
49

Kernel vs. User-Level Networking: Don’t Throw Out the Stack
with the Interrupts
PETER CAI, University of Waterloo, Canada

MARTIN KARSTEN, University of Waterloo, Canada

This paper reviews the performance characteristics of network stack processing for communication-heavy

server applications. Recent literature often describes kernel-bypass and user-level networking as a silver

bullet to attain substantial performance improvements, but without providing a comprehensive understanding

of how exactly these improvements come about. We identify and quantify the direct and indirect costs of

asynchronous hardware interrupt requests (IRQ) as a major source of overhead. While IRQs and their handling

have a substantial impact on the effectiveness of the processor pipeline and thereby the overall processing

efficiency, their overhead is difficult to measure directly when serving demanding workloads. This paper

presents an indirect methodology to assess IRQ overhead by constructing preliminary approaches to reduce

the impact of IRQs. While these approaches are not suitable for general deployment, their corresponding

performance observations indirectly confirm the conjecture. Based on these findings, a small modification of

a vanilla Linux system is devised that improves the efficiency and performance of traditional kernel-based

networking significantly, resulting in up to 45% increased throughput without compromising tail latency. In

case of server applications, such as web servers or Memcached, the resulting performance is comparable to

using kernel-bypass and user-level networking when using stacks with similar functionality and flexibility.

CCS Concepts: • General and reference→ Performance; • Software and its engineering→ Input /
output; • Networks→ Network servers.

Additional Key Words and Phrases: network stack performance; interrupt mitigation; locality

ACM Reference Format:
Peter Cai and Martin Karsten. 2023. Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the

Interrupts. Proc. ACM Meas. Anal. Comput. Syst. 7, 3, Article 49 (December 2023), 23 pages. https://doi.org/10.

1145/3626780

1 INTRODUCTION
Recent literature (cf. Section 2) as well as reports from practitioners [27, 36, 41, 45] attest to

significant performance gains arising from user-level networking in comparison to using the kernel

network stack. However, user-level networking is no panacea and presents serious challenges to

the design and deployment of network-centric applications. We are not aware of a comprehensive

performance study that quantitatively describes which elements of kernel-bypass and user-level

networking are responsible for the reduction in processing overhead and by how much. We surmise

that the performance improvements are caused by two general characteristics:

(1) Customization: Reduced functionality and flexibility of a user-level stack can directly lead to

a corresponding reduction in memory footprint and processing overhead.

Authors’ addresses: Peter Cai, peter.cai@uwaterloo.ca, David R. Cheriton School of Computer Science, University of

Waterloo, Waterloo, ON, Canada; Martin Karsten, mkarsten@uwaterloo.ca, David R. Cheriton School of Computer Science,

University of Waterloo, Waterloo, ON, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2023/12-ART49 $15.00

https://doi.org/10.1145/3626780

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

https://doi.org/10.1145/3626780
https://doi.org/10.1145/3626780
https://doi.org/10.1145/3626780

49:2 Peter Cai and Martin Karsten

(2) Alignment: User-level network stacks cannot directly receive hardware interrupts and thus use

polling to interact with the network interface card (NIC). This leads to both spatial (locality)

and temporal (synchronous) alignment of network- and application-level processing, both of

which are known to improve performance.

A customized network stack presents opportunities for optimization, but comes with caveats.

Network protocols and their internals continue to evolve. High-efficiency and low-latency imple-

mentations are complex and error-prone. While well-known and mature network stacks, such as

Linux or *BSD, typically receive timely updates and undergo extensive testing, this is not necessarily

true for customized stacks. The application programming interface (API) of a custom stack might

need to differ from established APIs to fully realize the customization benefits. This makes it hard to

integrate existing and diverse applications. Similarly, user-level network stacks are not integrated

with the operating system’s scheduler and interrupt delivery mechanisms. Therefore, applications

using such custom stacks typically require dedicated resource allocation, bypassing the kernel’s

resource management system, which reduces overall system efficiency and utilization.

The main contribution of this work is demonstrating that much better alignment of network-

and application-level processing is possible without requiring massive changes or additions to a

vanilla Linux system using the regular kernel network stack. The key improvement is reducing the

overhead caused by asynchronous hardware interrupt requests (IRQ) and their handling. Because

this overhead is impossible to measure directly at high system load, we present and evaluate

two kernel configuration setups that are not useful for general deployment, but corroborate the

conjecture about the impact of IRQs. Based on these observations, one small and feasible kernel

code change is devised that delivers substantial benefits compared to a default system setup.

These findings have implications for best practices and research methodology. When studying

the performance of network stack processing, high-level design decisions as well as experimental

methodology affect IRQ handling, but the resulting effects are often not properly attributed. This can

lead to an overly optimistic assessment of proposals for re-architecting network stack processing.

Therefore, it is important to understand and document the effects of IRQ handling when evaluating

network stack performance. Also, the findings reported here need to be taken into account when

assessing the baseline performance of a vanilla network stack in comparison with novel proposals.

The rest of the paper first presents background and related work in Section 2. This is followed

by formulating a simple performance model and providing a preliminary experimental analysis of

network stack overhead in Section 3. Section 4 presents proposals for favourably aligning network-

and application-processing, while Section 5 presents an experimental evaluation of these proposals.

These sections present strong evidence that substantiates our conjecture about IRQ handling and

alignment, along with a practical proposal to improve performance significantly with little to no

negative side effects. The paper is wrapped up with a summary and conclusion in Section 6.

2 BACKGROUND
2.1 Kernel- vs. User-Level Networking
Traditionally, most of the network protocol stack is processed inside the operating system kernel.

The kernel normally ingests memory-mapped buffers of network data from the NIC after receiving a

notification via an IRQ, and then passes these buffers through the link (typically Ethernet), network

(IP), and transport (such as UDP or TCP) protocol layers. The buffers ultimately become part of a

queue called socket buffer [5] (one per transport instance), from where the data is made available to

applications through standard system calls that provide specific semantics.

Commensurate with the increase in link transmission speeds and NIC capabilities (now reaching

100s of Gbps), kernels, such as Linux, have been continually improving the performance of their

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:3

network stacks. This includes efforts to streamline the network stack, such as reducing data copies

and avoiding interrupts when possible, scaling multiple transmit (TX) and receive (RX) queues to

multiple processor cores, and efforts to optimize communication and cooperation between kernel

and application, such as the kqueue [21], epoll [26] and io_uring [4] system interfaces.

A recent line of work, on the other hand, seeks to abandon the kernel network stack, which is

often considered dated and inefficient, in its entirety. This work includes library-based network

protocol implementations that are executed in the context of user-level application processes.

Depending on the level of kernel involvement in network processing, the term kernel-bypass is used
to denote minimal involvement (or none) of the kernel in the data path. In this operating mode,

a user program takes control of a NIC or a virtual function exposed by the NIC, either through

hardware-assisted virtualization, or through special provisions made in the kernel driver for the

NIC. In both cases the user-level application has direct access to a subset of the TX and RX queues.

When network traffic is processed in user space, it is often the case that the user-level process

must run in a constant polling loop on dedicated CPU cores. This requirement stems from the fact

that typical platforms and operating systems available today provide no mechanism for directly

routing interrupts to user-level processes. Depending on the exact execution model chosen, it

is sometimes possible to designate only a subset of cores to run in polling mode, and to rely on

user-level communication for the rest of the application to receive data. Such a model is nevertheless

very different from the fundamentally asynchronous interrupt handling in the kernel.

2.2 Components
Data Plane Development Kit (DPDK) [24] is a popular framework for implementing customized

user-level (kernel-bypass) network stacks. A program using DPDK handles data in a polling loop

with direct memory-mapped access to the NIC’s TX/RX queues, and processes and transmits data in

the same polling loop. DPDK provides abstractions and common software infrastructure required

by typical user-level network stacks. For example, its poll mode drivers expose a common interface

for all mechanisms employed to access NICs in user space, regardless of hardware support and

driver-specific access methods. The environment abstraction layer hides platform-specific details of

memory allocation, memory mapping, thread creation, and the polling loop that is run on each

designated core. DPDK also includes libraries for memory pool management and synchronization

primitives. Although DPDK was originally intended for raw packet processing on software switches

and routers, the wide coverage of its abstractions has brought about a plurality of user-level network

stacks both in research and industry.

