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Abstract — Internet QoS is still a highly debated topic for more
than ten years. Even with the large variety of QoS proposals and
the impressive research advances, there is still little deployment of
network layer QoS technology. One specific problem domain is
QoS signalling, which has recently attracted increasing attention
to bring forward new standardization approaches. In this article,
an extensive study of RSVP is presented, covering protocol design,
software design and performance aspects of the basic version of
RSVP and of certain standardized and experimental extensions.
The work is based on and presents the experience from implement-
ing RSVP for UNIX systems and the ns-2 simulation environment,
including a variety of protocol extensions and incorporating a
number of internal improvements. The implementation has been
subject to extensive functional and performance evaluations, the
results of which are reported here.*

I. INTRODUCTION

Quality of Service (QoS) and particularly QoS signal-

ling in the Internet are highly debated topics for more than

ten years. Recently, QoS signalling has attracted increas-

ing attention resulting in new standardization efforts [1].

RSVP [2] is a QoS signalling protocol that is proposed as

IETF standard. It has been discussed extensively, but most

of the discussion often seems to be based on second-hand

knowledge rather than proper analysis or first-hand expe-

rience. While it is clearly arguable whether RSVP’s initial

design goals still hold true in the current and future Inter-

net environment, it is generally important and the major

goal of this work to thoroughly study RSVP, before pre-

cipitously designing successor protocols. The work pre-

sented here summarizes, updates and consolidates earlier

publications on this topic, which are cited if they provide

crucial additional details. It is not at all intended to give

any final judgement about the suitability of RSVP for any

specific purpose, but rather aims to deliver an unbiased

and comprehensive evaluation of its strengths and weak-

nesses from a practical implementation point of view.

This article is organized as follows. In the next section,

basic considerations for QoS signalling are reviewed to

set the context for a conceptual discussion of RSVP’s

design properties in Section III. In Section IV, the design

and implementation of a protocol engine with standard-

ized extensions is presented, while the details and results

of various experimental studies are reported in Section V.

Some experimental protocol extensions are presented and

discussed in Section VI, again in terms of implementation

and experimental evaluation. A survey of related work can

be found in Section VII and the article is concluded in

Section VIII with a summary of the overall findings and

results, as well as an outlook to future work.

II. QOS SIGNALLING IMPLEMENTATION - FUNDAMENTALS

Internet routers typically employ a kernel-based operat-

ing system similar to UNIX. The packet processing and

forwarding path is implemented in kernel space and often

executes on dedicated hardware while control-level mech-

anisms, for example routing protocol engines, are run as

user-level daemons on the main processor. Given this type

of platform, there is a choice to implement a QoS signal-

ling protocol as part of the operating system kernel or as a

user-level daemon. There are several aspects that need to

be taken into account when making that decision. In prac-

tice, the higher the complexity of a protocol engine, the

more likely it is to be implemented as a user-level dae-

mon. This is due to the stronger robustness of user-level

software through process and memory management serv-

ices, increased flexibility with respect to updating core

functionality, and easier realization of interactions with

external components, for example a policy system [3].

For intra-domain QoS signalling, a protocol’s main task

is to implement a distributed algorithm to achieve a com-

mon goal. In case of inter-domain QoS signalling, how-

ever, a signalling protocol mainly serves as a service

interface between adjacent network domains. Both cases

differ a lot in terms of their requirements. In the intra-

domain case, there is a higher level of trust and common

interest among multiple participating nodes. Efficiency is

then the prime goal for all technologies being applied. In

the inter-domain case, there is less trust and common

interest. For example, accountability, security, and non-

repudiation are major concerns when it comes to negotiat-

ing service requests and likely require a more complex

QoS signalling protocol. Also, these aspects likely require

an implementation that allows for flexible interaction with

external components. Existing proposals address a differ-

ent subset of these aspects. In that spectrum, RSVP is

probably best regarded as hybrid proposal for a uniform

protocol that can be employed both within a network

domain at every node, but also as inter-domain service

interface. It is not at all clear whether RSVP is most suita-

ble as either an intra- or inter-domain QoS signalling pro-
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tocol, or whether alternative proposals will eventually

dominate in terms of functionality and efficiency. How-

ever, a detailed understanding of these different require-

ments is necessary to adequately decide between a user-

or kernel-level protocol implementation.

The work presented here is focused on plain RSVP sig-

nalling only and as such, no assumptions are being made

about either of the above cases. However, because of the

significant complexity of RSVP as well as the potential

interaction with external components, it has been decided

to implement the protocol engine as a user-level process.

III. PROTOCOL DESIGN OF RSVP

In this section, the design of RSVP is discussed infor-

mally, based on available earlier work and the author’s

implementation experiences. For a detailed introduction

into RSVP, the reader is referred to a tutorial article [4].

A.  Processing Overview

As with all IETF standard protocols, there is no formal

specification of a finite state machine for RSVP. Never-

theless, it can be very useful to introduce the notion of at

least an informal processing diagram to properly present

and understand the functionality of a protocol implemen-

tation. Fig. 1 shows the illustration of such a diagram for

the four main messages that potentially change internal

signalling state (PATH, PTEAR, RESV, RTEAR). Error

and confirmation messages (PERR, RERR, RCONF) are

merely forwarded by an RSVP daemon and are thus not

captured by the processing diagram. Interactions with the

traffic control subsystem are not explicitly shown, as well.

Beginning with State Update, each processing step may

or may not result in changes of internal state information.

The respective next processing step is only executed, if

state information is changed during the previous one.

During State Update, it is checked whether an incoming

message merely refreshes existing state (PATH, RESV) or

does not refer to existing state at all (PTEAR, RTEAR). If

yes, state timers are revised and message processing ter-

minates. For all other messages, reservation aggregation

for multiple downstream hops behind an outgoing inter-

face (multicast) is handled in Downstream Merge. The

resulting reservation state is communicated to the packet

scheduler during Reservation Update. Reservation aggre-

gation across multiple outgoing interfaces (multicast) and

for multiple senders sending through the same incoming

interface is handled in Upstream Merge. If during any of

the processing steps no further changes have to be propa-

gated throughout the system, message processing is termi-

nated. Whenever state is created or refreshed during State
Update, a timeout timer is started. Upon expiration of

such a timeout, the corresponding state is deleted and the

remaining processing sequence is invoked. If a new out-

going message is created, a refresh timer is started which

triggers the periodic retransmission of this message. As a

result, the pure processing diagram appears to be rela-

tively simple. However, in combination with the variety of

different flow description styles and the resulting flexibil-

ity requirement for storing internal state information, the

protocol engine becomes relatively complex, particularly

in terms of state administration. This topic is further dis-

cussed in the next section and in Section IV.B.

B.  Particular Design Aspects

RSVP offers a high degree of robustness and flexibility

and efficiently supports a variety of group communication

patterns. The complexity of any RSVP implementation is

largely determined by RSVP’s main design goals, but it is

also influenced by other decisions, such as the layout of

internal state representation. In this section, design princi-

ples of RSVP (originally presented in [5]) are reviewed

with respect to their impact on execution complexity and

performance. The findings are justified later in the article.

