
Efficient Operating System Support for Group Unicast∗

Martin Karsten, Jialin Song, Michael Kwok, Tim Brecht
School of Computer Science

University of Waterloo, Canada

{mkarsten,j8song,kfkwok,brecht}@cs.uwaterloo.ca

ABSTRACT
A common requirement of many Internet services is to send
exactly the same data to a number of hosts at the same time.
Without IP-level multicast, this form of group communica-
tion is realized by unicasting the data to each desired host.
Although this approach is portable and easy to implement,
it is extremely inefficient for the sending host. In this paper,
we propose a kernel-based technique to efficiently facilitate
unicast send operations for group communication with only
minimal additions to the sending operating system interface
and implementation. We present the design and prototype
implementation of our approach and experimentally demon-
strate the significant performance improvements it provides.
Additionally, we conduct experiments to decompose the pro-
cessing costs in the network stack and show that the biggest
cost reductions are not necessarily due to reduced memory
copying.

Categories and Subject Descriptors
D.4.4 [Communications Management]: Message send-
ing

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Group Communication, Multicast, Operating Systems

1. INTRODUCTION
Many Internet applications are faced with the task of

sending the same data to a group of receivers. Because of
the lack of widespread support for IP-level multicast, these
applications currently have no choice but to unicast the data

∗This work is supported in part by Hewlett Packard, the
Ontario Research and Development Challenge Fund, and
the Natural Sciences and Engineering Research Council of
Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’05, June 13–14, 2005, Stevenson, Washington, USA.
Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

to each member of the group. We refer to this technique as
user-level group-unicast (or simply user-groupcast) because
it is implemented by the application without explicit oper-
ating system support and because at the network layer, data
is actually being sent using unicast to each receiver. In this
case, each send to a group member requires a separate sys-
tem call and the operating system overhead incurred to send
the data to every member of the group is substantial. Each
system call incurs overhead due to context switching, vali-
dating the system call parameters (e.g., ensuring the data
being sent is in the process’ address space), and copying the
data from user to kernel space. Depending on the network
stack implementation additional copying may be required
in the kernel before the packet is actually transferred to the
network interface.

The primary application scenarios for our technique are
Internet nodes that provide a centralized group communica-
tion service. Examples are servers for distributed virtual en-
vironments such as on-line games, streaming media servers,
or servers for telephony services that offer conference bridge
functionality. As an example, an on-line game server for a
first-person shooting game is required to send updates of the
virtual environment to all players in a timely manner. Re-
cent studies report that when the server is very busy, send
operations account for up to 45% of the overall processing
time [1]. In addition we believe that infrastructure nodes in
overlay networks can benefit from the interfaces and mech-
anisms we propose. Overlay networks often use UDP as the
base transmission protocol. Overlay multicast is then real-
ized by sending the same data to a group of intermediate
hosts which are acting as next hops in the overlay network
[17]. This further illustrates the importance of an efficient
group communication.

We focus on UDP because of its widespread adoption for
group communication in the Internet [2, 6, 15, 14] and be-
cause it allows us to easily illustrate how our approach can
be used to improve the efficiency of group-unicast opera-
tions. UDP is an unreliable datagram protocol and is often
combined with application-level mechanisms to meet appli-
cation specific requirements. The targeted applications use
UDP to transmit voice, video, or other real-time data. They
are highly interactive, such as conferencing or online gam-
ing, and usually transmit data in small messages to achieve
a low packetization delay. They do not necessarily consume
a large amount of transmission bandwidth and often, servers
are the system bottleneck, rather than the network.

In this paper we describe the design, implementation, and
evaluation of operating system support for efficient group-

unicast operations within the kernel. We refer to this ap-
proach as kernel-level group-unicast (kernel-groupcast). It
greatly reduces overhead for sending operations, thereby
providing the same sender with the ability to perform more
computation between sends, to send more data, or to scale to
significantly larger groups. We experimentally measure and
analyze the system performance and come to the (somewhat
surprising) conclusion that memory copy is not necessarily
the dominating cost component for many applications using
group communication. We conclude that the overall cost
savings are really an amalgam of cost reductions in several
different components.