The eXpress Data Path (XDP) [13] subsystem is an emerging Linux kernel mechanism to attain

the benefits of DPDK-like packet processing frameworks within the kernel. It leverages the extended
Berkeley Packet Filter (eBPF) [6] virtual machine in the kernel to process network traffic right after

its arrival in the NIC driver and before entering the kernel network stack. Even though this does

not bypass the kernel completely as DPDK can do, it eliminates the need for polling mode execution

and dedicated CPU cores, while still being much more efficient compared to earlier methods to

redirect packets to custom processing logic without DPDK, such as packet capturing. However,

due to safety limitations in eBPF, XDP itself is not suitable for implementing a complete network

stack within the kernel. Recent Linux kernel versions have added support for a new socket family,

AF_XDP, that diverts network traffic to user-level applications using the infrastructure of XDP. It is

supported by DPDK as an alternative to its native drivers, since the effect is similar.

Other options for user-level networking include PacketShader [12], which enables not only

user processing but offloading of highly parallel networking logic (e.g. forwarding) to a GPU; and

PF_RING [30], leveraging virtual functions support in hardware to perform high-speed packet

capturing.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:4 Peter Cai and Martin Karsten

2.3 User-Level Network Stacks
Since its release, DPDK has seen wide adoption in the industry to realize user-level networking

without building the entire software infrastructure from scratch. F-Stack [44] is a port of the

FreeBSD network stack to DPDK, in the hope of achieving performance benefits from user-level

networking without relying on and maintaining a customized TCP/IP stack. F-Stack includes the

complete source code of the FreeBSD kernel, but replaces all functions pertaining to multi-threading,

synchronization, and device drivers with empty stubs. It executes the DPDK polling loop along

with the network stack and the application code by emitting packets from the polling loop through

the FreeBSD network stack, and invoking an application-defined callback after processing. F-Stack

adapts the kqueue system call (and a compatibility layer for epoll) only for retrieval of events

after the application-defined callback is invoked by the network stack. Because this execution

model is different from the asynchronous in-kernel model, the existing synchronization stubs

cannot be simply ported to user-space threading primitives and F-Stack is effectively limited to

single-threaded execution. To fully utilize a multi-core system, an F-Stack application must be

designed to run as multiple processes without a default shared address space.

On the other hand, the Linux Kernel Library (LKL) [25] is somewhat more compatible with

multi-threaded applications. LKL adapts the Linux kernel (including its network stack) into a

user-space library, but in order to satisfy in-kernel synchronization constraints, LKL implements

a single global lock that allows kernel code to be executed by only one thread at any moment in

time. This restriction allows applications to make use of multi-threading, but the network stack is

still effectively single-threaded. Consequently, even though LKL’s network stack can be used with

DPDK without the same set of constraints as F-Stack, its performance is severely limited.

In addition to industry, DPDK and user-level networking enjoy increasing popularity in the

research literature. Shenango [32] and its successor Caladan [9] are recent user-level network

stacks built on DPDK. Both add significantly to the default execution model of DPDK. Instead of

dedicating all cores to one application for polling, in both Shenango and Caladan, only one core

is needed to run the DPDK polling loop, which is termed iokerneld process. Their work includes

a user-level threading runtime along with a fast-path inter-process signal delivery mechanism

exposed through a custom kernel module. This allows scheduling to be handled largely by iokerneld
by waking up application threads only when events of interest are found during a polling iteration.

The majority of the network stack, other than the central polling loop, runs in the application,

similar to other DPDK-based network stacks. Each application receives data with its own polling

loop and, unlike interrupt-driven delivery in the Linux kernel, the arrival of network traffic does

not preempt a running application thread. Although the Shenango and Caladan work is mainly

focused on scheduling and its evaluation, it is built upon the assumption that user-level network

stacks have inherent performance advantages and the papers present extraordinary performance

gains over vanilla Linux.

Various other user-level networking approaches exist. Onload [47] is an example based on AF_XDP
or a kernel-bypass mechanism specific to Xilinx NICs. Seastar [39] is an asynchronous programming

framework for C++ and includes a network stack primarily targeting DPDK. mTCP [17] can

switch between a number of user-level networking backends, including DPDK and PacketShader.

Additionally, there are library protocol stacks decoupled from underlying operating systems or user

networking mechanisms, such as lwIP [40]. For specific application scenarios, there are attempts to

completely replace the established TCP/IP network stack with novel proposals implemented in user

space, such as eRPC [18]; or rearchitected operating systems, such as Snap [28] and Demikernel [48],

both of which lie outside of the direct scope of this work. We are not aware of any other mature

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:5

and openly available user-level TCP/IP network stack that eclipses the ones described above in

performance or functionality.

2.4 Applications
User-level network stacks are often targeted at high-performance server applications. F-Stack

includes both Nginx [29], a well-known and popular HTTP server, and Redis [35], an in-memory

database engine, in its repository as sample use-cases. The F-Stack team also claims to have deployed

F-Stack as the network stack for their DNS service. Both Shenango and Caladan include a port

of Memcached [8], which is a widely deployed in-memory key-value store that is often used as

caching daemon to store the results of dynamic remote queries. Seastar’s kernel-bypass networking

optionally powers ScyllaDB [38], a real-time database engine developed by the same team. In all of

these cases, the application requires a complete Layer 4 protocol stack.

On the other hand, user-level processing of network packets is also a popular technique in

software switching and routing. In this scenario, user-level processing frameworks such as DPDK

or AF_XDP are used only as a way of efficiently capturing packets, but network traffic does not

terminate at an application running above the network stack. The functionality includes minimal

Layer 4 processing, if any, and most logic operates directly on raw Ethernet frames or IP packets.

For example, NetVM [14] leverages the flexibility of DPDK’s user-level processing to implement

Network Function Virtualization [7]. Rubik [23] seeks to simplify the programming of network

middleboxes by designing a new special-purpose programming language that targets DPDK as its

packet processing infrastructure.When hardware offloading is involved, with or without application-

level networking, DPDK-based solutions are also often used as state-of-the-art "best-case scenario"

for software processing [15, 33].

It is important to note that this paper focuses on the server application aspect of user-level and

specifically kernel-bypass networking. While the findings presented here may also apply to other

scenarios, for example, middleboxes that parse application-level traffic before forwarding, such

scenarios are not evaluated as part of this work.

3 NETWORK STACK OVERHEAD
System software directly affects application performance through the overhead of system services,

such as I/O. It can indirectly affect application performance by organizing execution components,

which makes application software run more or less efficiently, for example through scheduling.

Changes in system software design might cause both of these types of effect. Then, in a slight

generalization of Amdahl’s Law [2], the question arises how the design changes actually lead to

the overall performance difference. For example, for an N-fold increase in performance,
𝑁−1
𝑁

of the

overhead must disappear. In other words, assuming the existing and unchanged functionality and

implementation of a given application, what portion of its total execution overhead is attributable

to system services and how much of this overhead can be eliminated?

3.1 Performance Model
In addition to experimental observations that document application performance before and after

design changes, any conjectures about performance behaviour should be corroborated by comparing

the breakdown of execution overhead of the base case with the contender. Breaking down execution

overhead and attributing performance improvements is not straightforward. The following simple

model is proposed to aid in this task. Application throughput performance can be measured as

𝑄𝑃𝑇 = 𝑞𝑢𝑒𝑟𝑖𝑒𝑠/𝑡𝑖𝑚𝑒 (1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:6 Peter Cai and Martin Karsten

The average CPU resource utilization is given by

𝐶𝑃𝑇 = 𝑐𝑦𝑐𝑙𝑒𝑠/𝑡𝑖𝑚𝑒 (2)

IPC is a well-known metric describing how efficient a superscalar processor pipeline can process a

particular workload:

𝐼𝑃𝐶 = 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠/𝑐𝑦𝑐𝑙𝑒 (3)

In addition, IPQ is used here to capture how many instructions are executed for each application-

level query. This metric is used as an estimate for functionality or algorithmic efficiency, i.e., the

amount of processing that is done for each application query on average:

𝐼𝑃𝑄 = 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠/𝑞𝑢𝑒𝑟𝑦 (4)

All these metrics can easily be measured using hardware performance counters during an

experiment. Furthermore, with tooling like the Linux Perf subsystem [42] it is straightforward to

distinguish between user and kernel execution, as well as between main application and system

libraries. Most importantly, these metrics are related to each other. It is quite trivial to see that

𝑄𝑃𝑇 =
𝐶𝑃𝑇 × 𝐼𝑃𝐶

𝐼𝑃𝑄
⇔ 𝑄𝑃𝑇

𝐶𝑃𝑇
=

𝐼𝑃𝐶

𝐼𝑃𝑄
. (5)

Basically, this model and the right-hand side of Equation 5 illustrates that an increase in perfor-

mance (QPT) or efficiency (QPT/CPT) must be accompanied by an increase in IPC or a decrease in

IPQ or both. A decrease in IPQ could be caused by an algorithmic improvement or by reducing

functionality. An IPC increase typically means fewer stalled cycles due to improved efficiency of the

processor pipeline, which could be caused by increased cache hit rates (including page translation

and branch prediction) or similar effects.