Per-Flow Signalling. RSVP requires the exchange of

signalling messages between participating nodes per flow.

This in turn results in communication overhead that is at

least linear in the number of signalling requests. In princi-

ple, a flow could also denote the aggregation of multiple

application flows, but the basic RSVP flow addressing

scheme effectively prohibits such aggregation. There has

been work on including CIDR addressing into RSVP [6],

but this proposal has not been incorporated into the stand-

ard specification. Recent work on protocol extensions for

tunnelling [7], request aggregation [8] and MPLS signal-

ling [9] alleviate this restriction, albeit by assuming addi-

tional packet encapsulation and/or packet marking.

State
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Figure 1: RSVP Processing Diagram.
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Per-Flow State. In RSVP, per-flow state information is

stored at each participating node. This results in storage

overhead that is linear in the number of flows. Despite the

need for randomly accessible per-flow state, an appropri-

ate design of an implementation’s internal data structures

(see Section IV.B for details) can keep the resulting com-

putation overhead almost constant.

Soft State. The concept soft state in RSVP mandates

periodic but asynchronous refreshing of state information,

such that for any flow between any pair of adjacent nodes,

an individual refresh period can be used. The periodic

refresh of state information increases the communication

overhead by a fixed factor, but does not change its com-

plexity. The administration of timeouts and asynchronous

refreshes requires the use of at least two timers for each

unit of state information. This in turn results in a timer

container, the size of which is linear in the number of

flows. Again, with an appropriate layout of the timer con-

tainer, the resulting overhead can be kept almost constant.

Simplex Flows. RSVP is designed to signal for simplex

transmission flows, because one-way multicast communi-

cation was deemed an important application scenario at

the time. However, even for bidirectional communication

scenarios, a network layer signalling protocol must inter-

nally use the notion of simplex flows as basic building

blocks to gracefully deal with asymmetric unicast routing

and multicast routing not using shared trees. Because of

this design, establishing QoS for a bidirectional commu-

nication path requires at most twice as much communica-

tion and state overhead as a duplex signalling protocol

(which would require symmetric routing). Details depend

on the QoS model and its representation and whether the

requested service characteristics are symmetric.

Message Exchange. With RSVP, the actual QoS request

is initiated by the receiver of a flow. The communication

pattern is termed “one-pass with advertising”, but essen-

tially represents a two-pass signalling model. PATH mes-

sages establish the path information at intermediate nodes

from each sender to each receiver and provide a fallback

mechanism to react to routing changes. This information

is later used to transmit RESV messages from the receiv-

ers back towards the senders along the same paths, subject

to request merging. This particular design was chosen for

a number of reasons. First, receiver-initiated QoS requests

are necessary to support receiver-oriented multicast and

request merging. Second, storage of path information ena-

bles transparent traversal of non-RSVP nodes along the

network path. Finally, storage of sender-specific path and

reservation information makes RSVP messages idempo-

tent, which is an important and valuable robustness prop-

erty. This communication pattern imposes increased

communication and computation overhead when com-

pared to a sender-initiated protocol, since each node has

to process two messages to establish QoS for a simplex

flow. Further, supporting sender-specific state information

prohibits certain types of aggregation, as for example pro-

posed for BGRP [10]. On the other hand, global consist-

ency for proposals such as BGRP requires reliable

communication, which may be hard to guarantee in the

presence of node failures, or reduced resource utilization

to accommodate temporary failures.

Multicast. RSVP’s support for multicast also requires

maintaining separate sender and receiver state, at least for

multicast sessions. This case is detectable by inspecting

the session address when receiving the first PATH mes-

sage for a new session. While it seems possible to use sep-

arate processing paths and optimize the protocol engine

for the unicast case, this would certainly increase the

overall complexity of a protocol implementation.

Multiple Senders. Support for multiple senders requires

maintaining separate sender and receiver state, at least for

such sessions with multiple senders. It might be possible

to optimize an implementation for the single-sender case,

but besides the resulting increase of the overall complex-

ity of a protocol implementation, this would likely need

support in the protocol specification. In contrast to multi-

cast sessions, the eventual existence of multiple senders is

not detectable when state is created for a new session, so

an appropriate protocol element would be necessary to

distinguish the single-sender from the multiple-sender

case.

Filter Styles. RSVP allows for the specification of ses-

sion senders in multiple types of combinations. These so-

called filter styles increase the implementation complex-

ity, because multi-sender specifications must be used as

keys to index certain types of state elements. Multiple fil-

ter styles prohibit the design of a single, simple data struc-

ture for this purpose, which in turn increases the

complexity of matching state entries. As before, an opti-

mization for certain subsets of the full functionality might

be possible at the cost of increased overall complexity.

Flexible Protocol Elements. There is a great amount of

flexibility in RSVP to compose protocol messages from

individual protocol elements. Further, protocol elements

for the actual QoS specification are separated from signal-

ling elements. All protocol elements are specified in a

binary format. The possible variations on the order and

existence of objects increase the complexity of internal

message representation and message parsing, compared to

a more simplistic protocol.

Extension: Refresh Reduction. An extension to RSVP

can be used to reduce the overhead associated with state
3
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refresh in RSVP [11]. This extension reduces the commu-

nication overhead of refresh signalling by assigning inte-

ger identifiers to state information and bundling multiple

refresh notifications into a single protocol message. The

effect of this extension is somewhat limited, because there

is a maximum number of state refreshes per refresh mes-

sage to avoid packet fragmentation (which would nullify

the intended performance benefits). Further, certain oper-

ations still have to be performed for each flow for each

refresh cycle and these operations often dominate the exe-

cution cost and keep the overall execution overhead linear

in the number of signalling requests per time.

IV. SOFTWARE DESIGN AND IMPLEMENTATION

The major design goals of the protocol implementation

presented here are clarity of design and code, as well as

the potential to investigate protocol extensions and inter-

nal optimization. The resulting code might achieve these

goals only to a limited extent, but some lessons have been

learned and are reported below. These findings are likely

to be useful for the efficient implementation of other sig-

nalling protocols, as well. The software is available at:

http://www.kom.e-technik.tu-darmstadt.de/rsvp

http://www.uwaterloo.ca/~mkarsten/rsvp

A.  Software Overview

To give a very rough idea of the complexity of the soft-

ware, all parts of the package are listed in Table 1 together

with their approximate size in lines of code. In Table 1,

the terms Protocol Elements and Common Services refer

to code that is used for both the client API and the proto-

col daemon.

B.  State Representation

The state representation in this implementation is based

on the design suggested in RFC 2209 [12], but is signifi-

cantly modified and broken down into a more fine-grained

layout. All state is stored as objects containing relation-

ships to other objects. The main entry point into the state

representation is given by Session objects, which are

stored in a global, hash-based container. Starting from a

Session object, the full state for each session can be tra-

versed to access specific state blocks. Most information

from a PATH message is stored in a Path State Block
(PSB) whereas request-specific contents of a RESV mes-

sage are stored in a Reservation State Block (RSB). As an

example for relationships, each PSB has a relationship to

a Previous Hop State Block (PHopSB) representing the

hop from which this PATH message has been received.