It is important to note that our proposal is strictly con-
fined to the implementation of group-unicast at nodes per-
forming group send operations. It only reduces the time and
processing cost of a server sending group data to clients. It
requires only relatively minor additions to the server operat-
ing system interface and implementation. We do not require
modifications to any protocols, network semantics or receiv-
ing hosts. On the other hand, this technique by itself does
not reduce the network traffic associated with group com-
munication because the underlying means of communication
is unicasting to each member of the group.

2. RELATED WORK
Group communication requires sending information to sev-

eral recipients at the same time, using either a one-to-many
or a many-to-many communication model. It has become
even more relevant with the increased popularity of applica-
tions such as multi-player online games (MOGs) [6], audio
and video conferencing [15], and information delivery [2].

For example, in a typical MOG, players at their worksta-
tions interact with each other in a shared virtual environ-
ment. Some MOGs may involve thousands of simultaneous
players. To provide the players with a consistent view of the
virtual environment, any changes in a player’s states (e.g.,
position and velocity) must be distributed to those affected
in a timely manner. Efficient group communication is there-
fore a key requirement in MOGs. Of prime importance is
the scalability of the communication mechanism.

Group communication is generally supported by multi-
cast. IP multicast proposed by Deering [5] has long been
regarded as the right mechanism. However, its deployment
is still limited in today’s network due to a variety of tech-
nical and non-technical reasons [7]. For instance, IP mul-
ticast requires all intermediate routers to be upgraded and
to support additional tasks such as maintaining group state
and routing information. This significantly increases the
complexity and overhead at the routers. As a result, there
have been several proposals for implementing multicast in
the application-layer rather than the network-layer. This
approach is known as application-layer multicast (ALM).

In ALM, multicast functionalities like data distribution
and duplication are implemented at the application-layer at
a number of hosts, using unicast services. Logically, these
hosts form an overlay multicast network. Packets are cre-
ated at a host and unicast to the users or next hosts along
this network. Examples of ALM include ALMI [16], Narada
[4], NICE [3], Overcast [11], and Yoid [9]. With ALM, de-
ployment of multicast not only becomes more feasible, but it
also permits higher level support for reliability, flow control,
and congestion flow. Much research has focused on con-
struction and maintenance of efficient and scalable overlay

multicast networks. However, little attention has been given
to improving the efficiency of operating system support for
group unicast. In this paper, we investigate and propose
in-kernel mechanisms for efficient group unicast to be used
in ALM and other group communication applications.

In our proposed kernel-groupcast technique, data to be
sent to a group is copied once from the user to the kernel
space, and then re-used when possible. This avoids transfer-
ring the same data from the user to the kernel space for every
send, as is required in existing user-groupcast implementa-
tions. The benefits of reducing data copying are well-known
and have also been applied to network implementations. For
example, zero-copy sockets [10, 13, 8] permit the sharing of
user memory with the network interface, thus eliminating
user to kernel data copying and reducing communication
overhead.

A detailed discussion of the processing overheads of TCP,
UDP, and IP can also be found in [12]. These observations
indicate that checksum computation and data copying are
the two dominating cost components that cause the through-
put bottleneck. We are not aware of any recent studies in
this field and one of our claims is that the observations from
[12] are not entirely accurate anymore. First, checksum cal-
culation can often be offloaded to network interface cards.
Second, there is only limited use for UDP checksums since
application semantics often mandate their own specific error
correction model. For example, FreeBSD has UDP check-
sums disabled as default. Some simple throughput exper-
iments have shown that the impact of UDP checksum cal-
culation in software is less than 1-2% on modern hardware.
With respect to data copying, we refer to the detailed ex-
perimental results presented in Section 4.

3. DESIGN AND IMPLEMENTATION
The goal of our operating system extensions is to enhance

the functionality of sockets and the send system call to fa-
cilitate sending to a group of recipients with a single call.

3.1 Operating System Interface
To use kernel-groupcast, an application first creates a

socket that will be used to refer to a group. A group of re-
cipients is associated with the socket by calling setsockopt

with the file descriptor of the socket, the SETSENDGRP param-
eter, an array containing the addresses and ports (struct
sockaddr in) used to reach each member of the group. Then
all that is required of the application to send the same data
to all members of the group is to use the send system call
with the file descriptor associated with the group. The ker-
nel then sends the data to each member of the group. Fig-
ure 1 shows a simple pseudo-code example of how an appli-
cation could maintain and send data to a group.