Note that time is not strictly needed and the model could also use total queries and total cycles.

However, application performance is typically described as a throughput rate. Without reference to

time, a low-performing system at low utilization would be indistinguishable from a high-performing

system at high utilization.

The attainable throughput does not capture the latency behaviour of an application. Normally,

latency behaviour is described by cross-referencing high-order latency percentiles with throughput

performance. The resulting graph typically shows an inflection point where a system transitions

from underloaded to overloaded mode with queues building up. An experiment configuration near

this inflection point can thus be used to attribute execution overhead using the given model.

3.2 Performance Assessment
The performance model is used for basic observations pertaining to the cost breakdown of I/O-

heavy server applications. The particulars of the hardware and software setup for all experiments

are given at the beginning of Section 5. The experiments reported here are set up with closed-loop

clients that saturate the server at effectively 100% CPU utilization on all relevant server cores. All

CPU cores are configured to operate at their maximum fixed frequency, but without turbo-boost.

This eliminates the need to report CPT. Note that the results presented in this section show only

individual representative data points, because they are primarily used as illustration and motivation

for the proposals in Section 4, which in turn are evaluated in Section 5.

3.2.1 Memcached / F-Stack. The first scenario compares Memcached in a default Linux setup with

a Memcached version that uses F-Stack/DPDK for user-level networking. Due to the nature of

Memcached and F-Stack’s limitations (cf. Section 2.3), this experiment is run using only a single

worker core. The results are shown in Table 1 with ’Vanilla’ denoting the default Linux setup. The

overall performance is measured as QPT in queries/second. IPQ and CPU-cycle measurements are

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:7

Table 1. Memcached: Vanilla vs. F-Stack (1 core)

QPT IPQ Cycles

(T=1s) App Sys Total App Sys IPC

Vanilla 84124 1905 18512 20417 10.6% 89.4% 0.64

F-Stack 106468 1930 20579 22509 10.2% 89.8% 0.89

Table 2. Nginx: Vanilla vs. F-Stack (8 cores)

QPT IPQ Cycles

(T=1s) App Sys Total App Sys IPC

Vanilla 508828 5749 19245 24994 24.3% 75.7% 0.59

F-Stack 647441 6330 18037 24367 32.9% 67.1% 0.73

divided into an App and Sys part denoting overhead in the application vs. the rest of the system

(libraries and kernel). While it is difficult to determine a further breakdown of the system part, it

can be safely assumed that the vast majority of the system overhead arises in the network stack.

It is worth pointing out that only about 10% of Memcached’s overhead is actually attributable to

Memcached code itself.

Replacing kernel networking with F-Stack results in an overall performance increase of 27%.

The IPQ of F-Stack is slightly higher than the vanilla Linux kernel by around 10%, which is likely

caused by extra shim functionality added during the porting of Memcached. However, a dramatic

IPC increase by 39% compensates for the added overhead and leads to the substantial overall

performance improvement.

3.2.2 Nginx / F-Stack. Another scenario studied here uses Nginx, because it operates in multi-

process mode and can thus utilize F-Stack in a multi-core setting. The results in Table 2 show

a similar overall performance improvement of 27%. It is worth noting that more overhead is

attributed to the actual application when F-Stack is in use. The integration of Nginx and F-Stack is

by dynamically redirecting I/O system calls, which causes the application’s IPQ to slightly increase.

Using the Linux Perf subsystem to attribute overhead to different components of a user-level

application is neither trivial nor completely precise, because it can only rely on symbols exposed

by the compiled binary. However, the overall IPQ is very similar between kernel and F-Stack, and

the performance improvement is primarily caused by the IPC increase.

3.2.3 Memcached / Caladan. The Caladan research proposal [9] suggests an approximately 11-

fold performance increase for Memcached resulting from Caladan’s user-level network stack

compared to vanilla Linux
1
, even when effectively not using the actual scheduling proposal central

to Caladan. The next scenario attempts to reproduce and break down these phenomenal performance

observations. In addition to using DPDK for general user-level access to TX/RX rings, Caladan

implements a directpath feature, by which the NIC is programmed to directly place incoming frames

in per-flow-specific buffers, which are consumed by worker threads. If this hardware-specific feature

is not available, all network notifications are routed through a central component (IOKernel). While

this does not add much to the processing path in terms of latency, it eventually presents a bottleneck.

To eliminate this bottleneck, the experiment is restricted to 6 cores in total – for Caladan this

means 1 scheduler and 5 worker cores. This is compared to the same vanilla Memcached setup

as in the previous two subsections – this time using 6 cores. The results are shown in Table 3. In

1
Figure 4 on Page 290 in [9]: inflection points of solid green vs. solid blue line

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:8 Peter Cai and Martin Karsten

Table 3. Memcached: Vanilla vs. Caladan (6 cores)

QPT IPQ Cycles

(T=1s) App Sys Total App Sys IPC

Vanilla 577653 1783 17549 19332 9.89% 90.11% 0.69

Caladan 2108154 2103 5282 7385 28.5% 71.5% 0.97

Table 4. Memcached/Vanilla: 8 cores vs. 4+4 cores/NUMA

Cores QPT IPQ Cycles

(T=1s) App Sys Total App Sys IPC

8 724077 1832 17570 19402 9.6% 90.4% 0.65

4 + 4 601494 1851 17672 19522 8.6% 91.4% 0.55

this scenario Caladan achieves a 3.65-fold performance improvement over the default Linux setup,

which is a combination of an IPQ reduction by almost 2.6, while the IPC is increased by 41%. The

IPC increase is comparable to the previous two experiments, but the IPQ difference is not.

Similar to F-Stack, Caladan is tightly integrated with the application during compile and link

time, even more so with its user-level threading runtime. Therefore, it is difficult to cleanly factor

out application processing, which results in an increased application IPQ reported here. Overall,

though, IPQ is drastically reduced compared to kernel stack processing. A code inspection of the

Caladan network stack shows that it implements only the bare minimum functionality for TCP/IP

processing that is needed to run these experiments. For example, the stack’s TCP component does

not implement round-trip time (RTT) estimation or maximum segment size (MSS) adjustments, but

instead runs entirely on constant values. Most importantly, it does not implement any congestion

control. As outlined in Section 1, the re-implementation of network protocol processing for user

space execution can be seen as both a customization strength and/or a maintenance weakness. In

trying to compare the observations here with the 11-fold increase previously reported for Caladan,

two further aspects need pointing out: 1) The exact configuration setup of the vanilla Linux system

is not provided in the original paper. 2) The original experiments utilize 24 cores (or 48 hyperthreads)

across two CPUs (12 cores each). While it is stated that NUMA is not considered, it is highly likely

that NUMA effects have a detrimental impact on the interrupt-driven default setup, but do not

affect a polling-based system like Caladan as much. Both these aspects are investigated further in

the remainder of this paper.

3.2.4 Memcached / NUMA. This preliminary experiment investigates the effect of locality in

general and non-uniform memory access (NUMA) in particular on network stack and application

performance. It compares Memcached on 8 cores on a single socket with an equivalent dual-socket

setup using 4 cores on each socket. The results are shown in Table 4. While IPQ numbers are largely

unchanged between both setups, it is clear that reduced locality comes with a performance penalty

of about 17%, which is caused by a corresponding reduction in IPC.

3.3 Discussion
The observations point to IPC as a key contributor to performance improvements due to user-level

networking. IPC describes how efficiently the processor pipeline is utilized by avoiding stalls.

Assuming that functionality and basic algorithms and data structures stay the same, low-level

pipeline metrics need to be investigated. While we do not report all those findings in detail, we

have determined that branch prediction has no discernible impact in this case. Dramatic effects of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:9

system calls are not expected on modern processors, even when security mitigations are used [20].

Similarly, L1 and L2 cache utilization as well as translation lookaside buffer (TLB) miss rates do not

show significant enough differences to explain the IPC gap.

For locality in general, we notice a limited impact that is further studied in Section 5. For

example, the first experiment in Section 3.2.1 runs on a single core, so there are no locality issues

by definition, yet the IPC increases by almost 40% with user-level networking. We conjecture that

a side effect of user-level networking is responsible for a substantial fraction of the performance

improvement: Continuously polling the NIC queues eliminates the need for asynchronous hardware

IRQs, which otherwise distort the processor pipeline quite substantially. Even with standard

interrupt moderation techniques implemented in the Linux kernel, we observe that most network

packets are still accompanied by IRQs. Furthermore, a synchronous processing path typically has

better locality than asynchronous execution. While locality does not matter much within the same

NUMA domain, the observations in Section 3.2.4 show that NUMA communication overheads

across domains do have an impact on IPC and performance.