Information about an actual resource reservation at an

outgoing interface is stored in an Outgoing Interface State
Block (OutISB). The relationship between such reserva-

tions and PSBs would be an N:M relationship, because of

RSVP’s support for multiple senders and multiple receiv-

ers. This N:M relationship is split into two 1:N relation-

ships by introducing an entity Outgoing Interface at PSB
(OIatPSB). This class allows to precisely consolidate the

context for interactions of the main protocol engine with

the traffic control module, for example, to enable auto-

matic cleanup of packet scheduler state. Fig. 2 shows the

entity-relationship diagram for the design of RSVP state

information. Table 2 shows the most important attributes

stored in different entities and illustrates the more fine-

grained distribution of state information across entities

compared to the basic design in RFC 2209 [12]. Model-

ling state by an entity-relationship model is deemed use-

ful for understanding and documenting the design of an

implementation using object-relationships [13].

C.  Fuzzy Timer Management

As discussed in Section III.B, two timers need to be

maintained for each path and reservation state block. Con-

sequently, timer handling requires the single largest sorted

container in an RSVP engine. The data structure in this

implementation is based on a timer wheel [14].

TABLE 1: SOFTWARE PACKAGE OVERVIEW

Software Component Lines of Code

Protocol Elements (Generic) 4,300

Common Processing Services (Generic) 3,300

Common Services (Platform-Specific) 800

Protocol Daemon (Generic) 7,900

Protocol Daemon (Platform-Specific) 2,400

Interaction with Packet Schedulers 4,800

Interaction with MPLS Forwarding 500

Client API 700

Java Client API 500

Traffic Generator 4,300

Other Client Programs 3,100

Core RSVP ns-2 Extensions (C++,Tcl) 2,000

Other ns-2 Extensions 1,000

Total 35,600

RSB
1n

OutISB

n1
PSB

n1
PHopSB

Session

1

n

Figure 2: Entity-Relationship Diagram for State Blocks.
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The basic timer wheel works as follows. All timers of

the protocol engine are stored in a hierarchical container.

The upper layer is implemented as an array representing

time slots and accessed through a hash-like division func-

tion preserving the order of timers. Timers within individ-

ual time slots are kept in simple sorted lists. The amount

of time covered by each slot is configurable at runtime.

The container is only capable of foreseeing a limited

amount of time in the future, which is sufficient for RSVP.

Its best possible update complexity is O(log(n)), with n
being the (varying) number of timers in a slot. Conse-

quently, performance can be traded off against memory

usage by choosing the size and number of slots. This data

structure is illustrated in Fig. 3. Since the per-slot contain-

ers are fully sorted, timers can be fired precisely accord-

ing to their individual expiration time.

The basic timer wheel can be significantly improved for

RSVP. Since RSVP uses randomized refresh timers, timer

precision only needs to be at the scale of tens of millisec-

onds. If the duration covered by a single time slot is below

this time-scale, fuzzy timers can be used. While in the

basic timer wheel, the per-slot containers are sorted, fuzzy

timers are instead stored within each time slot in an

unsorted list. When a time slot becomes eligible for expi-

ration, its timers are fired in order of their position in the

unsorted list, rather than the precise expiration time. The

scheme results in a slight inaccuracy of timers, which is

bounded by the length of a single time slot. This can be

considered a very reasonable trade-off, particularly in

case of RSVP, because it reduces the update complexity to

O(1) and requires changing only about 20 lines of code.

The performance gains of this optimization are studied in

detail in Section V.C.

In both cases, the cost for searching the next element in

the timer wheel is O(n) in the worst case, with n being the

number of time slots. It is possible to reduce this worst-

case bound, for example by using (hierarchical) bitmaps.

However, in the context of RSVP signalling, it is reasona-

ble to expect that most timer slots are loaded at any time,

since the system needs to periodically fire refresh timers.

Therefore, the actual overall cost of the timer data struc-

ture is determined by its update complexity.

D.  Dedicated Memory Management

As with any other signalling protocol used for this pur-

pose, an RSVP daemon frequently needs to dynamically

allocate and de-allocate memory for objects. Using regu-

lar heap memory management incurs a significant

processing overhead (see Section V.D for details) due the

limitations of general purpose heap memory management

algorithms. Therefore, this implementation optionally

employs a very simple memory management system,

which is implemented transparently for the rest of the

code by overloading the new and delete operators of

C++ and requires only about 200 lines of additional code.

It turns out that such a simple optimization is sufficient to

recover a significant portion of the execution overhead of

the standard heap memory management.

A dedicated memory management subsystem is created

for different types of fixed-size state objects and other fre-

quently allocated data structures, such as basic list nodes.

TABLE 2: STATE BLOCKS AND ATTRIBUTES

State Block Attributes

Session session (IP address, port, protocol)

filter style

PSB sender (IP address, port)

traffic information (TSpec from PATH)

path information (AdSpec from PATH)

aggregated upstream reservation to sender

timeout timer for PATH from previous hop

Refresh Red: message ID of PATH from previous hop

Refresh Red: message ID for PATH to next hop

MPLS: label from previous hop

PHopSB previous hop (IP address)

incoming interface

aggregated/combined upstream reservation

refresh timer for RESV to previous hop

Refresh Red: message ID for RESV to previous hop

RSB next hop (IP address)

downstream reservation (Flowspec from RESV)

Refresh Red: message ID of RESV from next hop

OutISB outgoing interface

installed reservation

OIatPSB scheduling filter

refresh timer for PATH to next hop

timeout timer for RESV from next hop

MPLS: label to next hop

T

T

T

t 2t 3t 4t (s-1)t st

T

T

T

T

T T

T

T

t:

s:

duration of slot

number of slots

T: timer

Figure 3: Design of Timer Container.
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When an object is destroyed, its memory is inserted into a

FIFO free list associated with the type-specific memory

management subsystem. Allocation requests are first

served from the respective free list, if possible, or other-

wise by allocating memory from the heap. Further, the

first few bytes of each object’s associated memory are

used to store the pointers necessary to keep the memory

chunks in the free list. As a result, for each data structure

larger than a few bytes, dedicated memory management

does not increase the memory usage. This is true for all

relevant data structures in the protocol engine.

Essentially, this scheme results in an ever-growing allo-

cation of heap memory corresponding to the maximum

number of flows that are stored in the protocol engine.

Since no memory is wasted, this is not a problem, because

often a network node will be designed to sustain a certain

maximum number of flows. If there are memory-intensive

tasks that are supposed to be executed by a network node

in times of low signalling load, an asynchronous memory

cleanup procedure can be executed to recover memory.

The performance gains of this optimization are studied in

detail in Section V.C and Section V.D.

E.  Standardized Protocol Extensions

The IETF and other institutions have produced stand-

ardization proposals for using and extending RSVP. Two

of these proposals are partially implemented in our proto-

type to study their effects in terms of implementation

complexity and signalling performance.