3.2 Group Membership Maintenance
There are several options to establish a group address list

for send operations. The first alternative would be a sendto-
like system call, which takes the full list of group members
as parameter. For large groups, this would incur significant
copying costs, even if the group membership changes only
rarely. Therefore, we have chosen to separate group mem-
bership maintenance from send operations. Group address
lists are stored in the socket data structure, as an array of
sockaddr in objects. This information is completely over-
written by group change requests through the setsockopt

grp = socket(PF INET, SOCK DGRAM, 0);
while (!done) {

struct sockaddr in addrs[N];
/* get current addresses, return group size */
n = maintgroup(GROUP, addrs, N);
/* set the group membership */
setsockopt(grp, SOL SOCKET,SO SETSENDGRP,

addrs, n * sizeof(struct sockaddr in));
/* send a message to each group member */
bytes = send(grp, buf, bytes, 0);

}
close(grp);

Figure 1: Example use of kernel-groupcast

system call. In order to reduce the associated overhead for
rewriting the group membership, memory re-allocation for
the array of addresses takes place only when the amount of
memory needs to be increased. With this mechanism, the
worst-case additional cost compared to the sendto-like al-
ternative is one additional setsockopt system call for each
send operation.

Another alternative would be to add specific operations to
add or delete group members, for example, using ADDTOGROUP
and DELFROMGROUP operations for setsockopt. However,
this approach would likely require a different kernel data
structure to keep track of group membership, rather than a
simple array. In turn, this would incur increased overhead
for maintaining group membership. Clearly the costs and
benefits of each approach depend on the size of the group,
the frequency with which data is sent, the size of the data,
the frequency of group change and the number of group
members added and deleted between sends. Since these fac-
tors vary from application to application, our present in-
terface is extremely simple and relies on the application to
determine how to best support dynamic group membership.
Our experiments in Section 4 (see Figure 3) show that the
system-call cost for completely changing the entire group be-
tween each send operation is negligible. A more substantial
exploration of the relative merits of each approach is beyond
the scope of this paper and left for future research.

3.3 Operating System Kernel
Figure 2 gives an overview of the components of an oper-

ating system kernel relevant to sending UDP data. In gen-
eral, carrying out a send operation consists of the following
steps. After initial processing in the socket layer, the pay-
load data is copied into a packet buffer. The UDP layer, in
cooperation with the socket layer, prepends the UDP header
and retrieves IP addressing information, which is then used
in the IP layer to produce the complete IP packet. The
packet buffer is then submitted for link layer processing and
eventually DMA-transferred to the network interface card
(NIC).

The basic functionality of kernel-groupcast is located in
the UDP processing component. A list of receiver endpoints
(address & port) is stored with the socket data structure. If
this group address list is not empty, instead of just creating
a single IP packet, the UDP output function loops through
the list of addresses and creates multiple instances of the
packet buffer. Multiple instances of the packet buffer are
necessary, since lower level processing is not invoked syn-

UDP processing

so
ck

et

packet buffer

payload

repeated
packet
formation

NIC

socket
layer

UDP

address list

IP Layer

Ethernet
DMA

output queue

layer

layer

kernel level

user level

Figure 2: Layered design of UDP group unicast

chronously, but rather, packet buffers may subsequently be
queued in the system. Naively working with a single copy
of the packet buffer would result in overwriting header data
while an outgoing packet buffer is still queued for service.
Ideally, packet buffer instances can be formed without copy-
ing the payload part of the packet buffer, since only header
fields change between successive loop iterations. However,
this depends on the detailed design of the packet buffer data
structure and other considerations, such as the fragmenta-
tion strategy. It turns out that the different design philoso-
phies of the FreeBSD and the Linux networking stacks re-
quire different approaches to attempt to avoid copying the
payload while constructing packet buffer instances.