4 NETWORK STACK ALIGNMENT
The observations presented in the previous section point to temporal and spatial alignment, namely

synchronous processing and core locality, as drivers for performance improvements in the network

stack. While the performance effects of IRQs are difficult to measure directly, they can be verified

indirectly by reducing IRQs without changing other parts of the system. To illustrate and corrobo-

rate the performance potential of alignment, we present a number of proposals, with increasing

practicality, to reorganize IRQ handling for the Linux kernel network stack. The final proposal is

both practical and highly performant. User-level networking typically leads to a strongly aligned

execution model by having to employ continuous polling. The ultimate objective of this work is

determining how much of the corresponding efficiency gains can be obtained while using the

comprehensive and mature kernel stack and without requiring the explicit and dedicated resource

allocation necessary for kernel-bypass approaches. The presentation of these schemes is focused

on RX interrupt handling, because it has a much larger effect than TX interrupts (cf. Section 5.2.3).

4.1 IRQ Routing
Most modern platforms provide programmable interrupt controllers that can be configured through

operating system mechanisms. In the Linux kernel, each IRQ number has a property called affinity,
definingwhich CPU cores receive and potentially handle the corresponding interrupt. The respective

CPU core then also typically executes the deferred portion of interrupt handling and protocol

processing (termed softirq in Linux). Opinions differ among practitioners on the optimal strategy

under various scenarios, with some advocating for balancing IRQs between CPU cores [19, 31, 43],

while others believe that they should be packed onto a small number of dedicated cores [34],

especially for latency-sensitive workloads.

4.1.1 IRQ Balancing. It is often recommended to balance total IRQ workload across CPU cores

in order to achieve higher performance. The irqbalance [46] daemon automates this process by

observing traffic generated by each interrupt source and directing the highest volume interrupts

to a single unique CPU core each. However, there are two caveats: 1) The IRQ arrangement does

not necessarily take into account the placement and scheduling of network-intensive applications,

which results in less than optimal alignment. 2) Consequently, the very nature of dynamic interrupt

assignment can lead to performance variations that make reproducibility difficult. As others have

observed previously, disabling irqbalance and controlling interrupt routing explicitly is thus the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:10 Peter Cai and Martin Karsten

Fig. 1. IRQ Balancing

preferred approach for reproducible high-performance networking experiments, even though it is

not always straightforward to accomplish in practice.

For an application deployment on 𝑁 cores, a typical approach is configuring 𝑁 RX and 𝑁 TX

queues and assigning one RX and one TX queue (via their respective interrupt) to each core. This

setup forms the baseline for the experiments reported in this paper and is conceptually illustrated in

Figure 1. The NIC asynchronously notifies the kernel about incoming traffic. After network protocol

processing in a softirq kernel thread, another asynchronous notification informs the application

that data is ready. The softirq and application threads do not necessarily execute on the same core.

We have experimented with Linux mechanisms that attempt to improve locality on the data path

between NIC and application threads, such as receive flow steering (RFS) as well as thread pinning

in combination with the SO_INCOMING_NAPI_ID or SO_INCOMING_CPU socket options. However,

none of these mechanisms significantly shifts the baseline, at least not when all cores are in the

same NUMA domain. Figure 1 shows the most optimistic case of perfect spatial alignment.

4.1.2 IRQ Packing. Linux employs an interrupt mitigation technique termed New API or NAPI [37].
After an interrupt is delivered, this interrupt is temporarily masked. The kernel enters polling mode

and retrieves all available network packets from the corresponding RX ring. The specifics can be

configured to some extent by kernel parameters. However, after completing a polling episode, the

corresponding interrupt is re-enabled. Most importantly, interrupts can arrive while the application

is still processing data received previously. To achieve better temporal alignment, an IRQ packing
scheme is proposed, instead of distributing the interrupt load. The objective is forcing the kernel

into almost perpetual polling mode and thereby eliminating a large fraction of interrupts. If nothing

else is modified, then the resulting performance changes illustrate the cost of handling interrupts

traded off against the potential impact of reduced locality.

Interrupts are assigned to a minimal set of dedicated cores, while application threads are restricted

to a set of different cores. The number of NIC queues is also set to the number of dedicated IRQ

handling cores. The IRQ packing scheme is illustrated in Figure 2. Ideally, it uses just enough cores

to handle all network traffic while saturating those cores. Although this does not spatially align the

application with the network stack, IRQ packing makes interrupt mitigation extremely effective

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:11

Fig. 2. IRQ Packing

and suppresses most interrupts. The resulting performance improvements, shown in Section 5,

indirectly confirm the conjecture that IRQ handling has a significant performance impact. However,

IRQ packing is often difficult to configure in practice, since it relies on kernel settings that are

hard to adapt dynamically. Most importantly, CPU cores can only be allocated in whole integers

and need to be fully saturated by network traffic to effectively suppress hardware interrupts. This

creates a bottleneck. Furthermore, proper resource management would require some form of global

adaptive core allocation in response to workload dynamics, which is invariably slow and brittle.

4.2 Network Polling
While IRQ packing illustrates the overhead of IRQ handling, it cannot be regarded as a general-

purpose scheme, as explained in the previous section. In the vanilla IRQ balancing scheme, on the

other hand, IRQ arrivals compete asynchronously with network and application processing for the

same set of cores. In an ideal scenario, while an application is busy processing existing requests, no

further data (and thus no interrupts) should be delivered until the application is idle again. However,

since packet arrivals are fundamentally asynchronous and network traffic is not exclusive to a

particular application, there is typically no coordination between application execution and IRQ

handling in the kernel.

In contrast, kernel-bypass and user-level network stacks put the application in charge of the entire

network stack processing (cf. Section 2). Interrupts are disabled and the application coordinates

execution by alternating between processing existing requests and polling the RX queues for new

data. Modern programmable NICs address the exclusivity problem by allowing fine-grained control

over which network traffic arrives in which RX queue. We present two proposals for emulating

this execution pattern with the Linux kernel stack. The principle is shown in Figure 3.

The Linux kernel already contains mechanisms to promote polling-based packet reception. One

such feature, though disabled by default, is sysctl net.core.busy_poll, sometimes used in

combination with the SO_BUSY_POLL socket option. When this parameter is set, the kernel’s NAPI

component enters a short busy polling period, as defined by the value of the parameter, when

an application uses any of the I/O multiplexing calls select(), poll(), or epoll_wait() and no

events are immediately available. If network packets are received during polling, network protocol

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:12 Peter Cai and Martin Karsten

Fig. 3. Network Polling

processing is performed in the same synchronous execution path, resulting in the desired coopera-

tion between the application and the network stack similar to user-level networking. However,

this mechanism by itself does not eliminate asynchronous interrupt handling sufficiently. While

the kernel suppresses interrupts during the busy-polling episode, interrupts are still immediately

re-enabled before control returns to the application. Thus, while the application is processing the

previously received data, IRQs continue to arrive and distort the application’s execution.

4.2.1 IRQ Suppression. The first approach to network polling is suppressing most interrupts via

NIC-based interrupt coalescing. Most NICs provide timer- and/or counter-based configuration

parameters to request delayed interrupt generation. These parameters are accessible through the

ethtool program on Linux and can be set to high values to effectively suppress interrupt generation.

In combination with the existing kernel busy polling mechanism, this results in the majority of

packets being received via polling, while interrupt generation is strictly limited. However, this

approach is not very robust and requires meticulous tuning for each application and in fact, each

workload situation. Otherwise, the lack of interrupts during a low-rate arrival phase causes delays

before packets are retrieved and the resulting wait times lead to reduced utilization and higher

service latencies. However, this scheme does show that there is at least a possibility to realize a

high level of coordination between application and network processing without abandoning or

modifying the kernel network stack.