1) Refresh Reduction

Due to the soft-state in RSVP, all protocol messages are

idempotent and the same message is used as trigger or

refresh message. Processing refresh messages is relatively

expensive and thus, depending on the length of the refresh

interval, refresh messages contribute significantly to the

overall processing effort (see Section V.D. for details).

This situation has been addressed by research proposals

like [15,16] to reduce refresh overhead and led to an IETF

standardization proposal [11], which specifies a mecha-

nism for reducing refresh overhead by using so-called

summary refresh messages. This mechanism has been

implemented for unicast communication to investigate its

effect on the overall performance capabilities of the proto-

col engine. Details of the mechanism are not presented

here, but instead the reader is referred to the appropriate

research and standardization literature cited above. Note

that refresh reduction for multicast communication is not

implemented in our prototype. To implement this mecha-

nism, the multicast routing interface is required to supply

a list of next hops upon a routing lookup, which is not

supported by the RSRR interface [17] used in this imple-

mentation. The superiority of RSVP for multicast com-

munication is largely undebated and therefore, is not

considered a crucial aspect for this investigation. Message

bundling as specified in RFC 2961 [11] is not imple-

mented, but it is possible to assess its performance effects

based on available data (see Section V.D).

The implemented mechanism is based on assigning

unique identifier values to trigger messages and subse-

quently refreshing state by transmitting multiple identifi-

ers within a single summary refresh message [11]. No

particular sequencing is applied to messages, other than

the requirement that trigger messages must be assigned a

strictly increasing identifier by the sending hop in order to

distinguish new trigger messages from older ones that

may have been delayed in the network. To exploit the

potential efficiency gain, these identifiers can be used by

the downstream node to access incoming state informa-

tion through hash-based containers, using the message

identifier as an access key. For outgoing state information,

the available range of identifiers must be administered in a

similar way. There is consequently a choice of operating

the protocol engine with one global container or a con-

fined container per adjacent hop. According to RFC 2961

[11], there is no requirement for globally unique identifi-

ers, but instead identifiers only need to be unique for the

adjacent node. Therefore, the implementation employs

unique and increasing identifiers per adjacent RSVP hop.

Such a scheme has the advantage that for outgoing state, it

is easy to build an almost perfect hash using a limited

number of hash buckets, whereas a global container

would tend to spread identifiers not as uniformly over the

hash function. This is due to the fact that summary refresh

messages are targeted to a specific hop and contain refresh

state previously announced to this common hop. Initial

tests have shown that it is beneficial to evenly distribute

the generation and sending of summary refresh across the

refresh interval and to keep their size below the link-layer

MTU. Otherwise, packet fragmentation largely nullifies

the performance benefits of the summary refresh mecha-

nism. The extension requires about 850 lines of code.

2) MPLS Signalling

Support for MPLS label distribution and explicit rout-

ing as specified in RFC 3209 [9] is implemented as proof

of concept that the existing software structure allows for

rapid and easy integration of such extensions. The signal-

ling part is capable of interfacing with two publicly avail-

able MPLS data forwarding packages for Linux [18,19].

The overall effort for the protocol extension is very lim-

ited and the majority of additional code handles the low-
6
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level interaction with the MPLS forwarding mechanisms.

This finding is backed up by the fact that the extension

requires only about 1000 lines of code, most of which is

concerned with interfacing to the kernel-level forwarding

software.

F.  Network Simulation

The prototype software has been ported to the ns-2 sim-

ulation environment [20]. The successful port, which in

total required less than 4000 lines of code, including a sig-

nificant piece of code for reactive admission control (see

Section VI.C) serves as a proof of concept that the core

RSVP implementation is indeed highly portable. The ns-2

environment is capable of running a realistic version of

RSVP and there is only one slight inconsistency between

ns-2 and real-world packet forwarding. In ns-2, packet

routing is based on each node’s identifier, rather than the

address of a network interface. At certain points in the

RSVP code, this requires an appropriate translation

between node and interface identifiers.

Another goal of this effort is to use concurrent simula-

tion and lab experiments to investigate the behaviour of

the protocol and its extensions. In this case, the simulated

technology can be compared to and calibrated by results

from real-world experiments. This in turn should help to

validate subsequent results from large-scale simulations.

The port is considered a proof of concept for this experi-

mental methodology, although there clearly is a trade-off

between the resulting complexity of very realistic simula-

tion code and the possible benefits of such integrated soft-

ware development.

V. PERFORMANCE AND EXECUTION COST

The results of detailed performance experiments allow

the investigation of the execution performance of a basic

RSVP implementation, as well as the effects of extensions

and optimization described in the previous section. While

the detailed numbers are valid only for one specific imple-

mentation and one particular platform, it is assumed that

in combination with publicly available software, they are

useful beyond those particularities. The study focuses on

unicast communication, since the superiority of RSVP for

multicast communication is largely undebated. The cru-

cial aspect for assessing RSVP’s suitability as QoS signal-

ling protocol is currently rather given by its behaviour for

small unicast flows, for example for Voice over IP (VoIP).

The first set of experiments is aimed at investigating the

maximum sustainable signalling load, depending on the

different implementation variants. The interpretation of

“sustainable” in this context is that no more than 0.01% of

signalling requests are lost at any point in time. The maxi-

mum sustainable load then allows calculating an estimate

for the average processing time associated with each ses-

sion. Note that for a user-level daemon, it does not make

sense to attempt to obtain any more fine-grained informa-

tion, since the system jiffy (granularity of system timer

interrupts) and buffering in the network stack results in

slight variations of the processing delay. In the second

step, the total execution overhead is decomposed to inves-

tigate the contribution of various processing blocks, to

further illustrate the effects of various implementation

options, and to estimate processing latency.

A.  Experiment Setup

The experiments have been carried out on standard PCs

running FreeBSD 4.5 on 450 MHz PentiumIII processors

with 256 MB main memory. Six nodes are connected by

full-duplex FastEthernet links as depicted in Fig. 4. Nodes

N5 and N6 are used as destinations and N1 and N2 as

sources. Multiple unicast sessions are created by specify-

ing multiple port numbers. The average refresh interval is

set to 30 seconds, as suggested in RFC 2205 [2]. The pro-

tocol daemons exchange basic RSVP messages without

policy data or integrity objects and no confirmation mes-

sages. Sessions are always torn down by senders, so there

are no reservation tear messages either. The length of

timer slots in the timer wheel is auto-configured by the

RSVP daemon, depending on the measured system jiffy

(time period between system timer interrupts), which is

approximately 20 milliseconds on a vanilla FreeBSD sys-

tem. The time horizon is set to 600 seconds, which is suf-

ficient for all timers in these experiments. Consequently,

the timer wheel consists of 30,000 slots. The hash-based

session container is restricted to 8192 buckets to limit the

positive effects of the perfect hash that results from the

session generation in this lab environment. The receivers

at N5 and N6 react to each path advertisement by immedi-

ately generating reservation requests, which establish the

end-to-end reservation. No data packets are transmitted.