3.4 Implementation
The design of the networking stack and the mbuf data

structure in BSD-based operating systems allows for a rel-
atively straightforward implementation of kernel-groupcast.
Packets with a payload of up to 180 bytes (in our 5.2.1 ver-
sion of FreeBSD) are stored in fixed-size, small mbuf ob-
jects and can be copied without incurring much overhead.
Larger packets are split into a payload part, which is stored
in an mcluster object, and a header part which is stored
in an mbuf object. Constructing packets for each recipient
(i.e., cloning the resulting mbuf chain) is possible by copying
only the (relatively small) header and using a pointer with
reference counting for the payload. Contemporary network
interface cards can be instructed to DMA-transfer multiple
memory segments which comprise a single link layer frame.
This avoids overhead that might otherwise be incurred to
concatenate packet segments into a contiguous buffer. IP
fragmentation is done transparently by the IP layer accord-
ing to the respective interface’s maximum transmission unit
(MTU). As a consequence of this network stack design, the
FreeBSD implementation of kernel-groupcast simply loops
through the address list, efficiently forms outgoing packet
buffers, inserts the appropriate header information, and sub-
mits each packet buffer for further lower-level processing.
The complete implementation of group unicast consists of
less than 150 lines of code added to the FreeBSD kernel.

The Linux implementation of kernel-groupcast is some-
what more complicated because there is just one basic data
structure for packet buffers, called sk buff. There is no

separation of packet header and packet data for larger pay-
loads, as is the case with mbuf and mcluster data struc-
tures in BSD-based systems. Therefore, it is not possible to
completely avoid copying the payload when creating packets
to be sent to each recipient. Essentially, the entire pay-
load needs to be copied to avoid overwriting the header
information of an sk buff object waiting in a lower-level
queue. Therefore, we have designed and implemented an
on-demand lazy-copy scheme to avoid making copies until
absolutely necessary.

4. EXPERIMENTS
We first present experimental results to demonstrate the

efficiency gains that can be realized with kernel-groupcast.
Then we conduct several alternate experiments designed to
better illustrate the reasons for the dramatic performance
improvements. The experimental testbed is deliberately set
up to ensure that the sender machine is the system’s bottle-
neck in our experiments. The sender machine is equipped
with a 400 MHz PII CPU and two Intel dual-ported GigEth-
ernet cards. It is connected to 4 hosts used for receiving data
each of which contains a 550 MHz PIII CPU. The operating
systems used for development and experiments are FreeBSD
5.2.1 and Fedora Core 2 with Linux Kernel 2.6.8.

The primary performance measure for our experiments is
the average time taken by the sender to send a single request
to a group of receivers (average send time). The graphs in
this section show the average send time while varying the
group size and/or packet lengths. A reduction in average
send time indicates a corresponding increase in performance
and a slope with a lower incline indicates better scaling. All
experiments consist of at least 1000 send requests and are
run 10 times each. We then compute 99.9% confidence in-
tervals using the t-distribution. However, there is not much
variation in many of our experiments, so not surprisingly,
the confidence intervals turn out to be extremely small and
in many cases are barely visible in the graphs. In these cases,
we simply omit them.

4.1 Performance of Group Unicast
The first experiment illustrates the performance gains of

kernel-groupcast over user-groupcast. We choose payload
sizes of 100 bytes and 1000 bytes to represent small and
larger UDP messages that will not be subjected to IP frag-
mentation. Figure 3 shows the average send time for user
and kernel-groupcast send operations with these payload
sizes. These results show that kernel-groupcast dramat-
ically reduces the sending overhead when compared with
user-groupcast, especially with increasing group sizes. With
a UDP payload of 100 bytes, the entire packet fits into a sin-
gle mbuf object and in the kernel-groupcast case is simply
copied within the kernel when creating packets for each re-
cipient. On the other hand, for a UDP payload size of 1000
bytes data is stored in an mcluster object and in-kernel
copies of the payload data are avoided. In both cases kernel-
groupcast works equally well and provides a significant per-
formance enhancement by dramatically reducing the sending
overhead, especially with increasing group sizes. The exper-
iment also demonstrates that with kernel-groupcast there is
no noticeable difference between sending packets of 100 or
1000 bytes. Furthermore, replacing the entire group between
each successive send request does not significantly increase
the performance of kernel-groupcast. This is because the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000

av
g.