4.2.2 Kernel Polling. The missing piece for improved coordination between application and net-

work stack is gaining control over the masking of IRQs. A minor kernel modification is proposed

to maintain IRQ masking while an application is processing previously received data. This modi-

fication works in tandem with the kernel’s busy polling mechanism described above. Instead of

re-enabling the respective interrupt(s) as soon as epoll_wait() returns from its NAPI busy loop,

the relevant IRQs stay masked until a subsequent epoll_wait() call comes up empty, i.e., no events

of interest are found and the application thread is about to be blocked. A new IRQ inhibition flag is

added to NAPI instances that correspond to RX queues. This kernel flag is set in the return path of

epoll_wait() as long as the application has data to process. When the flag is set, NAPI advises

the NIC driver against re-enabling hardware interrupts. With this change, no network interrupt

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:13

1: procedure ep_poll(ep) ⊲ epoll_wait() implementation

2: avail← are_events_available(ep)

3: loop
4: if avail then ⊲ Return path

5: events← get_events(ep)

6: new_napi_id← events[0].napi_id

7: if new_napi_id ≠ ep.last_napi_id then
8: unmask_interrupts(ep.last_napi_id)
9: end if

10: ep.last_napi_id← new_napi_id

11: mask_interrupts(ep.last_napi_id)
12: return events ⊲ Copy to user

13: end if
14: avail← do_busy_poll(ep)

15: if avail then
16: continue
17: end if
18: unmask_interrupts(ep.last_napi_id)
19: sleep_until_notified(ep)

20: avail← are_events_available(ep)

21: end loop
22: end procedure

Fig. 4. Kernel Polling (Pseudo-code)

is delivered while the application is busy receiving and processing data, and interrupts are only

used as a fallback when the application is idle. The modification is illustrated with pseudo-code

in Figure 4 and implemented by about 30 lines of kernel modifications at the boundary between

generic event polling and NAPI code.

The resulting execution model mimics the execution model of typical user-level network stacks

and does not add any requirements compared to user-level networking. In fact, it is slightly better,

because it can resort to blocking and interrupt delivery, instead of having to continuously busy-

loop during idle times. In order to maximize efficiency, an ideal setup has a 1:1 mapping between

application threads and RX queues (NAPI instances), as illustrated in Figure 3, so that no ambiguity

exists on which queue should be polled during the busy loop. Such a mapping can be achieved by

suitable application design purely in user space. All that is needed is grouping and dispatching

newly accepted connections to threads according to the SO_INCOMING_NAPI_ID flag. Thread affinity

to cores is not required.

4.3 Generality and Possible Adoption
As pointed out previously, neither IRQ packing nor IRQ suppression are suitable for potential

adoption and deployment in production environments. However, kernel polling seems to be general

and nimble enough to pass muster. Similar to user-level networking, kernel polling places RX queues

under the control of an application. If such an RX queue receives cross-traffic for other applications,

such traffic might be slightly delayed while IRQs are masked. Also, if a controlling application would

not call epoll_wait() after each round of processing, IRQs may not be re-enabled and no new

traffic can be delivered via a particular RX queue. However, in contrast to user-level networking,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:14 Peter Cai and Martin Karsten

the actual processing path of cross-traffic is not changed and any cross-traffic is processed by the

kernel and directly consumed by its respective application process. Consequently, kernel polling

with interrupt fallback functionally dominates the user-level polling scenario typically embodied

by user-level networking – by being more flexible and less intrusive.

While the kernel modification proposed here is currently a proof-of-concept and not yet complete

for production use, there is a clear path towards a production-grade kernel polling scheme and

possible adoption. As mentioned above, modern programmable NICs can alleviate cross-traffic

concerns due to fine-grained flow classification and routing to specific RX queues. A fallback

technical approach would use a kernel timeout set on the return path from epoll_wait(). If
necessary, the timeout re-enables interrupts regardless of the application’s (mis)behaviour. An

administrative approach towards production-level security and robustness would encode the

interrupt masking request in a privileged socket option or epoll_wait() flag, only available to

threads with a suitable capability [11]. Aside from open-sourcing all code and experiments described

here
2
, we intend to submit a corresponding patch for possible adoption in the Linux kernel.

5 EVALUATION
5.1 Experimental Setup
5.1.1 Hardware. The evaluation is performed on a server with dual-socket octa-core Intel Xeon

E5-2680 CPUs (NUMA setup, 16 cores / 32 hyperthreads total). The server is equipped with 64 GiB

of RAM (32 GiB per NUMA node), enough for all experiments reported in this paper, and a Mellanox

ConnectX-3 10 GbE network controller. In all experiments, Turbo Boost is manually disabled to rule

out any unpredictable effects, and both CPUs run at their maximum non-Turbo Boost frequency of

2.7 GHz. Hyperthreading is avoided by scheduling threads only on the respective first hardware

thread of each core. An additional 7 identical machines are used as clients to generate load.

5.1.2 System Software. All machines in the experiments are set up with Ubuntu 20.04, with updates

up to Q4 2022. User-level network stacks, such as Caladan, require an older version of the Linux

kernel. As a result, these experiments (primarily in Section 3) are performed on kernel version

5.4, provided by the official Ubuntu 20.04 repositories. Since these stacks bypass the kernel and

require dedicated CPU cores and/or implement their own scheduling, the older kernel version is not

expected to cause any distortion of performance observations - advantageous or disadvantageous.

All other experiments are performed on kernel version 5.15, enhanced by the kernel polling patch

described in Section 4.2.2. The kernel is booted with the boot setting mitigations=off, which
disables various mitigations for older CPUs’ security vulnerabilities. In addition, automatic NUMA

balancing is turned off by setting sysctl kernel.numa_balancing=0 to avoid interfering with

the intended thread placement during experiments.

Resource usage is tightly controlled through IRQ routing and thread affinity, and monitored via

the Linux Perf subsystem and other kernel reporting. In particular, all softirq and other network

processing is done on those cores that handle the hardware interrupts and/or those that are

designated as application cores. For experiments labelled ’Vanilla’, a static balanced IRQ assignment

is performed with each core mapped to one dedicated RX and TX queue on the NIC, in order to

rule out inconsistencies in the default assignment or interference from dynamic IRQ assignment

schemes such as irqbalance, which is disabled. Normally, this change results in a slight performance

increase for the vanilla kernel due to better locality compared to a true default setup. For fairness

with user-level network stacks, only those cores that are specified for a particular scenario are

assigned IRQ workload during kernel-based experiments. For example, in an experiment labelled as

2
https://cs.uwaterloo.ca/∼mkarsten/netstack/

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

https://cs.uwaterloo.ca/~mkarsten/netstack/

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:15

8 cores, IRQ handling is only allowed on those 8 cores, although specific work assignment within

the set of allowed cores can be different depending on the scheme being tested.

5.1.3 Benchmark Software. Memcached is an attractive target application for benchmarking net-

work stacks and other systems software. It is a production-grade and widely used tool, but ultimately

a lightweight application that exposes the performance and efficiency of the underlying runtime

system stack. Memcached 1.6.9 is used for all experiments using the Linux kernel’s network stack.

This is the earliest version with support for NAPI locality based on the SO_INCOMING_NAPI_ID
socket option, which is required for kernel polling (Section 4.2.2).

The benchmarks reported for Caladan and F-Stack in Section 3 use Memcached 1.5.9, which is

part of the Caladan software repository. We have ported Memcached to F-Stack and during the

process have found that it is necessary to revert most of the changes in 1.6 in order to support

user-level networking. For example, the SO_INCOMING_NAPI_ID socket option is irrelevant and

must not be used when Memcached is running on a user-level network stack. For this reason and

to avoid mixing too many versions, Memcached 1.5.9 is also used for the F-Stack experiments. Any

porting effort to Caladan or F-Stack consists of extensive code modification and refactoring that,

at the very least, fully rewrites the main event loop of Memcached. This results in much greater

differences than those between Memcached 1.5.9 and 1.6.9.

Load is generated with Mutilate [22], a well-established benchmark client for Memcached, using

8 threads (cores) on each of the 7 client machines, and creating 20 connections per client thread for

a total of 1120 connections.
3
The experiments use Mutilate’s synthetic recreation of the Facebook

"ETC" workload described in the literature [3] with 1,000,000 records.

Section 3 also presents experiments based on Nginx 1.16.1, since it is the latest version supported

by F-Stack, and part of the F-Stack software repository.Wrk [10] is used for load generation. It is

used with 1000 concurrent connections and repeatedly requests a small file located in RAM
4
.

5.2 Alignment
The first line of inquiry studies and documents the performance of the various alignment proposals

presented in Section 4. An initial overview and breakdown is provided in Table 5, which shows

the sustained throughput performance and IPQ/IPC breakdown, similar to the presentation in

Section 3.2, for a representative closed-loop experiment for each of the proposals. The result for

the vanilla setup from Table 4 is repeated in Table 5 for reference. For the IRQ packing scheme, a

configuration of 2 interrupt-processing cores and 6 application cores is set up for this experiment,

as 2 is the maximum number of cores that can be fully loaded by interrupt handling generated

by this particular workload. IRQ suppression parameters are also manually tuned for maximum

throughput in this particular experiment.

It is obvious that all alignment proposals result in a substantial performance increase over the

vanilla configuration. Moreover, it can be observed that, similar to the observations for F-Stack

reported in Section 3.2, most of the performance improvement can be attributed to an increase in

IPC, which closely mirrors the difference in throughput achieved by the respective scheme.