The signalling load generators at N1 and N2 create ses-

sions with a uniformly distributed inter-arrival time and

constant duration of 240 seconds. A simple and determin-

N1

N2 N6

N4N3

(assumed) data flow

Figure 4: Setup for Performance Measurements.

observation points

N5
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istic session arrival model is used, since the main goal of

these experiments is to investigate the average processing

overhead of RSVP daemons under high signalling load. A

deterministic configuration resulting in a stable signalling

load is necessary to relate average profiling results to indi-

vidual message processing times. In contrast, a realistic

traffic arrival and duration pattern would make the inter-

pretation of results much harder. In reality, a burst of

arriving signalling messages is buffered in the network

stack of an RSVP system. Given the average message

processing time, realistic arrival patterns can then be ana-

lysed using standard queuing theory.

The observations are made at Node N3 and N4. Meas-

urements are done by periodically executing top (every 3

seconds) and recording the highest numbers of total mem-

ory consumption and percentage of raw CPU usage that is

reported for execution of the RSVP daemon on either

node. The per-flow memory allocation is measured by

substracting the memory consumption when no flow is

present from the total memory allocation and then divid-

ing the result through the number of flows. Although this

kind of measurement introduces some inaccuracies and

inherent randomness, those effects are limited by choos-

ing deterministic experiment configurations. Further, the

consistency of the results shows that the principle effects

are not obstructed. Note that top already averages CPU

usage, so it is in line with the overall goal of measuring

the average processing effort, and it is quite accurate with

respect to memory consumption.

These experiments measure raw signalling processing

performance, without taking into account actual traffic or

traffic control. Further complexity in the experiment setup

would probably only obscure the results. In reality, signal-

ling messages are likely transmitted with a special priority

setting and therefore, will be unaffected by high traffic

load. It does not seem useful to incorporate the interac-

tions with UNIX-based software packet schedulers into

these experiments. Special network-level conditions, such

as routing instabilities, occur on a different system scale

and as such, warrant a dedicated investigation.

B.  Relation to Earlier Work

A subset of similar performance figures is reported in

our earlier work [21]. These results were obtained by run-

ning a previous version of the protocol implementation on

FreeBSD 3.4 using the same hardware. Experiments have

shown that running the older version of the software on

FreeBSD 4.5 incurs an increase in execution cost of about

10 % compared to FreeBSD 3.4. In both cases the same

compiler version is used, so the difference is likely caused

by operating system internals and have not been explored

in the context of this work. On the other hand, general

coding-level improvements of the protocol engine achieve

an equivalent reduction in execution cost, such that the

fundamental results are almost directly comparable.

C.  Signalling Performance

The results of the signalling performance experiments

are shown graphically in Fig. 5. The figure shows the rela-

tive CPU load depending on the number of sessions sig-

nalled. Different software configurations are investigated

in an incremental fashion to identify the influence of each

option on the overall execution overhead. Each of the con-

figurations is discussed in the subsections below in the

order of labels in Fig. 5 from top to bottom. The respec-

tive memory usage per flow is shown in Table 3.

Since the session duration is 240 seconds, 120,000 ses-

sions result in 500 session setups and teardowns, or 1000

transactions, per second. The most optimized version then

incurs a CPU load of 40% and is essentially constrained

by main memory during these experiments. Since nor-

mally 80% user-level CPU load can be sustained without

losing signalling requests, this amounts to a maximum

processing performance of 2,000 transactions per second.

Earlier work [21] has shown that the execution over-

head of the ISI reference implementation [22] is clearly

superlinear. In raw numbers, the ISI protocol daemon can-

not only sustain a maximum signalling load of 5,500 ses-

sions using the same experimental configuration on the

same platform, mainly because it does not offer the same

level of flexibility in terms of tuning data structures. How-

ever, besides using suitable container structures, it has

also been found that the design presented in Section IV

creates significant performance improvements [21].

1) Basic Timer Wheel

The leftmost curve in Fig. 5 shows the system perform-

ance using the basic timer wheel. The execution overhead

is almost linear in the number of sessions, but increases to

be slightly superlinear when a large number of sessions is

Figure 5: Execution Overhead of RSVP Signalling
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signalled. This is the expected behaviour as the access

complexity for each time slot is negligible for a small

number of sessions and thus timers per time slot. With an

increasing number of timers per time slot, the intensified

effort of administrating each sorted container results in a

visible increase of the overall execution overhead.

2) Fuzzy Timer Management

The second curve from the left in Fig. 5 shows the sys-

tem behaviour with fuzzy timer management being ena-

bled. The overall processing effort is reduced and remains

truly linear in the number of sessions, even at a high load.

The corresponding performance gain ranges from 4%

under low load to almost 11% under high load. The same

amount of memory is used in both cases (see Table 3).

3) Dedicated Memory Management

As illustrated by the third curve from the left in Fig. 5,

employing dedicated memory management reduces the

execution overhead by 16-18%, depending on the number

of sessions, without affecting the total memory usage (see

Table 3). For these experiments, almost all data structures

that are dynamically allocated on the heap are configured

to use dedicated memory management.

4) Refresh Reduction

The two curves at the right of Fig. 5 illustrate that ena-

bling the refresh reduction mechanism reduces the execu-

tion overhead on average by 69% when compared to the

basic operation mode including fuzzy timer management.

Table 3 reveals an increase in memory usage by slightly

more than 11%. Nevertheless, the execution cost remains

linear in the number of sessions, instead of decreasing to

sublinear. This observation is explained in the light of

results from the profiling experiments in the next section.

Using dedicated memory management results in a further

reduction of execution overhead by approximately 18%.

D.  Decomposition of Execution Overhead

To understand the contribution of individual processing

steps on the overall execution overhead, profiling is used

to decompose the overall processing effort. The same

experiments as in the previous section are carried out with

a session load of 20,000 sessions. A complete breakdown

of the overall execution effort is shown in Table 4. The

relative cost of system services is shown in Table 5.

Three versions of the software, which all include fuzzy

timer management, are studied. The label Basic Version
refers to the basic protocol version. This version is com-

pared to the implementation including dedicated memory

management, labelled as Memory Mgmt. Additionally, the

basic version is compared to the refresh reduction version

without dedicated memory management which is shown

as Refresh Reduction in the tables. Comparing these three

version suffices to draw the most interesting conclusions,

even about other configurations.

The execution effort for the versions including dedi-

cated memory management and refresh reduction, respec-

tively, is shown in relative numbers. To be able to directly

compare the absolute execution effort, the relative num-

bers are also shown normalized to the execution effort for

the basic version (in columns labelled as norm). The nor-

malization factor is taken from the total overhead meas-

ured in the experiments presented in Section C for 20,000

sessions and can be found in row Total of Table 4.

Since no confirmation is requested and flows are always

torn down by senders, neither RCONF nor RTEAR mes-

sages are exchanged. Compared to our earlier work [21],

the profiling methodology has been improved to increase

accuracy and clarity, particularly by eliminating the dae-

mon initialization time from the measurements. Neverthe-

less, the numbers are naturally not fully precise, but rather

a good indication of the relative processing overhead.

