Group Unicast for the Real World

Elad Lahav, Tim Brecht, Martin Karsten, Weihan Wang
and Tony Zhao

David R. Cheriton School of Computer Science

May 29, 2008

UNIVERSITY OF

Waterloo

%

Transmit identical data to multiple recipients

2
B

Hello Group
—_ O‘

B

e

Applications Live broadcasting, games, VolP conferencing, ...

Solution 1: Multiple Unicast Transmissions
d (“Hello G ", A)
B conhesiiionte Grovee: ©

sendmsg(“Hello Group”, C)

N

W\

Hello Group

Hello Group

Hello Group/———*

Problem Wastes both local and global resources

Solution 2: Multicast

[Deering 1990]

{- sendmsg(“Hello Group”, G) ‘f\

e

Hello Group

Problem Lack of Internet support, costly for small groups

Solution 3: Group Unicast

[Karsten, Song, Kwok, Brecht 2005]
- sendmsg(“Hello Group”, {A,B,C})
= 3

N

Hello Group

Benefits Reduces mode switches and memory copies in server
Important UDP only

Contributions

» Improved APl and implementation
» Integration with a real-world media server

» Precise performance analysis

Interface Changes

Old Interface
» Group associated with UDP socket
» Use send () to transmit to group

» Use setsockopt () to manage group

New Interface

» New system call: sendgroup()
» No need for extra system calls to manage group

» Per-recipient private data

API

int sendgroup(int sd, struct giobuf* buf, size_t recnum,
int flags, int* gerrno);

struct giobuf {
struct iovec shared; /* Shared data buffer */
struct giovec recinfo[l]; /* Per-recipient info. */

¥

struct giovec {
struct sockaddr_in giov_dest; /* Destination address */
struct iovec giov_prepend; /* Prepended buffer */
struct iovec giov_append; /* Appended buffer */

Implementation

BSD: mbuf chain

Linux: sk_buff + page pointers

|HeaderA| | | | |
[

-

7
el [11] __

Implementation

Without Scatter-Gather I/O With Scatter-Gather 1/0

Header Shared Appendix Header Shared Appendix
A A

Y
Header [Shared [Appendix

A

= ==

Micro-Benchmark: Improvement/Group Size

Linux —e—
18 Solaris —e—

) FreeBSD —W\
1.4

Improvement

1
v

0.8 /

0.6 T ‘ ‘

1 10 100 1000
Group Size

Micro-Benchmark: Packet Send-Time/Packet Size

5 ‘ ;
Sendmsg —=—
Sendgroup —e—
v 4
]
e
o
s 37
E
o
c
$ 1
0 L L L L
0 200 400 600 800 1000

Payload size (bytes)

Micro-Benchmark: Packet Per-Recipient Data

6 ‘ ;
Sendmsg —=—
Sendgroup —e—
~ 5
8
%
(ID 4 O i o o) o . O o il
=}
/,,.—0
E 3 .
g /
g q
b 2
c
o)
w1
0 1 1 1 1
0 20 40 60 80 100

% of private data in payload

Integration with Real-World Applications

Show that sendgroup():

» Is applicable
» Can be integrated

» Improves performance

The Helix Server

» Multimedia server from Real Networks
» Open source version of the Real Server
» Handles both on-demand and live content

» https://helix-server.helixcommunity.org

https://helix-server.helixcommunity.org

Helix Live-Broadcasting

Producer

Vi
- RTP/UDP

Helix-sendgroup () Integration

Original Helix Modified Helix
recv() recv()

®
<@

foreach client {
0 send()
}

Helix Benchmark: CPU Uctilisation/Group Size

100

Sendmsg —a—
Sendgroup —e—

80

. / /
40 / /'/
Ny
T
1000 2000 3000 4000 5000 6000

Group Size

CPU Utilisation (%)

Helix Benchmark: Client Rate/Group Size

103 ‘ ‘ ;
Sendmsg —=—
Sendgroup —e—
102
101

100 '\f—f——b—i—é—!j]
'\RD
99

98

Average Client Rate (Kbps)

97 ! ! ! ! !
1000 2000 3000 4000 5000 6000

Group Size

Performance Analysis

v

Micro-benchmarks: Determine speed-up of
sendgroup () over sendmsg() loop

v

Helix: Measure execution time of sendmsg() loop

v

Amdahl’s law: Predict overall Helix improvement

\{

Confirmation: Compare to observable overall Helix
improvement

Amdahl’s Law in Action

» Group size: 1000

» Payload size: 1000 bytes
» sendgroup() speed-up: s = 1.664 (from
micro-benchmarks)
> Fraction: f = f=tlm To T — 791
» Expected overall speed-up:
1 1
= 57or = 1.461

1—f+— 1—0791+1664

» Observed speed-up: ¥ = 1.45

Conclusions

sendgroup () has real-world applications

v

v

Noticeable performance improvement in certain scenarios

v

Avoiding mode switches is good

v

Avoiding memory copies even better

» Direct effect on system call execution path
» Also beneficial to entire environment

v

Better analysis of system calls = more accurate
predictions

	The sendgroup System Call
	Helix Integration
	Performance Analysis