However, maximum throughput is not sufficient to characterize the performance of I/O-heavy

server applications. To fully assess the overall performance of each of the proposed schemes, a

second experiment is used to assess the resulting tail latency behaviour in relation to throughput.

Clients generate a fixed rate of service requests in open-loop mode and the experiment measures

the 99
𝑡ℎ

percentile latency achieved for the resulting throughput. Figure 5 shows this tail latency on

the Y-axis (logarithmic scale) for varying throughput rates for all alignment proposals. Each data

3
The number of connections is chosen to avoid excessive cache misses on our hardware with a small LLC; see Appendix A

4
As a static part of Nginx’s configuration, loaded into RAM on start.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:16 Peter Cai and Martin Karsten

Table 5. Memcached: Alignment Proposals, 8 cores

QPT IPQ Cycles pkts/

(T=1s) App Sys Total App Sys IPC irq

Vanilla 724077 1832 17570 19402 9.6% 90.4% 0.65 1.05

IRQ Packing 847669 1981 17549 19530 10.7% 89.3% 0.77 22.1

IRQ Suppression 967675 1842 17123 18965 11.7% 88.3% 0.85 262

Kernel Polling 947021 1853 16716 18569 11.9% 88.1% 0.82 15.6

point shows the average result of 20 independent repetitions of the same experiment. The resulting

standard deviation is shown with error bars. It is again very apparent that all alignment proposals

result in better performance compared to the vanilla kernel. In particular, they are able to maintain

a lower tail latency up to higher rates of throughput. However, the curves differ significantly for

the different schemes. This and other details are discussed next for each alignment scheme.

5.2.1 IRQ Packing. IRQ packing maintains a very competitive tail latency, but its throughput

capacity is a fair bit lower than IRQ suppression or kernel polling. While IRQ packing promotes

polling-based network processing, this processing is still performed in softirq kernel contexts, and

is opportunistic in nature. At high load, IRQ packing increases the number of packets that are

received per interrupt to about 22. Furthermore, IRQs do not distort application processing, but

are delivered to dedicated cores that do not perform much other work. IRQ packing does not have

any spatial alignment between network processing and application, yet performance increases

significantly. Overall, this corroborates the conjecture that IRQ handling is a significant source of

network processing overhead, irrespective of locality.

IRQ packing shows good potential to improve network processing performance without any

kernel modification. Unfortunately, its requirement of fully loading an integer number of cores

severely limits the possibilities of adopting it as a general-purpose mechanism. By definition,

network processing must be a bottleneck in IRQ packing, which most likely also contributes to the

limited throughput performance shown in Table 5 and visible in Figure 5.

5.2.2 IRQ Suppression. IRQ suppression results in an impressive 33% throughput increase over the

vanilla version, with a corresponding improvement in IPC, which confirms our basic conjecture

about IRQ handling. Compared to vanilla and IRQ packing, there is a slight decrease in IPQ. In

polling mode, a part of the asynchronous network processing logic is eliminated from the code

path, which results in the slight IPQ decrease.

However, as pointed out before, IRQ suppression requires fine-grained manual tuning and even

then, remains a fundamentally fragile mechanism. Its tail latency, while better than the vanilla case,

is not competitive compared to the other two alignment schemes. In fact, the tail latency starts to

grow much earlier than the saturation point where the system becomes overloaded. Furthermore,

Figure 5 shows very high variations in the measured 99
𝑡ℎ

percentile latency, even at relatively low

load, which points to difficulties in coordinating between application and network stack. Given the

current implementation of interrupt coalescing in NICs and the kernel, suppression parameters

have to be chosen somewhat statically without taking into account application dynamics. The

experiments here have used very aggressive suppression parameters as supported by ethtool and

the NIC: rx-usecs 65534 rx-frames 65534 tx-usecs 1024 tx-frames 256. These parameters

would have to be changed rapidly to accommodate dynamic traffic patterns. However, any chosen

configuration implies an inherent trade-off between throughput capacity and tail latency. Based

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:17

Fig. 5. Memcached: Latency vs. Throughput, 8 cores

on these observations, it is questionable whether IRQ suppression could be deployed in dynamic

workload scenarios, especially when a consistent tail latency is as important as throughput capacity.

5.2.3 Kernel Polling. Kernel polling does not suffer from the issues that IRQ packing and IRQ

suppression face, because the decision whether to poll or enable interrupts is made automatically

based on the application’s workload. Its performance is strong in both maximum throughput and

tail latency, as evident by Table 5 and Figure 5. While it is difficult to compare throughput numbers

for specific tail latencies with this methodology, it is clear that kernel polling outperforms the

vanilla configuration by at least 30%.

Concerning tail latency, kernel polling is far superior to IRQ suppression. It does exhibit some

tail latency variation shortly before reaching capacity, but this is most likely a normal queueing

effect for systems close to capacity and is observed for all different schemes. However, the IRQ

suppression scheme achieves a slightly better IPC and maximum throughput than kernel polling.

The difference likely results from moderating both TX and RX interrupts when tuning for IRQ

suppression, while kernel polling only disables RX interrupts whenever possible. Including TX

interrupts in the scheme would require substantially more refactoring than the current RX-only

approach, where code modifications are simple and non-intrusive. The performance difference

caused by TX interrupts is only around 2% and only affects maximum throughput. This observation

also demonstrates that TX interrupts only have a limited impact on performance, at least in the

Linux kernel with default settings. TX path processing does not happen in response to TX interrupts,

but typically in the sender thread’s context or on the RX path (e.g., in response to received TCP

ACKs). TX interrupts are primarily used to periodically recycle ring buffer entries and any sensible

default configuration does not result in many TX interrupts. The interrupts reported for kernel

polling in Table 5 are almost exclusively TX interrupts.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:18 Peter Cai and Martin Karsten

Fig. 6. Memcached: Latency vs. Throughput, 4 + 4 cores

5.3 Locality
A side effect of kernel polling is that all network processing code is guaranteed to execute on the

same core, and in fact, the same task context as the application thread initiating the poll. This

should result in better locality, which in principle should also contribute to performance positively.

However, as examined in Section 3 and Section 5.2, locality effects seem to have limited impact,

compared to the effects of reducing interrupts, as long as cores are in the same NUMA domain. On

the other hand, the results in Table 4 indicate that NUMA does have an effect, so the single-domain

observations are complemented by experiments across a NUMA domain boundary.

The latency-vs-throughput experiment from the previous section is repeated for 3 NUMA-based

scenarios: For both vanilla and kernel polling, the application is spread across 4 cores each across

two NUMA domains (4+4). For vanilla, as before, each core receives interrupts from one dedicated

RX and TX queue on the NIC. For IRQ packing, the 2 cores serving IRQs are configured to be on the

second NUMA node, while the 6 application cores are kept on the first NUMA node. Application

threads are not pinned to individual cores, and the scheduler is allowed to decide the placement

of each thread within the specified groupings. These configurations should result in maximum

communication across the NUMA boundary for all schemes examined.

The results are shown in Figure 6 along with dotted lines showing the respective single-domain

reference results from Figure 5. It turns out that IRQ packing suffers the worst NUMA penalty,

bringing down its performance to less than the vanilla NUMA configuration - along with high

latency variation near its saturation point. On the other hand, kernel polling retains very good

performance due to its automatic locality and appears to incur a relatively smaller NUMA penalty

than the vanilla configuration. To further evaluate the effect of NUMA, Figure 7 presents the

closed-loop throughput of the vanilla kernel versus kernel polling for an increasing number of cores

in each NUMA domain. One can observe that both vanilla and kernel polling exhibit near-linear

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:19

Fig. 7. Memcached: Closed-loop Throughput (NUMA)

scaling with more cores even under NUMA, with very consistent throughput among experiment

runs. The relative gap between vanilla and kernel polling is largely constant at 43-46% for these

experiments, compared to 30-31% in the single-domain case. These results are consistent with

Figure 8 showing relatively constant IPQ and IPC for these configurations. Note that IPC still closely

mirrors the performance difference, with a gap of 43% at 8 + 8 cores between vanilla and kernel

polling. IPQ in general remains the same, with a similar slight decrease due to the elimination of

the asynchronous processing path as described in the previous section.

When taken together, the results reported here demonstrate that locality does not play an

important role within the same NUMA domain. However, NUMA overheads incurred by cross-

domain communication can be substantial, as shown for IRQ packing. The vanilla Linux kernel

with its internal packet routing and thread placement logic is largely successful in keeping NUMA

overheads limited. However, kernel polling, as proposed in this paper, shows superior performance,

and its automatic locality (cf. Section 4.2.2) further reduces NUMA overheads in the network stack.