1) Processing Steps

The processing step Message Reception consists mainly

of interaction with the operating system to receive packets

that contain RSVP messages. In the basic version, it con-

sumes a large fraction of the overall execution effort, due

to the high cost of system calls (discussed below). As dis-

cussed in Section III.B, RSVP allows messages to be flex-

ibly composed of individual protocol elements. Therefore,

Message Parsing requires significant effort. In this imple-

mentation no specific measures have been implemented to

optimize message parsing. During Basic Processing, a

number of validity checks, as well as certain lookup oper-

ations are performed, for example to locate the sending

hop. It only incurs a small fraction of the overall process-

ing cost, similar to the Session Lookup step. All the above

processing steps are executed for each incoming message.

The execution effort for PATH Processing contains the

state creation or maintenance for all incoming PATH mes-

sages. A trigger PATH message synchronously prompts

the creation of an outgoing PATH message during Trigger

TABLE 3: MEMORY USAGE PER SIMPLEX UNICAST FLOW STATE

Configuration Bytes per Flow

Basic Timer Wheel 1388

Fuzzy Timer Management 1388

Dedicated Memory Management 1388

Refresh Reduction (No Memory Mgmt.) 1546

Refresh Reduction 1546
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PATH Refresh. Similarly, RESV Processing covers the

creation or maintenance of reservation state for all RESV

messages, while Trigger RESV Refresh encompasses the

additional overhead associated with trigger messages.

During PTEAR Processing, the protocol daemon destroys

existing state information, including the associated reser-

vation state. The configuration of the session lifetime and

refresh period (240 and 30 seconds, respectively) results

in an average of 8.5 PATH and RESV messages† that are

exchanged during each session with only the first of each

actually creating internal state. In contrast, only a single

PTEAR message is transmitted at the end of each session.

When refresh reduction is used, only a single PATH and

RESV message are transmitted for each session and state

refresh processing is contained in SRefresh Processing.

The row labelled Reservation Merging shows the over-

head incurred by merging reservations that are requested

from the previous hop. It is executed during the process-

ing of the first RESV message per session and reception

of a PTEAR message. Timer Firing covers the raw cost of

timer maintenance, while Timer Execution denotes the

corresponding actions of sending PATH and RESV

refresh messages to adjacent nodes.

2) Cost of System Services

The relative execution times shown in Table 4 indicate

high cost of system services. This conjecture is confirmed

by the breakdown in Table 5, which shows the relative

execution overhead for requests that interact with operat-

ing system services. If a single system call is used for the

request, it is listed in the table. A routing lookup requires

two system calls to write and read a routing socket. Mem-

ory management contains all requests for heap memory.

In the basic version, all tasks related to sending and

receiving packets (Multiplexing, Receiving, and Sending)

are responsible for more than 30% of the overall process-

ing time. Additionally, there is a significant cost for rout-

ing lookups (Routing for PATH). Without optimization,

Memory Management is responsible for more than 22% of

the total processing overhead.

3) Processing Cost for Individual Messages

Based on the experimental data, it is possible to obtain

reasonable estimates for the processing cost and latency

of individual messages in different configurations. The

ratio of message types is determined by the session life-

time and refresh interval. As an example, with the given

configuration in the basic protocol version, every session

on average results in 18 messages (8.5 PATH, 8.5 RESV,

and 1 PTEAR) being transmitted. Different messages trig-

ger different processing steps of those listed in Table 4.

For example, Message Reception is executed for each

message, PATH Processing is only invoked for PATH

messages, while Trigger PATH Refresh is only necessary

for the first PATH message. Table 6 shows which process-

ing steps correspond to which message types.

An estimation for the relative cost for each message can

be calculated as the sum of per-message costs for each

processing step. The per-message cost of each processing

†. Since the actual refresh period is determined randomly, there is a

probability of 50% that the refresh message for the last refresh

period arrives before the PTEAR message for the session.

TABLE 4: DECOMPOSITION OF OVERALL PROCESSING EFFORT

Relative Execution Effort in %

Operation

Basic

Version

Memory

Mgmt.

 Refresh

Reduction

norm norm

Message Reception 19.9 21.1 17.8 12.3 4.0

Message Parsing 11.4 10.6 8.9 7.8 2.5

Basic Message Processing 2.5 3.0 2.5 1.8 0.6

Session Lookup 2.1 2.3 1.9 1.2 0.4

PATH Processing 20.4 21.8 18.4 7.8 2.5

Trigger PATH Refresh 1.9 1.7 1.4 5.7 1.8

RESV Processing 10.2 8.6 7.2 5.3 1.7

Trigger RESV Refresh 1.9 2.1 1.8 5.4 1.8

PTEAR Processing 2.4 2.1 1.8 10.3 3.4

SRefresh Processing n/a n/a n/a 31.6 10.3

Reservation Merging 2.5 1.9 1.6 5.7 1.8

Timer Firing 5.9 5.9 5.0 2.0 0.7

Timer Execution (PATH) 12.6 11.7 9.9 n/a n/a

Timer Execution (RESV) 6.3 7.2 6.1 n/a n/a

Timer Execution (Refresh) n/a n/a n/a 3.1 1.0

Total 100 100 84.3 100 32.5

TABLE 5: PROCESSING EFFORT FOR SYSTEM SERVICES / SYSTEM CALLS

Relative Execution Effort in %

Operation

Basic

Version

Memory

Mgmt.

 Refresh

Reduction

basis norm norm

Routing for PATH 11.7 13.4 11.3 3.1 1.0

Routing for SRefresh n/a n/a n/a 21.6 7.0

Multiplexing (select) 6.7 7.4 6.2 5.9 1.9

Receiving (recvmsg) 9.5 10.7 9.0 4.7 1.5

Sending (sendto) 14.2 16.2 13.7 8.0 2.6

Get Time (gettimeofday) 0.7 0.8 0.7 1.4 0.5

Memory Management 22.5 3.6 3.0 26.1 8.5

Total 65.3 52.1 43.9 70.8 23.0
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step is obtained by dividing its total relative cost through

the number of messages for which it is executed.

For example, basic PATH message processing incurs a

relative cost of 4.4%. Trigger PATH messages are respon-

sible for another 1.9% for the synchronous refresh, while

the regular generation of PATH refresh messages accounts

for 2% relative overhead. It can be concluded that refresh

and trigger messages require almost the same processing

effort. This finding is reasonable when considering that

generating refresh message includes firing timers and fur-

ther, the total cost is dominated by system calls that are

required for both. Carrying out the same calculation for

RESV messages results in 5.4% total cost for RESV trig-

ger messages and 4.7% for refresh messages including

timer execution. Again, the cost of refresh messages is

close to the cost of trigger messages. There is more over-

head associated with processing a RESV trigger message,

because of dynamic memory allocation and reservation

merging. The maximum load of 60,000 active sessions for

the basic version results in 4,500 messages/sec, so by

combining the ratio of 8.5:8.5:1 with the relative cost fig-

ures calculated above, the processing latency for each

message can be estimated.

