite number of

In contrast to Opt|ma| GPS approximationsy such aS2Q/F rounded time SIOtS, if applicable. In the tabN,referS to the
[12] or the improved version in [23], the main limitationshumber of flowsy: to the number of stratification level& to

of the schedulers considered here are given below. HoweJ8€ number of time slots in the time horizon, afido the link
these are practical conditions for most realistic confians. SPeed. Al other variables are the same as in the matherhatica

model. In the following sections, we briefly discuss additib

A minimum packet size and service rate are required.
P d Wterestlng aspects about the analytical model and scbeedul

A maximum packet size must be specified for each flo
in KPS and Simple KPS. A

A priority encoder of widthlog, (—mkspeed y pirg jg
needed. For example, 32 bits can support service rafgs

) - > Analytical Model
from 1 Kbit/s to 4 Thit/s. If not supported by hardware,
it can be implemented in software at c6&flog,(Width)). The analytical model can be used to quickly assess a
The sum of relative rates must be less than 1. large variety of different schedulers. For example, LFVC [4
Timestamp rounding introduces small extra error termss g rate-controlled rounded timestamp proposal. Using its
Packet-amortized constant complexity results in lingounding scheme to determine the model parameferand
speed processing, only if the underlying hardware cgn, the scheduler properties follow directly. For finish-time
support line-speed forwarding at minimum packet sizegnly schedulers such as WFQ [15] or SPFQ [22], Case 2 in

Table | presents a summary of the schedulers discusdesinma 2 does not apply and the fairness properties cannot
throughout this paper. For each type of scheduler, the talble assessed, but the delay properties follow directly ynget
lists the dominant error term component (without coeffitsgn F; = 0 or the appropriate rounded finish time.

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER 14

TABLE |
SUMMARY OF RATE PROPORTIONALSCHEDULERS

[Type | Worst-Case Scheduling Errdr Execution Overhead | Amortization Period]|
GPS [11] 0 oo n/a
VC [16] oo O(logN) or O(loglogK) | nla
WFQ [15] N - Lmax O(lOgN) n/a
SCFQ [10] N - Lmax O(logN) or O(loglogK) | nla
SFQ [17] N - Lmax O(logN) or O(loglogK) | nla
SPFQ [22] N - Lmax O(logN) or O(loglogK) | nla
RR Variants (cf. Section II-G)| N - Lmax O(1) n/a
WFZQ [12] Lmax—+ Lilr; O(logN) nfa
WF?Q+ [19] Lmax+ Lilr; O(logN) n/a
LFVC [4] Lmax+ Lilr; O(logN) or O(loglogK) | N - LmadC
Sl'WFzQ Lmax + LZ/TZ O(l) n- Lmax/C
N: number of flows, n: number of levels, K: number of time sldgs link speed
B. Implementation Details would be a suitable choice for CPU scheduling where the

The schedulers proposed in this paper use a flow's magheduler itself competes with the scheduled workload. The
imum packet size to determine the appropriate stratifinati®/MpPle KPS variant eliminates most of this bottleneck and
level. We do not consider this a major restriction, since Qd8ight be a candidate for CPU scheduling. However, there are

service models such as Integrated Services [1] require §fill operations that are proportional to the current uhitork.

specification of this parameter anyway. At runtime, flows
simply stay in theAct i ve container after service of a smaller VIIl. CONCLUSIONS
packet. Smaller packets are still subject to the delay andwe present a general analytical model to assess the schedul-
fairness error terms based on the maximum packet size, g properties of GPS approximation schedulers that operat
most timing-critical applications will operate with masfixed on rounded timestamps. It can be used to quickly assess the
packet sizes anyway. scheduling properties of candidate schedulers. We alsepte
Assuming that the minimum packet siz& (esp.g) is a proposals for different variations of the same basic scleedu
power of 2, the data path implementation of all proposefksign that illustrate the design choices for trading off im
schedulers is extremely simple and only requires the maslementation complexity and overhead with scheduling -qual
agement of linked lists, addition and shift operations, @il wity. The proposed schedulers are analyzed using the general
as a single multiplication to determine the virtual packeés model. We illustrate the results by simulations. The KPS and
In addition, only the ffs operation is required to implemengimple KPS schedulers introduced here approximate GPS with
efficient search between stratified levels. The computaifon near-optimal service properties and can be implementeu wit
the logarithm to determine the stratified level only happe®nstant execution overhead. In future work, we will attemp
at flow setup time and can be done on the control processerproduce realistic implementations of these algorithms.
Therefore, dind last bit set(fls) operation is not needed. However, a packet scheduler is only one component in
The KPS scheduler and its simpler variant have a sig-very complex network architecture. The overall trade-off
nificantly smaller memory footprint than SI-W®, because of different architecture proposals and service models wit
one or both containers are reduced in size. This shoulskpect to the viability of business models, which are nyainl
help with efficient implementation, since most of the reféva shaped by application demand, remain fundamentally unclea
information can be stored in fast on-chip memory. Nevertheless, the availability of an efficient and sopbigtid
We have implemented a preliminary version of the KPBacket scheduler hopefully opens new avenues for the design
scheduler on an Intel IXP network processor to verify itand operation of packet-switched communication networks.
feasibility and found that the absolute execution overhead
seems small enough to support very high line rates [38]. ACKNOWLEDGEMENTS
Howeve_r, a more thorqugh study qf |mplementat|on.aspect.s,_l_his work is supported by the Natural Sciences and En-
along with a prototype implementation and lab experimests i.