 s
en

d
tim

e
(m

s)

group size

user/100
kernel/100
user/1000

kernel/1000
kernel/groupchange/1000

Figure 3: User- and kernel-groupcast, FreeBSD

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

av
g.

 s
en

d
tim

e
(m

s)

group size

user/100
kernel/100
user/1000

kernel/1000

Figure 4: User- and kernel-groupcast, Linux

costs of the actual sends dominate the overhead of the extra
system calls to change the group, thus demonstrating that
our simple prototype interface will likely be sufficient.

Figure 4 shows a set of similar experiments conducted us-
ing a Linux sender. We observe that the basic unicast cost
in Linux is much lower than in FreeBSD. Also, the kernel-
groupcast performance differs for different packet sizes, likely
because we cannot completely eliminate the need for in-
kernel copies in Linux. It is worth noting that despite the
need for lazy-copy in Linux, the kernel-groupcast implemen-
tation performs quite well when compared to user-groupcast.
The number of copies observed goes up to 150 during these
experiments, depending to some extent on the packet size.
The larger the packets, the more copies seem necessary. Fun-
damentally, however, the maximum number of copies made
depends on the buffering behaviour and limits of the sys-
tem. We are guaranteed never to create more copies than
the maximum number of entries in output queues used to
move packets into the NICs. Given the difference between
sending 100 bytes payload and 1000 bytes payload in combi-
nation with the fact that there is significant copying in the
system, the effect of memory copies seems limited.

Although not shown in Figure 3 or Figure 4, experiments
with very small group sizes down to 1 show that kernel-
groupcast is always at least as efficient as regular unicast,
even for a single receiver. This shows that it is safe to use
this mechanism as it does not compromise performance with
small packet or group sizes.

4.2 Analyzing Performance
We have applied a number of techniques to understand the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000

no
rm

al
iz

ed
 c

os
t

packet size

complete send
start of device driver

end of UDP/start of IP
end of memory copy

start of memory copy

Figure 5: UDP unicast send cost, FreeBSD

composition of the significant performance improvements
obtained with kernel-groupcast. We begin with Figure 5,
which shows the relative breakdown of execution costs for
sending a regular UDP unicast packet of different sizes in a
tight user-level sending loop. We use software slicing to mea-
sure the cost of packet processing up to interesting points
of execution inside the send system call. We divide the to-
tal per-packet cost into processing of the complete network
stack (start of device driver) and processing in the device
driver. All measurements are normalized relative to the re-
spective cost for complete network stack processing, to dis-
tinguish between NIC/driver-independent and NIC/driver-
dependent processing costs. With this normalization step,
the relative contribution of the various processing steps in
the network stack can be visualized and easily compared
across different packet sizes.

To explain the figure we now briefly describe how to inter-
pret the data points for a 2000 byte packet. As a percentage
of the total time it takes to process the packet in the network
stack, 13% of the time is spent in the socket layer getting
to the point where the user-to-kernel memory copy starts.
The user-to-kernel memory copy completes after 28% of the
time, so 15% of the time is spent performing the copy. It
takes 76% of the time to complete socket and UDP pro-
cessing, so 48% of the time is spent in this processing step.
After UDP processing it takes 24% of the time to execute IP
and lower-level processing until reaching the device driver.
Most importantly, when we switch to the scenario where the
packet is actually sent (instead of being discarded after pro-
cessing by the network stack) it takes 2.68 times as much
time to complete the sending of the packet as it does to get
through the network stack to the device driver.

From Figure 5 one can see that for packets up to 2000
bytes, the relative cost of memory copy is quite small when
compared with other processing components. For example,
relative to the total time spent to actually send a 2000 byte
packet, the memory copy takes only 6% of the time. In
fact, when considering the full cost of actually sending a
UDP packet, complete network stack processing (before the
device driver) accounts for less than half of the total cost.