6 CONCLUSION
The direct and indirect costs of asynchronous interrupt processing are identified as as a major

source of overhead in the kernel network stack. As a secondary concern, locality matters, but

it appears only significant when crossing NUMA domains. Several schemes are proposed and

experimentally evaluated to improve the alignment between network stack and application, both

temporally and spatially. While IRQ packing and IRQ suppression are not practical schemes and

not meant as genuine proposals, they are useful analytical vehicles to corroborate the claim about

IRQ handling, because directly measuring IRQ overhead is not possible at the system software level.

Interrupt reduction is shown to be a key driver for increasing IPC and improving performance. The

best-performing scheme, kernel polling, is a practical proposal and can be implemented with a

small (~30 lines) and non-intrusive kernel change. Kernel polling increases throughput by up to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

49:20 Peter Cai and Martin Karsten

Fig. 8. Memcached: IPQ vs IPC (NUMA)

30% in an UMA and 45% in a NUMA configuration without compromising tail latency. It shows

comparable performance to a comprehensive user-level stack, such as F-Stack. Since F-Stack’s

kernel bypass processing does not need traditional system calls for network I/O, this also indirectly

verifies that system calls are not a significant source of overhead.

For kernel polling, the only requirements on the NIC are that its driver must support receive

side scaling and dynamic interrupt moderation. Perfect alignment is guaranteed by executing the

polling loop in the same application thread context with interrupts masked unless idling. Workload

dynamics are handled automatically, with control handed over to the application itself, without

the need for manually tuning configuration parameters. Compared to user-level networking, this

method does not require reserving dedicated cores, nor pinning threads to cores. There is a clear

path to adoption in production through capability-based permissions and/or a kernel timer to guard

against misbehaving applications.

Aside from the particular proposals presented here, this work has important implications for

research methodology. Since IRQ handling has a significant impact on network processing perfor-

mance, it is important to properly document IRQ routing in experimental setups. By the same token,

to truly understand the performance impact of design changes in system-level software, novel

proposals must be compared to a competitive baseline setup. Last not least, for sanity checking, it

is important properly attribute all relevant overheads to confirm that the results are plausible.

There are several avenues for future work arising from the findings reported here. First, it would

be beneficial to subject our findings and the kernel polling improvements to a wider test vector

in terms of hardware (server types, core count, NIC types) and application software. While this

paper is focused on server-side network processing, it would be interesting to investigate whether

kernel polling can lead to similar benefits in other application domains, such as software switches

or middleboxes. This type of investigation would also verify the generality of kernel polling by

considering different network protocols and different deployment scenarios, such as containers

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:21

and virtual machines. Memory alignment, especially in NUMA scenarios, can possibly be further

improved by coordinating the scheduling of application threads in polling mode with ring buffer

allocation in NIC drivers. In the long run, it is possible that kernel- and user-level networking

converge in several ways. The kernel network stack offers many options for customization, either

through XDP or eBPF. New transport protocols, such as QUIC [16], are increasingly implemented

as user-level libraries. For user-level networking, it may be possible to deliver interrupts directly to

applications to avoid continuous polling.

Acknowledgements
We would like to acknowledge support for this work from Huawei Canada and the Natural Sciences

and Engineering Research Council of Canada.

REFERENCES
[1] Advanced Micro Devices, Inc. 3rd Gen AMD EPYC Processors with AMD 3D V-Cache Technology Deliver Outstand-

ing Leadership Performance in Technical Computing Workloads. https://www.amd.com/en/press-releases/2022-03-21-

3rd-gen-amd-epyc-processors-amd-3d-v-cache-technology-deliver-outstanding, 2022. [Online; accessed 2023-07-17].

[2] Amdahl, G. M. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In

Proceedings of the April 18-20, 1967, Spring Joint Computer Conference (New York, NY, USA, 1967), AFIPS ’67 (Spring),

Association for Computing Machinery, pp. 483–485.

[3] Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., and Paleczny, M. Workload Analysis of a Large-scale Key-value

Store. In Proceedings of SIGMETRICS (2012), pp. 53–64.
[4] Corbet, J. Ringing in a new asynchronous i/o api. https://lwn.net/Articles/776703/, 2019. [Online; accessed 2023-07-17].

[5] Corbet, J., Rubini, A., and Kroah-Hartman, G. Linux device drivers. " O’Reilly Media, Inc.", 2005, pp. 528–531.

[6] eBPF Foundation. eBPF. https://ebpf.io. [Online; accessed 2023-07-17].

[7] European Telecommunications Standards Institute (ETSI). Network Functions Virtualisation. http://portal.etsi.

org/NFV/NFV_White_Paper.pdf, Oct. 2012. [Online; accessed 2023-07-17].

[8] Fitzpatrick, B. Memcached. https://memcached.org/. [Online; accessed 2023-07-17].

[9] Fried, J., Ruan, Z., Ousterhout, A., and Belay, A. Caladan: Mitigating Interference at Microsecond Timescales. In

14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20) (Nov. 2020), USENIX Association,

pp. 281–297.

[10] Glozer, W. wrk - a HTTP benchmarking tool. https://github.com/wg/wrk. [Online; accessed 2023-07-17].

[11] Hallyn, S. E., and Morgan, A. G. Linux capabilities: making them work.

[12] Han, S., Jang, K., Park, K., and Moon, S. PacketShader: a GPU-accelerated software router. ACM SIGCOMM Computer
Communication Review 40, 4 (2010), 195–206.

[13] Høiland-Jørgensen, T., Brouer, J. D., Borkmann, D., Fastabend, J., Herbert, T., Ahern, D., and Miller, D. The

eXpress Data Path: Fast Programmable Packet Processing in the Operating System Kernel. In Proceedings of the 14th
International Conference on Emerging Networking EXperiments and Technologies (New York, NY, USA, 2018), CoNEXT

’18, Association for Computing Machinery, p. 54–66.

[14] Hwang, J., Ramakrishnan, K. K., and Wood, T. NetVM: High Performance and Flexible Networking Using Virtual-

ization on Commodity Platforms. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI
14) (Seattle, WA, Apr. 2014), USENIX Association, pp. 445–458.

[15] Ibanez, S., Mallery, A., Arslan, S., Jepsen, T., Shahbaz, M., Kim, C., and McKeown, N. The nanoPU: A Nanosecond

Network Stack for Datacenters. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21)
(July 2021), USENIX Association, pp. 239–256.

[16] Iyengar, J., and Thomson, M. RFC 9000 - QUIC: A UDP-Based Multiplexed and Secure Transport. Internet RFC,

Internet Engineering Task Force (IETF), May 2021.

[17] Jeong, E., Wood, S., Jamshed, M., Jeong, H., Ihm, S., Han, D., and Park, K. mTCP: a Highly Scalable User-level TCP

Stack for Multicore Systems. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14)
(Seattle, WA, Apr. 2014), USENIX Association, pp. 489–502.

[18] Kalia, A., Kaminsky, M., and Andersen, D. Datacenter RPCs can be general and fast. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19) (Boston, MA, Feb. 2019), USENIX Association, pp. 1–16.

[19] Khan, I. irqbalance: design and internals. https://blogs.oracle.com/linux/post/irqbalance-design-and-internals, 2023.

[Online; accessed 2023-07-17].

[20] Larabel, M. Disabling Spectre V2 Mitigations Is What Can Impair AMD Ryzen 7000 Series Performance. https:

//www.phoronix.com/review/amd-zen4-spectrev2. [Online; accessed 2023-07-17].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

https://www.amd.com/en/press-releases/2022-03-21-3rd-gen-amd-epyc-processors-amd-3d-v-cache-technology-deliver-outstanding
https://www.amd.com/en/press-releases/2022-03-21-3rd-gen-amd-epyc-processors-amd-3d-v-cache-technology-deliver-outstanding
https://lwn.net/Articles/776703/
https://ebpf.io
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://memcached.org/
https://github.com/wg/wrk
https://blogs.oracle.com/linux/post/irqbalance-design-and-internals
https://www.phoronix.com/review/amd-zen4-spectrev2
https://www.phoronix.com/review/amd-zen4-spectrev2

49:22 Peter Cai and Martin Karsten

[21] Lemon, J. Kqueue - A Generic and Scalable Event Notification Facility. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference (USA, 2001), USENIX Association, pp. 141–153.

[22] Leverich, J. Mutilate. https://github.com/leverich/mutilate. [Online; accessed 2023-07-17].

[23] Li, H., Wu, C., Sun, G., Zhang, P., Shan, D., Pan, T., and Hu, C. Programming Network Stack for Middleboxes with

Rubik. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21) (Apr. 2021), USENIX
Association, pp. 551–570.

[24] Linux Foundation. Data Plane Development Kit (DPDK). http://www.dpdk.org. [Online; accessed 2023-07-17].

