
Work-Stealing, Locality-Aware Actor Scheduling

Saman Barghi
David R. Cheriton School of Computer Science

Univeristy of Waterloo
Waterloo, Canada

Email: sbarghi@uwaterloo.ca

Martin Karsten
David R. Cheriton School of Computer Science

Univeristy of Waterloo
Waterloo, Canada

Email: mkarsten@uwaterloo.ca

Abstract—The actor programming model is gaining popular-
ity due to the prevalence of multi-core systems along with the
rising need for highly scalable and distributed applications.
Frameworks such as Akka, Orleans, Pony, and C++ Actor
Framework (CAF) have been developed to address these
application requirements. Each framework provides a runtime
system to schedule and run millions of actors, potentially
on multi-socket platforms with non-uniform memory access
(NUMA). However, the literature provides only limited research
that studies or improves the performance of actor-based appli-
cations on NUMA systems. This paper studies the performance
penalties that are imposed on actors running on a NUMA
system and characterizes applications based on the actor type,
behavior, and communication pattern. This information is used
to identify workloads that can benefit from improved locality
on a NUMA system. In addition, two locality- and NUMA-
aware work-stealing schedulers are proposed and their their
respective execution overhead in CAF is studied on both AMD
and Intel machines. The performance of the proposed work-
stealing schedulers is evaluated against the default scheduler
in CAF.

Keywords-Actors, Scheduling, NUMA, Locality

I. INTRODUCTION

Modern computers utilize multi-core processors to in-
crease performance, because the breakdown of Dennard
scaling [1] makes substantial increase of clock frequencies
unlikely and because the depth and complexity of instruction
pipelines have also reached a breaking point. Other hardware
scaling limitations have led to the emergence of non-uniform
memory access (NUMA) multi-chip platforms [2] as a trade-
off between low-latency and symmetric memory access.
Multi-core and multi-chip computing platforms provide a
shared memory interface across a non-uniform memory
hierarchy by way of hardware-based cache coherence [3].

The actor model of computing [4], [5], [6] is a model for
writing concurrent applications for parallel and distributed
systems. The actor model provides a high-level abstraction
of concurrent tasks where information is exchanged by
message passing, in contrast to task parallelism where tasks
communicate by sharing memory. A fundamental building
block of any software framework implementing the actor
model is the proper distribution and scheduling of actors
on multiple underlying processors (often represented by ker-
nel/system threads) and the efficient use of system resources

to achieve the best possible runtime performance. The C++
Actor Framework (CAF) [7] provides a runtime for the actor
model and has a low memory footprint and improved CPU
utilization to support a broad range of applications.

This paper studies the challenges for a popular type of
actor scheduler in CAF, work-stealing, on NUMA platforms.
Actor models have specific characteristics that need to be
taken into account when designing scheduling policies. The
contributions are: a) the structured presentation of these
characteristics, b) an improved hierarchical scheduling pol-
icy for actor runtime systems, c) the experimental evaluation
of the new scheduling proposals and study their performance
in comparison to a randomized work-stealing scheduler.

The rest of the paper is organized as follows. The next
section provides background information related to schedul-
ing, the actor programming model, and the C++ Actor
Framework (CAF). Section 3 describes existing research
work related to the problem studied in this paper, while
Section 4 presents a discussion of workload and application
characteristics, followed by the actual scheduling proposal.
An experimental evaluation is provided in Section 5 and the
paper is concluded with brief remarks in Section 6.

II. BACKGROUND

A. The Actor Programming Model

In the actor model the term actor describe autonomous
objects that communicate asynchronously through messages.
Each actor has a unique address that is used to send mes-
sages to that actor, and each actor has a mailbox that is used
to queue received messages before processing. Actors do not
share state and only communicate by sending messages to
each other. Sending a message is a nonblocking operation
and an actor processes each message in a single atomic step.
Actors may perform three types of action as a result of
receiving a message: (1) send messages to other actors, (2)
create new actors, (3) update their local state [6], [8]. Actors
can change their behavior as a result of updating their local
state. In principle, message processing in a system of actors
is non-deterministic, because reliable, in-order delivery of
messages is not guaranteed. This non-deterministic nature
of actors makes it hard to predict their behavior based on
static compile-time analysis or dynamic analysis at runtime.



Despite their differences [9], all actor systems provide
a runtime that multiplexes actors onto multiple system
threads to take advantage of multi-core hardware and provide
concurrency and parallelism. For example, Erlang [10] uses
a virtual machine along with a work-stealing scheduler to
distribute actors and to balance the workload. Akka [11]
provides various policies to map actors to threads and by
default uses a fork/join policy. Pony [12] provides only a
work-stealing scheduler, while CAF provides both work-
sharing and work-stealing policies. The type of the actor
runtime can influence how tasks should be scheduled in
regard to locality. For example, in a managed language such
as Erlang actors have their own private heap and stack
whereas in CAF actor objects and variables are directly
allocated from the default global heap.

Scheduling is affected by implementation details of the
actor framework and the type of workload. Most importantly,
depending on the type of an actor and how memory is
allocated and accessed by that actor, scheduling might or
might not benefit from locality improvements related to CPU
caches or NUMA. Therefore, it is important to identify all
factors at play when it comes to locality-aware scheduling.
These factors must be studied both individually and in com-
bination to determine scenarios that benefit from locality-
aware scheduling in a message-passing software framework.