Kernel-groupcast greatly reduces the number of context-
switches and memory copies to send a packet to multiple
receivers. However, given the cost decomposition shown in
Figure 5, these savings are not sufficient to explain the large
overall performance gains shown in Figure 3. We identify
two additional cost components that are not revealed by our
software slicing experiments, namely a significant reduction

in the number of interrupts and improved caching behaviour.
First, with user-groupcast only a single packet is trans-

mitted to the NIC each time. After the NIC has finished
transmitting this packet, it generates an asynchronous hard-
ware interrupt. With kernel-groupcast, multiple packets are
enqueued in a tight execution loop and a single interrupt
is generated after all are transmitted. We have run experi-
ments using kernel profiling to confirm this hypothesis. The
experiment results show that the number of hardware inter-
rupts is roughly proportional to the number of actual send
system calls, but independent of the group size in case of
kernel-groupcast. However, we cannot yet precisely quan-
tify the corresponding performance impact. Depending on
the operating system’s and device driver’s interrupt coalesc-
ing strategy, the impact of hardware interrupts may vary.
We also believe that such differences in the respective de-
vice drivers are responsible for the performance differences
between FreeBSD’s and Linux’s basic unicast performance
in our testbed.

Finally, kernel-groupcast seems to benefit substantially
from improved cache utilization as a result of the tight low-
level execution loop when sending out multiple clones of the
same packet. For example, kernel profiling measurements
show that invocations of the main Ethernet processing rou-
tine ether output() completes roughly 10 times faster for
kernel-groupcast compared to user-groupcast, despite the
same number of calls and the same operations being exe-
cuted in both cases. In future work we hope to work on a
more precise breakdown and understanding of all sources of
improvements obtained from using kernel-groupcast.

5. DISCUSSION
We now provide a simplified analysis to estimate the ben-

efits that could be obtained from using kernel-groupcast in
an example application. We consider a multi-player online
game (MOG) server [1] which in a tight loop repeatedly
receives data from the players, performs game related com-
putations, and sends relevant information back to the play-
ers. Smooth video in such games requires a frame rate of
30 frames/s; therefore, each iteration of the loop has to be
completed within 33.33 ms. A recent study [1] reports that
for one MOG server about 45% of server execution time is
devoted to user-level unicasting of messages to players.

Using the results of our user-groupcast experiments, we
determine the amount of time required to send a packet to
all N players in each iteration. Assuming the server is 100%
utilized, the remaining time of the 33.33 ms period is then
devoted to the receive and compute operations. Table 1
shows the user-groupcast send times (send) required in or-
der to support groups of size N with messages of 100 bytes,
obtained from the data shown in Figure 3. The remaining
time is shown in the column labelled other. The correspond-
ing cost of using kernel-groupcast is shown in column send′.
The total cost for a round of computation and sending is
then shown as total′. This can be translated into a speed-up
factor of 33.33/total′ and a theoretical improvement in the
number of supported players N

′, both of which are shown
in the table. For example, Table 1 shows that a server that
is able to support 240 players using user-groupcast would
be required to spend 16.5 ms of the 33.33 ms performing
send, leaving 16.83 ms for other operations. However, with
kernel-groupcast, the same server could support 1.63 times
as many (or 390) players.

Table 1: Possible increase in supported players

User Kernel Improvement
N send other send′ total′ factor N

′

40 2.78 30.55 0.75 31.30 1.06 42
120 8.26 25.07 1.90 26.97 1.24 148
240 16.50 16.83 3.64 20.47 1.63 390
360 24.76 8.57 5.36 13.93 2.39 861
480 33.06 0.27 7.10 7.37 4.52 2170

This analysis is based on the simplifying assumption that
all cost components in an MOG server are constant per
player and linear in the number of players in the game. Ad-
ditionally, these calculations assume that the amount of data
being sent to each player is independent of the number of
players (although Figure 3 shows that with larger message
sizes improvements from kernel-groupcast are larger). In fu-
ture work we plan to examine scenarios under which these
assumptions are relaxed.

Clearly, the overall performance improvement resulting
from kernel-groupcast heavily depends on the relative amount
of effort spent for send operations. Besides MOG servers, we
envision other applications that would benefit from kernel-
groupcast, as stated in Section 1.