[25] Linux Kernel Library Project. Linux Kernel Library. https://github.com/lkl/linux. [Online; accessed 2023-07-17].

[26] Love, R. Linux system programming: talking directly to the kernel and C library. " O’Reilly Media, Inc.", 2013, pp. 97–98.

[27] Majkowski, M. Kernel bypass. https://blog.cloudflare.com/kernel-bypass/, 2015. [Online; accessed 2023-07-17].

[28] Marty, M., de Kruijf, M., Adriaens, J., Alfeld, C., Bauer, S., Contavalli, C., Dalton, M., Dukkipati, N., Evans,

W. C., Gribble, S., et al. Snap: A microkernel approach to host networking. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (2019), pp. 399–413.

[29] Nginx, Inc. Nginx. https://www.nginx.com/. [Online; accessed 2023-07-17].

[30] Ntop. PF_RING. https://github.com/ntop/PF_RING. [Online; accessed 2023-07-17].

[31] Oracle Corporation. Performance Tuning - Administering Oracle Coherence. https://docs.oracle.com/en/

middleware/standalone/coherence/14.1.1.0/administer/performance-tuning.html. [Online; accessed 2023-07-17].

[32] Ousterhout, A., Fried, J., Behrens, J., Belay, A., and Balakrishnan, H. Shenango: AchievingHigh CPU Efficiency for

Latency-sensitive Datacenter Workloads. In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19) (Boston, MA, Feb. 2019), USENIX Association, pp. 361–378.

[33] Phothilimthana, P. M., Liu, M., Kaufmann, A., Peter, S., Bodik, R., and Anderson, T. Floem: A Programming

System for NIC-Accelerated Network Applications. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018), USENIX Association, pp. 663–679.

[34] Red Hat, Inc. Minimizing system latency by isolating interrupts and user processes. https://access.redhat.com/

documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/optimizing_rhel_8_for_real_time_for_low_

latency_operation/assembly_binding-interrupts-and-processes_optimizing-rhel8-for-real-time-for-low-latency-

operation. [Online; accessed 2023-07-17].

[35] Redis Ltd. Redis. https://redis.io/. [Online; accessed 2023-07-17].

[36] Richards, M. Linux kernel vs DPDK: HTTP performance showdown. https://talawah.io/blog/linux-kernel-vs-dpdk-

http-performance-showdown/, 2022. [Online; accessed 2023-07-17].

[37] Salim, J. H., Olsson, R., and Kuznetsov, A. Beyond Softnet. In Proceedings of the 5th Annual Linux Showcase &
Conference - Volume 5 (USA, 2001), ALS ’01, USENIX Association, p. 18.

[38] ScyllaDB, Inc. Scylladb. https://www.scylladb.com/. [Online; accessed 2023-07-17].

[39] ScyllaDB, Inc. Seastar. https://github.com/scylladb/seastar. [Online; accessed 2023-07-17].

[40] Swedish Institute of Computer Science. lwIP. https://savannah.nongnu.org/projects/lwip/. [Online; accessed

2023-07-17].

[41] Tahhan, M., and Hunter, D. The hybrid networking stack. https://next.redhat.com/2022/12/07/the-hybrid-

networking-stack/, 2022. [Online; accessed 2023-07-17].

[42] The Linux Foundation. perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/index.php/

Main_Page. [Online; accessed 2023-07-17].

[43] The Linux Foundation. Scaling in the Linux Networking Stack. https://www.kernel.org/doc/Documentation/

networking/scaling.txt. [Online; accessed 2023-07-17].

[44] THL A29 Limited. F-Stack. https://github.com/F-Stack/f-stack. [Online; accessed 2023-07-17.

[45] Toonk, A. Kernel bypass networking with FD.io and VPP. https://blog.apnic.net/2020/04/17/kernel-bypass-networking-

with-fd-io-and-vpp/, 2020. [Online; accessed 2023-07-17].

[46] Ven, A. V. D., and Horman, N. irqbalance. http://irqbalance.github.io/irqbalance. [Online; accessed 2023-07-17].

[47] Xilinx, Inc. OpenOnload. https://github.com/Xilinx-CNS/onload. [Online; accessed 2023-07-17].

[48] Zhang, I., Raybuck, A., Patel, P., Olynyk, K., Nelson, J., Leija, O. S. N., Martinez, A., Liu, J., Simpson, A. K., Jayakar,

S., et al. The demikernel datapath os architecture for microsecond-scale datacenter systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (2021), pp. 195–211.

A CACHE CAPACITY
While experimenting with Memcached, we have observed a phenomenon where an increased

number of connections, even at moderate values, results in a noticeable throughput decrease. We

have tracked this observation to Last-Level Cache (LLC) misses and show in Figure 9 a set of closed-

loop experiments with an increasing number of connections per client (cf. Section 5.1). The figure

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

https://github.com/leverich/mutilate
http://www.dpdk.org
https://github.com/lkl/linux
https://blog.cloudflare.com/kernel-bypass/
https://www.nginx.com/
https://github.com/ntop/PF_RING
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/administer/performance-tuning.html
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/administer/performance-tuning.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/optimizing_rhel_8_for_real_time_for_low_latency_operation/assembly_binding-interrupts-and-processes_optimizing-rhel8-for-real-time-for-low-latency-operation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/optimizing_rhel_8_for_real_time_for_low_latency_operation/assembly_binding-interrupts-and-processes_optimizing-rhel8-for-real-time-for-low-latency-operation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/optimizing_rhel_8_for_real_time_for_low_latency_operation/assembly_binding-interrupts-and-processes_optimizing-rhel8-for-real-time-for-low-latency-operation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/optimizing_rhel_8_for_real_time_for_low_latency_operation/assembly_binding-interrupts-and-processes_optimizing-rhel8-for-real-time-for-low-latency-operation
https://redis.io/
https://talawah.io/blog/linux-kernel-vs-dpdk-http-performance-showdown/
https://talawah.io/blog/linux-kernel-vs-dpdk-http-performance-showdown/
https://www.scylladb.com/
https://github.com/scylladb/seastar
https://savannah.nongnu.org/projects/lwip/
https://next.redhat.com/2022/12/07/the-hybrid-networking-stack/
https://next.redhat.com/2022/12/07/the-hybrid-networking-stack/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://github.com/F-Stack/f-stack
https://blog.apnic.net/2020/04/17/kernel-bypass-networking-with-fd-io-and-vpp/
https://blog.apnic.net/2020/04/17/kernel-bypass-networking-with-fd-io-and-vpp/
http://irqbalance.github.io/irqbalance
https://github.com/Xilinx-CNS/onload

Kernel vs. User-Level Networking: Don’t Throw Out the Stack with the Interrupts 49:23

Fig. 9. Memcached: Throughput & LLC misses, 1 core

shows both the throughput performance and the number of LLC misses per query, i.e., normalized

by throughput, and include F-Stack for reference. The results for the kernel network stack, for

both vanilla or polling, demonstrate an inverse correlation between throughput and the number

of connections, while F-Stack appears to be unaffected. At 10 connections per client (560 total),

kernel polling achieves a throughput about 8% higher than that of F-Stack, but it eventually falls

below as the number of connections increases. The kernel suffers from an increasing number of

LLC misses per request, while for F-Stack, this number remains constant regardless of the number

of connections.

The only meaningful explanation for this observation is that the effective cache footprint of the

Linux network stack exceeds the LLC capacity of our particular server when handling a certain

number of TCP connections. F-Stack appears to have a smaller memory footprint per connection,

which removes LLC as a limiting factor on this specific hardware platform for these experiments.

We remark that this is not a fundamental performance difference between kernel and user-level

processing. It might be a difference between Linux and FreeBSD networking, or can be considered a

consequence of network stack customization. Then again, we have also observed fairness issues at

higher connection counts in F-Stack, so a further comprehensive investigation would be necessary

to fully understand the issue at hand and possible mitigations. Finally, as trends in hardware show

an increasing amount of LLC, with some recent processors [1] approaching gigabyte-sized LLCs,

the real-world relevance of this observation might be limited.

Received August 2023; revised October 2023; accepted October 2023

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 49. Publication date: December 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Kernel- vs. User-Level Networking
	2.2 Components
	2.3 User-Level Network Stacks
	2.4 Applications

	3 Network Stack Overhead
	3.1 Performance Model
	3.2 Performance Assessment
	3.3 Discussion

	4 Network Stack Alignment
	4.1 IRQ Routing
	4.2 Network Polling
	4.3 Generality and Possible Adoption

	5 Evaluation
	5.1 Experimental Setup
	5.2 Alignment
	5.3 Locality

	6 Conclusion
	References
	A Cache Capacity