4) Effects of Dedicated Memory Management

With dedicated memory management, the absolute exe-

cution cost for 20,000 sessions is reduced by almost 16%

(see Section C). Due to its simplicity, dedicated memory

management is fully implemented using inline functions.

Because the software is compiled with compiler optimiza-

tion, the cost reduction shown in Table 5 appears slightly

too high, since profiling accounts some of the cost to the

respective caller functions while Table 5 only shows the

actual cost of system heap memory management. Com-

paring the relative and the normalized relative execution

cost in Table 4 and Table 5 reveals that all processing

components benefit from this improvement, but to a dif-

ferent extent. For example, the execution cost of all other

system-related requests is dominated by the underlying

system calls and thus, is not improved much by dedicated

memory management. Consequently, the relative execu-

tion overhead is increased, while the normalized relative

execution overhead is decreased. Those processing steps

that exhibit a reduced relative execution overhead, for

example Message Parsing and RESV Processing, benefit

most from this optimization.

5) Effects of Refresh Reduction

The primary benefit of the refresh reduction extension

is the reduction in the number of messages that are being

exchanged between adjacent RSVP nodes. On the other

hand, some additional functionality is necessary to main-

tain message identifiers. This cost is best illustrated by the

increase in relative and absolute processing cost for

PTEAR Processing, since there is still a single PTEAR

message transmitted at the end of each session. Further,

the creation and processing of summary refresh (SRe-

fresh) messages needs to be considered.

In case of refresh reduction, overall message processing

is dominated by processing of summary refresh messages

(see Table 4). This overhead in turn is largely caused by

expensive routing lookups (see Table 5), which are also

necessary for refreshed PATH state to detect routing

changes. The rest of summary refresh processing also

uses significant processing time. This is no surprise, given

the information density of a summary refresh message.

When using refresh reduction, individual state refresh

timers are replaced by summary refresh timers. Therefore,

the relative processing effort of timer firing and timer exe-

cution is reduced and the reduction of overhead is signifi-

cantly higher than for the rest of the message processing.

By comparing the relative and the normalized relative

execution effort, it is possible to identify those processing

steps that benefit the most from this protocol extension.

6) Message Bundling

Taking into account the available information, it is pos-

sible to estimate the effects of other protocol extensions,

such as message bundling [11]. Bundled messages require

a small overhead in terms of message creation and pars-

ing, but reduce the overhead associated with sending and

receiving messages. Depending on the details of signal-

ling and the link-layer MTU, a bundled message may con-

tain up to a certain number of regular RSVP messages.

According to Table 5, the execution overhead of sending

TABLE 6: PROCESSING STEPS AND MESSAGE TYPES

Operation
PATH RESV PTEAR

trig. refr. trig. refr.

Message Reception 1 7.5 1 7.5 1

Message Parsing 1 7.5 1 7.5 1

Basic Message Processing 1 7.5 1 7.5 1

Session Lookup 1 7.5 1 7.5 1

PATH Processing 1 7.5

Trigger PATH Refresh 1

RESV Processing 1 7.5

Trigger RESV Refresh 1

PTEAR Processing 1

Reservation Merging 1 7.5 1

Timer Firing 7.5 7.5

Timer Execution (PATH) 7.5

Timer Execution (RESV) 7.5
11
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and receiving messages accounts for approximately 30%

of the overall execution overhead in the basic protocol

version. If, for example, 10 messages can be replaced by a

single bundled message, the overall execution overhead

may be reduced by up to 27%. In case of refresh reduc-

tion, however, the relative execution overhead of network

I/O is lower (20%) and message bundling can only be

applied to trigger messages, since summary refresh mes-

sages already occupy the full link-layer MTU. Thus, the

relative improvement would be much smaller.

E.  Communication Overhead

The relative communication overhead of RSVP signal-

ling on the wire largely depends on the particular configu-

ration in terms of refresh interval and refresh reduction.

Also, the transmission rates of those flows for which QoS

is requested determine the relative communication over-

head. A worst-case estimation can be done as follows.

A PATH message including a basic ADSPEC object

uses 132 bytes while the size of a RESV message request-

ing Guaranteed service for a single sender using fixed fil-

ter style is 128 bytes. Assuming an estimated overhead of

340 bytes for additional ADSPEC fields, POLICY and

INTEGRITY objects, 600 bytes are exchanged for RSVP

signalling within one refresh period. Further assuming an

average refresh period of 30 seconds and a VoIP-like traf-

fic flow with 64 kbit/sec transmission rate, the data traffic

within one refresh period adds up to 240,000 bytes. Then,

the ratio of signalling traffic to data traffic in this scenario

is 1:400. Note that this ratio is much smaller for larger

data flows, for example video streams, and also is signifi-

cantly reduced when enabling refresh reduction.

F. Summary

The experiments reported here confirm the observations

discussed in Section III.B. The overall execution cost of

an RSVP daemon can be kept linear in the number of

transactions per time. In a user-level implementation, the

processing overhead is dominated by interaction with

operating system services, such as packet transmission

and routing lookups. However, it is possible to signifi-

cantly improve the performance through simple internal

optimization like fuzzy timers and dedicated memory

management as well as protocol extensions like refresh

reduction. On the other hand, the impact of operating sys-

tem interaction is so high that even when using refresh

reduction, the linear complexity of RSVP is unchanged.

VI. EXPERIMENTAL PROTOCOL EXTENSIONS

A number of protocol extensions have been evaluated to

assess the extendability of RSVP’s scope of operation.

They are briefly presented here to support the claim of

significant implementation experience with the prototype.

A.  One-pass Signalling

As discussed in Section III.B, RSVP uses a two-way

message exchange to set up an end-to-end simplex reser-

vation. There are a number of scenarios in which the fea-

tures of this two-way procedure and simplex reservations

are not needed and only result in an unnecessary overhead

for both end systems and intermediate nodes. A true one-

pass and duplex-capable service establishment mecha-

nism has been designed. It fully interacts with traditional

RSVP signalling, such that it is possible to optionally

override an initial one-pass reservation with later requests.

A new message type, PATHRESV indicates that reser-

vation(s) based on the transmitted TSpec shall be estab-

lished in one pass from sender to receiver. Other than the

message type, the message is exactly the same as a PATH

message. A DUPLEX object carrying reverse port infor-

mation can optionally be added to a PATHRESV message

to request a duplex reservation, assuming that the same

transport protocol is used in both directions. The duplex

extension is only useful, if symmetric routing is employed

between the end systems and only for unicast communi-

cation. One benefit of this extension is reduced complex-

ity for end systems through a one-pass service interface

without any activity by the responder. Also, the communi-

cation overhead at all nodes is reduced, because less mes-

sages are exchanged. As a result, this mechanism enables

lightweight signalling in the framework of RSVP.