needed to completely assess the implementation chasigsri gineering Research Council of Canada. Early feedback from
of any of the schedulers discussed in this paper S. Keshav has helped shaping its direction. Paolo Valerge ha

pointed out problems in previous versions of the paper and

provided very useful feedback. The anonymous reviewers hav

C. CPU Scheduling? also given valuable feedback to improve the presentatitneof
The execution overhead of SI-W® and KPS is pro- paper.

portional to the size of the packet being transmitted and

philosophically relies on the assumption that network line REFERENCES

cards are designed to sustain a traffic mix consisting of only; s spenker, c. Partridge, and R. Guerin, “RFC 2212 - Sigation of

minimum size packets. Therefore, it is not clear whether it Guaranteed Service,” Sep. 1997.

TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXNDED VERSION OF ACM/IEEE TON PAPER

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

J. C. R. Bennett, K. Benson, A. Charny, and J.-Y. L. Witlid&. Courtney,
“Delay Jitter Bounds and Packet Scale Rate Guarantee foedibeul
Forwarding,” IEEE/ACM Transactions on Networkingol. 10, no. 4,
pp. 529-540, Aug. 2002.

A. K. Parekh and R. G. Gallager, “A Generalized ProcesSbaring
Approach to Flow Control in Integrated Services Networkise Bingle-
Node Case,IEEE/ACM Transactions on Networkingol. 1, no. 3, pp.
344-357, Jun. 1993.

S. Suri, G. Varghese, and G. Chandranmenon, “Leap Forwatual
Clock: A New Fair Queuing Scheme with Guaranteed Delays and

[24]

[25]

[26]

Throughput Fairness,” irProceedings of INFOCOM 1997 IEEE, [27]
Apr. 1997, pp. 557-565, technical report with full proofsaidable at
http://citeseer.ist.psu.edu/74110.html. [28]

M. Karsten, “SI-WFPQ: WFQ Approximation with Small Constant
Execution Overhead,” ifProceedings of INFOCOM 2006 IEEE, Apr.

2006. [29]
——, “Approximation of Generalized Processor Sharingthwinter-
leaved Stratified Timer Wheels,” to appear in ACM/IEEE Tiat®ns

on Networking. [30]
P. Goyal and H. M. Vin, “Generalized Guaranteed Rate Salieg
Algorithms: A Framework,”IEEE/ACM Transactions on Networking

vol. 5, no. 4, pp. 561-571, Aug. 1997.

A. K. Parekh and R. G. Gallager, “A Generalized ProceStwaring Ap- (31]
proach to Flow Control in Integrated Services Networks: Mhdtiple
Node Case,IEEE/ACM Transactions on Networkingol. 2, no. 2, pp.
137150, Apr. 1994. (32

D. Stiliadis and A. Varma, “Latency-Rate Servers: A Gehdvlodel for
Analysis of Traffic Scheduling Algorithms[EEE/ACM Transactions on
Networking vol. 6, no. 5, pp. 611-624, Oct. 1998.

S. J. Golestani, “A Self-Clocked Fair Queuing SchemeBeooadband
Applications,” in Proceedings of INFOCOM 1994 IEEE, Jun. 1994,
pp. 636—646.

A. K. Parekh, “A Generalized Processor Sharing ApphoacFlow Con-
trol in Integrated Services Networks,” Ph.D. dissertatibtassachusetts
Institute of Technology, Feb. 1992.

J. C. R. Bennett and H. Zhang, “WB: Worst-case Fair Weighted Fair

(33]

[34]

[35]

Queueing,” inProceedings of INFOCOM 1996 IEEE, Mar. 1996, pp. 50}
120-128.

H. Sariowan, R. L. Cruz, and G. Polyzos, “SCED: A Gerieeal 137]
Scheduling Policy for Guaranteed Quality of ServicéEZEE/ACM
Transactions on Networkingrol. 7, no. 5, pp. 669-684, Oct. 1999. 38]

I. Stoica, H. Zhang, and T. S. E. Ng, “Hierarchical Fagr8ce Curve
Algorithm for Link-Sharing, Real-Time and Priority Sereit ACM
Computer Communication Reviewol. 27, no. 4, pp. 249-262, Oct.
1997, Proceedings of SIGCOMM 1997.

A. Demers, S. Keshav, and S. Shenker, “Analysis and Bitiom of
a Fair Queueing Algorithm,ACM Computer Communication Review
vol. 19, no. 4, pp. 1-12, Sep. 1989, Proceedings of SIGCOMBB19
L. Zhang, “Virtual Clock: A New Traffic Control Algoritm for Packet
Switching Networks,”ACM Computer Communication Revievel. 20,
no. 4, pp. 19-29, Sep. 1990, Proceedings of SIGCOMM 1990.

