

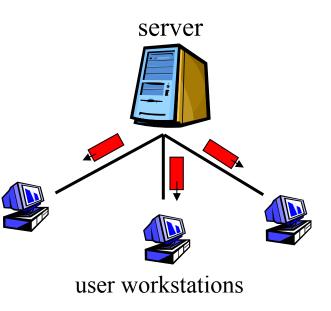
Michael Kwok, Tim Brecht Martin Karsten, Jialin Song

University of Waterloo, Canada

Introduction

- Many app. send data to groups of recipients
- Need efficient group communication mechanisms
- Need an analytic framework
 - Micro-benchmarking → macro-benchmarking

Example Application – DVE


- DVE (Distributed Virtual Environment)
 - A shared virtual environment
 - May involve a large number of simultaneous users
 - E.g., multi-player online games, CSCWs

Example Application – DVE

- Updates need to be distributed as soon as possible
- DVE system
 - Client-server
 - UDP
- Concerned with the efficiency of the group communication mechanism used

Group Communication

Common approach:

Waterloo

```
user-level unicast (user-groupcast)
```

```
for (i=0; i<GRPSIZE; i++) {
    fds[i]=socket(PF_INET, SOCK_DGRAM, 0);
}
for (i=0; i<GRPSIZE; i++) {
    totalbytes+=send(fds[i], buf, bytes);
}</pre>
```

Group Communication

Proposed approach:

```
kernel-level unicast (kernel-groupcast)
```

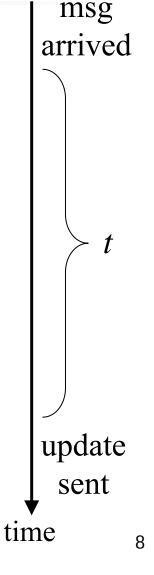
```
grp=socket(PF_INET, SOCK_DGRAM, 0);
setsockop(grp, SOL_SOCKET, SO_SETGRP,
    addrs, GRPSIZE*sizeof(struct
    sockaddr_in));
totalbytes=send(grp, buf, bytes);
```


Problem

• How does kernel-groupcast improve the server capacity?

- Develop an analytic framework
 - Translate improved groupcast efficiency into server capacity improvement

 $\frac{\text{max } N \text{ with new groupcast}}{\text{max } N \text{ with original groupcast}}$


Immediate Send Model

```
Pseudo-code
while (1) {
    receive_client_msg();
    process_client_msg();
    send_update_to_group(); } S
}
```

- $\blacksquare \lambda N(H+S) \leq T$
 - $T: \max. avg. t$
 - λ : avg. msg. from a user per T
 - $\sim N$: no. of users

Michael Kwok

Periodic Send Model

```
msg
                                                       arrived
     Pseudo-code
          set_alarm_handler(
            send_update_to_group,
            period);
          while (1) {
            receive_client_msg();
            process_client_msg();
     \bullet \lambda NH + S \leq T
                                                       update
                                                        sent
 University of
Waterloo
                                                    time
                           Michael Kwok
```

Analytic Framework

Of interest is the capacity improvement ratio:

$$k = \frac{N_{new}^{max}}{N_{orig}^{max}}$$

Parameter Characterization

- Send operation, S
 - Characterize S by measurement experiments
 - Based on our results, S can be best described by

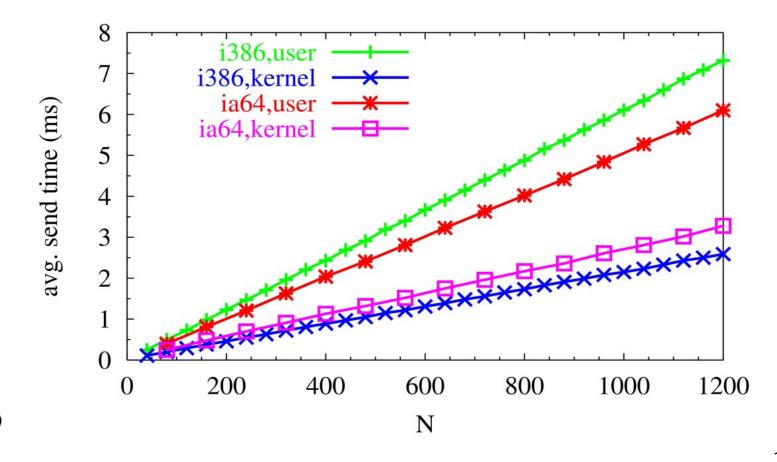
$$xN + yNb$$

where *x* and *y* are constants

Parameter Characterization

- Other operation, *H*
 - Consider two example cases
 - 1. Constant: $H_1 := c_1$
 - 2. Linear: $H_2 := c_2 N$

where c_1 and c_2 are constants



- User-groupcast vs. kernel-groupcast
- Conduct micro-benchmarks on a server running on
 - i368: a 2.8 GHz Intel Xeon
 - ia64: a 900 Mhz Intel Itanium2