The one-pass signalling extension has undergone a per-

formance evaluation similar to the experiments reported

in Section V.C (see [23] for details). There is a significant

performance improvement of about 40% compared to the

basic version, if only one-pass signalling is used. This is

no surprise given that only half the number of messages is

exchanged and, as presented in Section V.D, the interac-

tion with the system’s network services and message pars-

ing use a large fraction of processing resources.

B.  Remote Clients

RSVP defines two alternative methods to transmit mes-

sages between RSVP-capable nodes: as raw IP packets or

using UDP encapsulation [2]. In both cases, multiple cli-

ents on a single end system require a central entity (usu-

ally the RSVP daemon) to receive and dispatch incoming

messages. The remote client extension allows the first

RSVP-capable hop to directly communicate with thin cli-

ents. Clients only need to implement RSVP stubs instead

of a full protocol daemon (see [23] for details).
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The remote client extension can be realized through a

single new message type, INITAPI, and reusing the LIH

field of the RSVP_HOP object. A new flag in the SES-

SION object is used to distinguish whether a message reg-

isters or de-registers a client. Both registration and de-

registration messages carry the local IP address of the cli-

ent system as part of the RSVP_HOP object. The LIH

field of this object is used to carry the local UDP port,

which can be chosen arbitrarily by the clients. Clients

address the remote RSVP daemon at a well-known port.

Client registration is done using soft state. Refreshes can

be triggered by the RSVP daemon to avoid any timer

management and related complexity at the client side.

In order to evaluate the remote client extension, there is

not much virtue in running large scale performance exper-

iments, because in reality, a first-hop RSVP node is less

likely to be challenged by requests from a lot of clients.

Instead, the evaluation is focused on the code and state

memory requirements and reveals that using the remote

client extension provides significant savings [23].

C.  Reactive Admission Control

There are interesting proposals to use load- or conges-

tion-based packet marking for admission control at edge

gateways [24,25,26], based on mathematical analysis and

simulation. A software prototype realizing these concepts

has been built in the framework of RSVP [27].

The abstract system design is shown in Fig. 6. The load

signal from internal packet marking nodes is encoded in

the packet stream and can be observed at egress nodes.

Since the benefits of admission control are moot without

proper traffic regulation, respective information has to be

transmitted from the egress to the ingress gateway. It does

not matter, whether this information conveys a load report

or admission control decision, but in case of RSVP, it can

easily be piggybacked on reservation messages. Thereby,

the receiver-initiated reservation sequence of RSVP is

highly suitable to realize this concept. Because admission

control in RSVP is usually done per outgoing interface, it

is easier to transmit load information and perform admis-

sion control at the ingress node of each path. The resulting

system prototype includes not only local RSVP signalling

extensions, but also modules for packet handling in the

data path of edge and internal nodes [27].

A detailed discussion and evaluation of the system pro-

totype is reported in [27,28]. The most illustrative finding

is given by the experimental verification that the system

can deliver the same per-flow rate guarantees and resource

utilization as a system employing per-flow scheduling at

all internal nodes. In subsequent experiments, the system

behaviour has been studied in larger topologies by means

of network simulation [29]. These experiments are based

on the availability of integrated software for real plat-

forms and the ns-2 simulation environment, and thereby

employ and verify the concepts presented in Section IV.F.

D.  Firewall Signalling

Traditional firewalls have a static configuration to allow

traffic only for certain “secure” transport protocol ports.

Multimedia applications, however, dynamically allocate

ports during the initial session setup and thus, cannot

inter-operate with traditional firewalls. In order to solve

this problem, a signalling protocol is needed for commu-

nication between end systems and firewalls, such that fire-

walls can dynamically adapt their filter state to such

sessions. The information that needs to be exchanged, is

similar to that of QoS signalling, therefore RSVP can be

used to carry the necessary information between end sys-

tems and firewalls. A prototype has been implemented as

a proof of concept of this proposal [30] and the basic idea

has been picked up for discussion within the IETF [31].

VII. RELATED WORK

Little work has been reported to assess the performance

of commercial RSVP implementations. A notable excep-

tion is the work of Neogi et al. [32], in which a technical

framework for such tests is presented. From the perform-

ance figures for a “commercial midrange router” as given

in [32], it can be deduced that RSVP flow setup scales sig-

nificantly worse than linear. These results indicate that the

particular implementation under consideration may have

been in a rather early development stage. Performance fig-

ures are listed in [33] for a commercial RSVP implemen-

tation. It cannot handle more than 600 sessions and thus,

can also be regarded as premature. Other published work

describes the implementation of RSVP in a switch-router

in [34], but the reported performance figures are aiming

towards the QoS objectives, rather than performance of

signalling at a large scale. The work in [33] also considers

the ISI implementation [22], which cannot be regarded as

the optimal choice for performance measurements, as

shown earlier [21]. In [35], interesting performance fig-

ures are reported for RSVP message processing on a com-Figure 6: Reactive Admission Control
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mercial router. However, these numbers are not the central

focus of the work in [35] and not many details about the

experiments are given. Consequently, these numbers can

only serve as a basic indication of RSVP’s processing

overhead. The work in [36] investigates a lightweight sig-

nalling protocol and also arrives at the conclusion that the

cost of a user-level implementation is dominated by inter-

action with the operating system kernel.

In summary, although earlier work already indicates

some of the conclusions, this work presents the most com-

plete study of RSVP’s design and performance from an

implementation point of view.

VIII. SUMMARY AND CONCLUSIONS

In this paper, a comprehensive evaluation of RSVP is

presented, which is based on significant implementation

experience and a large number of performance-oriented

experiments. The study not only focuses on basic RSVP

signalling, but also takes into account a variety of stand-

ardized and experimental protocol extensions. All results

are based on a publicly available implementation. The

intended flexibility of RSVP is verified by implementing a

number of experimental extensions with limited imple-

mentation effort. However, flexibility comes at the price

of processing overhead for message parsing.

This article presents detailed insight about the imple-

mentation and optimization of a protocol engine. The exe-

cution effort is analysed for different configurations and

for different processing blocks and message types. While

much of the effort is caused by interaction with the oper-

ating system, it is still an open question whether a rela-

tively complex protocol like RSVP could realistically be

implemented at the kernel level. However, internal design

decisions like dedicated memory management would

clearly alleviate the task of creating a kernel-based imple-

mentation, in this case by reducing the dependency on

flexible heap memory management, which is only availa-

ble to user-level processes.

It is beyond the scope of this work to speculate whether

RSVP’s execution overhead is justified by its functional-

ity. The experimental results demonstrate that the proto-

type implementation can handle 2,000 transactions/sec on

slow hardware. Comparing this to 10,000 transactions/sec

reported for a more lightweight protocol on faster hard-

ware [36] leads to the conclusion that an ultimate decision

for a signalling protocol can hardly be based on technical

and performance issues only. Instead, a holistic point of

view is necessary, which also takes into account all trade-

offs between performance and functionality.

Ongoing work in the context of this implementation is

concerned with moving small parts of a user-level daemon

into the operating system kernel to reduce the number of

context-switches while retaining the flexibility of a user-

level implementation as much as possible.
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