6. SUMMARY AND CONCLUSIONS
In this paper we present the design, implementation, and

evaluation of kernel-groupcast, an operating system inter-
face and mechanism for efficient group-unicast operations.
The mechanism is targeted for a specific class of applica-
tions and systems with the common characteristic of using
UDP for unicast-based group communication.

We demonstrate through experiments that this relatively
minor addition to the operating system kernel can improve
send performance by a large factor. Any improvements ob-
tained in applications that utilize kernel-groupcast will only
apply to the group-unicast portion of the application and
we show some simple analysis to demonstrate the potential
impact on some example applications.

In our experimental evaluation, we make the somewhat
surprising discovery that the main source of performance
improvements in our kernel-groupcast implementation is not
due to the reductions in memory copying overhead. This is
especially true for applications that transmit data as small
messages, usually to avoid a high packetization delay. In
fact, we observe that the performance improvements result
from savings in a number of areas including improved cache
utilization as a result of the tight execution loop within the
kernel, and reductions in memory copying, context switches,
and the number of interrupts.

In future work, we intend to perform a more detailed
breakdown of the cost components for network I/O using
contemporary hardware and software. We also plan to ex-
amine the interaction between a variety of applications and
the kernel-groupcast interface and implementation. Fur-
thermore, we are investigating the benefits of applying the
kernel-groupcast principles in different application scenarios
using transport protocols other than UDP.

7. REFERENCES
[1] A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior

and performance of interactive multi-player game
servers. Cluster Computing, 6(4):355–366, Oct. 2003.

[2] M. Ammar, K. Almeroth, R. Clark, and Z. Fei.
Multicast delivery of web pages or how to make web
servers pushy. In Proceedings of the Workshop on
Internet Server Performance, Madison, Wisconsin,
June 1998.

[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable application layer multicast. Technical Report
UMIACS TR-2002, University of Maryland, 2002.

[4] Y. Chu, S. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM SIGMETRICS,
pages 1–12, 2000.

[5] S. Deering. Multicast routing in internetworks and
extended lans. In Proceedings of ACM SIGCOMM,
pages 55–64, August 1988.

[6] C. Diot and L. Guatier. A distributed architecture for
multiplayer interactive applications on the Internet.
IEEE Network, 13(4):6–15, August 1999.

[7] C. Diot, B. Levine, B. Lyles, H. Kassem, and
D. Balensiefen. Deployment issues for the IP multicast
service and architecture. IEEE Network, 14(1):78–88,
January 2000.

[8] Z. Ditta, G. Parulkar, and J. C. Jr. The APIC
approach to high performance network interface
design: Protected and other techniques. In Proceedings
of IEEE INFOCOM, volume 2, pages 7–11, April
1997.

[9] P. Francis. Yoid: Your own Internet distribution, April
2000. http://www.aciri.org/yoid.

[10] A. Gallatin, J. Chase, and K. Yocum. Trapeze/IP:
TCP/IP at near-gigabit speeds. In Proceedings of
USENIX Technical Conference (Freenix Track), pages
109–120, June 1999.

[11] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek,
and J. O’Toole, Jr. Overcast: Reliable multicasting
with an overlay network. In Proceedings of Operating
System Design and Implementation (OSDI), pages
197–212, October 2000.

[12] J. Kay and J. Pasquale. Profiling and reducing
processing overheads in TCP/IP. IEEE/ACM
Transaction on Networking, 4(6):817–828, 1996.

[13] Y. Khalidi and M. Thadani. An efficient zero-copy
I/O framework for UNIX. Technical Report SMLI
TR95-39, Sun Microsystems Lab, May 1995.

[14] M. Macedonia, M. Zyda, D. Pratt, P. Barham, and
S. Zeswitz. NPSNET: A network software architecture
for large scale virtual environments. Presence,
3(4):265–287, 1994.

[15] S. McCanne and V. Jacobson. vic : A flexible
framework for packet video. In Proceedings of ACM
Multimedia, pages 511–522, January 1995.

[16] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel.
ALMI: An application level multicast infrastructure.
In Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems (USITS), pages
49–60, 2001.

[17] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure. In
Proceedings of ACM SIGCOMM, pages 73–88, August
2002.