P. Goyal, H. M. Vin, and H. Cheng, “Start-Time Fair Quige A
Scheduling Algorithm for Integrated Services Packet Swiitg Net-
works,” IEEE/ACM Transactions on Networkingol. 5, no. 5, pp. 690—
704, Oct. 1997.

D. Stiliadis and A. Varma, “A General Methodology for §lgning
Efficient Traffic Scheduling and Shaping Algorithms,” Rroceedings
of INFOCOM 1997 |EEE, Apr. 1997, pp. 326—335.

J. C. R. Bennett and H. Zhang, “Hierarchical Packet Fireueing
Algorithms,” IEEE/ACM Transactions on Networkingol. 5, no. 5, pp.
675-689, Oct. 1997.

P. van Emde Boas, R. Kaas, and E. Zijlstra, “Design anplémentation
of an Efficient Priority Queue,Mathematical Systems Thepmpol. 10,
pp. 99-127, 1977.

G. Varghese and A. Lauck, “Hashed and Hierarchical mgniWheels:
Data Structures for the Efficient Implementation of a Timecikty,”
Operating Systems Review Special Issue: Proceedings dEléwenth
Symposium on Operating Systems Principles, Austin, TX, U8A21,
no. 5, pp. 25-38, Nov. 1987.

D. Stiliadis and A. Varma, “Efficient Fair-Queueing Algthms for
Packet-Switched Networks|EEE/ACM Transactions on Networking
vol. 6, no. 2, pp. 175-185, Apr. 1998.

P. Valente, “Exact GPS Simulation with Logarithmic Cplexity, and
its Application to an Optimally Fair Schedule’®®CM Computer Com-
munication Revieywol. 34, no. 4, pp. 269-280, Oct. 2004, Proceedings
of SIGCOMM 2004.

15

Q. Zhao and J. Xu, “On the Computational Complexity ofiMaining
GPS Clock in Packet Scheduling,” FProceedings of INFOCOM 2004
IEEE, Mar. 2004.

J. Xu and R. J. Lipton, “On Fundamental Tradeoffs betwéelay
Bounds and Computational Complexity in Packet ScheduliigoA
rithms,” IEEE/ACM Transactions on Networkingol. 13, no. 1, pp.
15-28, Feb. 2005.

D. C. Stephens, J. C. Bennett, and H. Zhang, “ImplemgnBicheduling
Algorithms in High-Speed NetworksJEEE Journal on Selected Areas
in Communicationsvol. 17, no. 6, pp. 1145-1158, Jun. 1999.

G. N. Rouskas and Z. Dwekat, “A Practical and Efficienplementation
of WF2Q+,” in Proceedings of ICC 2007 IEEE, 2007.

C. Guo, “SRR: An O(1) Time Complexity Packet SchedutarFlows in
Multi-Service Packet Networks/EEE/ACM Transactions on Network-
ing, vol. 12, no. 6, pp. 1144-1155, Dec. 2004.

——, “G-3: An O(1) Time Complexity Packet Scheduler ThHabvides
Bounded End-to-End Delay,” iRroceedings of INFOCOM 2007IEEE,
2007.

S. Ramabhadran and J. Pasquale, “Stratified Round Rdébibow
Complexity Packet Scheduler with Bandwidth Fairness andnled
Delay,” ACM Computer Communication Reviewol. 33, no. 4, pp. 239—
250, Oct. 2003, Proceedings of SIGCOMM 2003.

X. Yuan and Z. Duan, “FRR: a Proportional and Worst-Cga& Round
Robin Scheduler,” inProceedings of INFOCOM 2005 IEEE, Apr.
2005.

B. Caprita, J. Nieh, and W. C. Chan, “Group Round Robimptoving
the Fairness and Complexity of Packet Scheduling,Pinceedings of
the 2005 Symposium on Architecture for Networking and Camiwau
tions Systems ACM Press, Oct. 2005, pp. 29-40.

L. Zhong, J. Xu, and X. Wang, “VWQGRR: a Novel Packet Stiner,”
in Proceedings of ICN 2007 IEEE, 2007.

Y. Zhou and H. Sethu, “On the Relationship Between Absmoland
Relative Fairness BoundslEEE Communication Lettersol. 6, no. 1,
pp. 37-39, Jan. 2002.
“The Aggregate Magic
http://faggregate.org/MAGIC
Intel Corp., “Intel 64 and IA-32 Architectures Optinaitton Reference
Manual,” Dec. 2008, Order Number: 248966-017. [Online]aiable:
http://www.intel.com/products/processor/manuals/

——, “Intel IXP2805 Network Processor - Programmer’sfé&ence
Manual,” Apr. 2006, Order Number: 310015, Revision: 007US.

M. Groves, “Concurrent Implementation of Packet Pssieg
Algorithms on Network Processors,” Master’s thesis, Ursitg of
Waterloo, 2006. [Online]. Available: http://hdl.handiet/10012/2937

Algorithms.” [Online]. Availabl