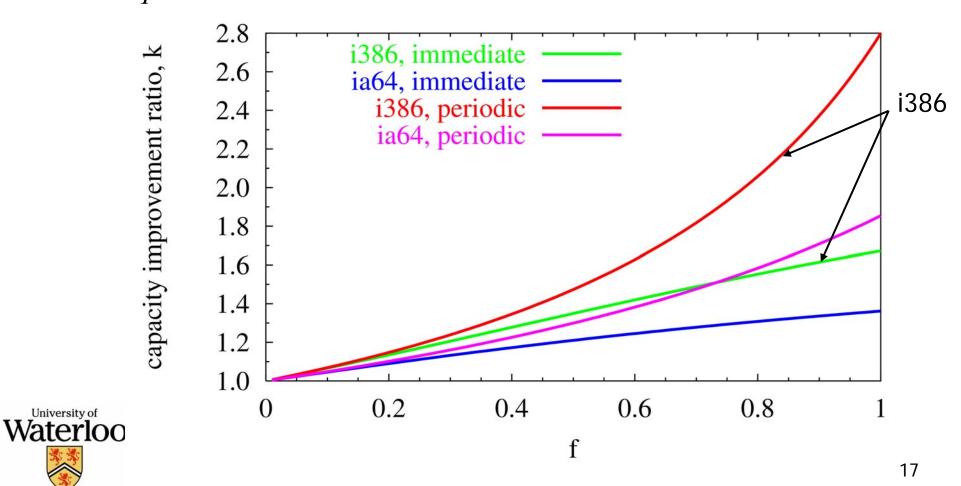
to characterize S

Experimental results

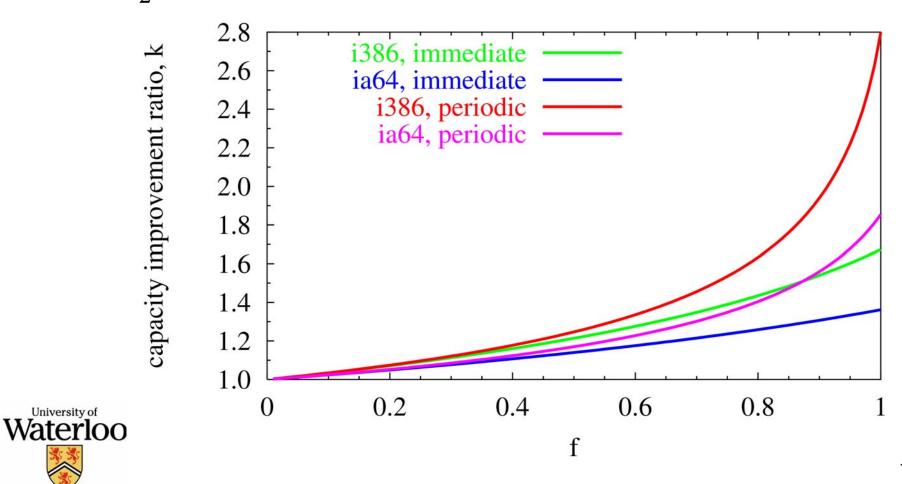
• To characterize *H*, define

$$f = \frac{\text{total send time}}{\text{total processing time}}$$

■ Vary f between 0 and 1



- Other input parameters
 - T = 33.3 ms (30 fps refresh)
 - $\lambda = 1$ (avg. 1 msg per period)
 - b = 80 bytes (avg. msg size [Farber 2002])


Numerical Results

$\blacksquare H_1 - \text{constant}$

Numerical Results

\blacksquare H_2 – linear

Bounds on Capacity Improvement

For the immediate model

$$k \le \sqrt{r}$$

where r is the speedup factor defined as $r = \frac{S_{orig}}{S_{new}}$

For the periodic model

$$k \leq r$$

Summary

- Kernel-groupcast
 - Improve the efficiency of group communication
- Analytic framework
 - Consider two server models
 - Predict performance impact of an improved group communication mechanism
 - Derive the upper bounds on capacity improvement

Future Work

- Study the behavior of other group communication applications
- Extend our analytic framework to consider stochastic workload and processing requirement of different operations
- Apply kernel-groupcast to other transport protocols
- Design improved system call interface

Thank you

