
Efficient Operating System Support
for Group Unicast

Martin Karsten, Jialin Song,
Michael Kwok, Tim Brecht

2

Problem

Server

Sending to group of red hosts/users

Some apps send same data to multiple receivers

3

Example Applications

– Distributed Virtual Environments
• Multiplayer on-line games
• Computer Supported Cooperative Work (CSCW)

– Audio/Video conferencing
– Chat room servers
– Streaming media servers
– Multicast overlay networks

4

Example Applications

– Distributed Virtual Environments
• Multiplayer on-line games
• Computer Supported Cooperative Work (CSCW)

– Audio/Video conferencing
– Chat room servers
– Streaming media servers
– Multicast overlay networks

How to efficiently send to a group using UDP?
Many/most of these use UDP

5

Example Applications

– Distributed Virtual Environments
• Multiplayer on-line games
• Computer Supported Cooperative Work (CSCW)

– Audio/Video conferencing
– Chat room servers
– Streaming media servers
– Multicast overlay networks

How to efficiently send to a group using UDP?
Many/most of these use UDP

Other Transport Protocols Future Work

6

Possible Approaches / Related Work

• IP Multicast [Deering 88]
– difficulties in wide spread deployment (not feasible)

• Multicast Overlay networks [Lots of Research]
– implemention requires group communication

• Common Approach: User-level unicast (user-groupcast)

7

Possible Approaches / Related Work

• IP Multicast [Deering 88]
– difficulties in wide spread deployment (not feasible)

• Multicast Overlay networks [Lots of Research]
– implemention requires group communication

• Common Approach: User-level unicast (user-groupcast)

for (i=0; i<GRPSIZE; i++) {
fds[i] = socket(PF_INET, SOCK_DGRAM, 0);

}
for (i=0; i<GRPSIZE; i++) {

bytes += send(fds[i], buf, bytes);
}

8

Kernel-Level Group Unicast (kernel-groupcast)

grp = socket(PF_INET, SOCK_DGRAM, 0);

setsockopt(grp, SOL_SOCKET,
SO_SETGRP, addrs,
GRPSIZE * sizeof(struct sockaddr_in));

bytes = send(grp, buf, bytes);

9

Implementation Overview

10

Experimental Environment

• Server: 400 MHz Pentium II, 2 x e1000 Gbps enet
– FreeBSD 5.2.1, Fedora Core 2 with 2.6.8 kernel

• Switch: HP Procurve Gbps switch: 24 ports
• Clients: 550 MHz Pentium III

Deliberately set up so that sender is bottleneck

Server

11

FreeBSD Micro-benchmark: 100 bytes

12

FreeBSD Micro-benchmark : 1000 bytes

13

FreeBSD Micro-benchmark: with grp change

14

Software Slicing: User-groupcast

start of memcpy
end of memcpy

end UDP / start IP

start of driver

complete send

15

Software Slicing: User-groupcast

start of memcpy
end of memcpy

end UDP / start IP

start of driver

complete send

16

Software Slicing: User-groupcast

start of memcpy
end of memcpy

end UDP / start IP

start of driver

complete send

17

Software Slicing: User-groupcast

start of memcpy
end of memcpy

end UDP / start IP

start of driver

complete send

18

Software Slicing: User-groupcast

start of memcpy
end of memcpy

end UDP / start IP

start of driver

complete send

19

Software Slicing: User-groupcast

start of memcpy
end of memcpy

end UDP / start IP

start of driver

complete send

20

User-Level Send Cost Breakdown: FreeBSD

21

User-Level Send Cost Breakdown: FreeBSD

ether_output() 10 x faster: kernel-groupcast
kernel or user-groupcast ~1 interrupt per system call

22

Is this Important/Relevant to Applications?

other send

A

B

• decrease latencies
• increase number of users / recipients

23

Increase Group Size: (100 bytes, 33.3 ms)

21704.520.9933.06480

8612.390.7524.76360

3901.630.5016.50240

1481.240.258.26120

421.060.082.78 40

N
Increase
N’

Increase
factor

Send
fraction

User
send

Your Mileage May (Will) Vary

24

Summary

• Kernel-groupcast
– OS interface and mechanism for group unicast
– relative minor modifications to FreeBSD and Linux
– significantly decrease time for group sends

• Does not reduce data sent
– improves server efficiency (efficient group unicast)

• Main source of improvement not reduced mem copy
– tight kernel loop

• reduced interrupts
• improved cache utilization

25

Future Work

• Detailed breakdown of network I/O cost components
– better understanding
– on a variety of hardware platforms

• Better models for expected scalability
• Variety of apps and interaction with kernel-groupcast

– library to work with existing interfaces?
• Apply kernel-groupcast to other transport protocols

26

The End