B. Actor Model vs. Task Parallelism

Actor-based systems can benefit from work-stealing due
to the dynamic nature of tasks and their asynchronous exe-
cution, which is similar to task parallelism. However, most
variations of task parallelism, e.g., dataflow programming,
are used to deconstruct strict computational problems to ex-
ploit hardware parallelism. As such, interaction patterns be-
tween tasks are usually deterministic, because dependencies
betweens tasks are known at runtime. Tasks are primarily
concerned with the availability of input data and therefore
do not have any need to track their state. In contrast, the actor
model provides nondeterministic, asynchronous, message-
passing concurrency. Computation in the actor model cannot
be considered as a directed acyclic graph (DAG) [7] (e.g.,
Cilk assume DAG computation through fork/join [13]) and
actors usually have to maintain state. Due to these differ-
ences, the internals of an actor runtime, such as scheduling,
differ from runtime systems aimed at task parallelism.

Most importantly, applications written using the actor
model, such as a chat server, are sensitive to latency and
fairness for individual tasks. Therefore, a scheduler designed
for an actor system must be both efficient and fair, otherwise
applications show a long tail in their latency distribution. On
the contrary, for task parallelism, as long as the the entire
problem space is explored in an acceptable time, fairness
and latency of individual tasks does not matter.

Furthermore, in task parallelism many lightweight tasks
are created that run from start to end without yielding

execution. In contrast, actors in an actor system can wait for
events and other messages, or cooperatively yield execution
to guarantee fairness. Hence, the execution pattern of actors
is different from tasks in a task-parallel workload. This
affects both scheduling objectives and locality.

Finally, since actors fully encapsulate their internal state
and only communicate through passing messages that are
placed into the respective mailboxes of other actors, the
resulting memory access pattern is not necessarily the same
as the access pattern seen in task-parallel frameworks. For
instance, in OpenStream [14] each consumer task has mul-
tiple data-buffers for each producer task. OpenMP 4.0 [15]
allows task dependencies through shared memory, however
this is based on a deterministic sporadic DAG model which
only allows dependencies to be defined among sibling tasks.

Therefore, although locality-aware scheduling is a well-
studied topic for task parallelism, due to those differences,
it cannot automatically be assumed that findings for task
parallelism directly translate into similar findings for actor
models - or vice versa.

C. Work-Stealing Scheduling

Multiprocessor scheduling is a well-known NP-hard prob-
lem. In practice, runtime schedulers apply broad strategies to
satisfy objectives, such as resource utilization, load balanc-
ing, and fairness. Work-stealing has emerged as a popular
strategy for task placement and also load balancing [16].
Work-stealing primarily addresses resource utilization by
stipulating that a processor without work “steals” tasks from
another processor.

Work-stealing has been investigated for general multi-
threaded programs with arbitrary dependencies [17], gener-
alizing from its classical formulation limited to the fork-join
pattern. The main overhead of work-stealing occurs during
the stealing phase when an idle processor polls other deques
to find work, which might cause interprocessor communica-
tion and lock contention that negatively impact performance.
The particulars of victim selection vary among work-stealing
schedulers. In Randomized Work-Stealing (RWS), when a
worker runs out of work it chooses the victims randomly.
The first randomized work-stealing algorithm for fully-strict
computing is given in [17]. The algorithm has an expected
execution time of T1/P +O(T∞) on P processors, and also
has much lower communication cost than work-sharing.

For message-driven applications, such as those built with
actor-based programming, these bounds can only be re-
garded as an approximation. The reason is that deep re-
cursion does not occur in event-based actor systems, since
computation is driven by asynchronous message passing and
cannot be considered as a DAG.

It has been shown that work-stealing fundamentally is
efficient for message-driven applications [18]. However,
random victim selection is not scalable [19], because it does
not take into account locality, architectural diversity, and the



memory hierarchy [18], [20], [21]. In addition, RWS does
not consider data distribution and the cost of inter-node task
migration on NUMA platforms [21], [22], [23].

D. C++ Actor Framework

The C++ Actor Framework (CAF) [7] provides a runtime
that multiplexes N actors to M threads on the local system.
The number of threads (M) is configurable and by default is
equal to the number of cores available on the system, while
the number of actors (N) changes during runtime. Actors in
CAF transition between four states: ready, waiting, running,
and done. An actor changes its state from waiting to ready
in reaction to a message being placed in its mailbox. Actors
in CAF are modeled as lightweight state machines that are
implemented in user space and cannot be preempted.

CAF’s work-stealing scheduler uses a double-ended task
queue per worker thread. Worker threads treat this deque as
LIFO and other threads treat the queue as FIFO. New tasks
that are created by an actor are pushed to the head of the
local queue of the worker thread where the actor is running.
Tasks that are created by spawning actors outside of other
actors, e.g., from the main() function, are placed into the
task queues in a round robin manner for load balancing.

Actors create new tasks by either spawning a new actor
or sending a message to an existing actor with an empty
mailbox. If the receiver actor’s mailbox is not empty, sending
a message to its mailbox does not result in creation of a new
task since a task already processes the existing messages.

The RWS scheduler in the CAF runtime uses a uniform
random number generator to randomly select victims when
a worker thread runs out of work. Although CAF provides a
support layer for seamless heterogeneous hardware to bridge
architectural design gaps between platforms, it does not yet
provide a locality-aware work-stealing scheduler.

E. NUMA Effects

Contemporary large-scale shared-memory computer sys-
tems are built using non-uniform memory access (NUMA)
hardware where each processor chip has direct access to
a part of the overall system memory, while access to the
remaining remote memory (which is local to other processor
chips) is routed through an interconnect and thus slower.
NUMA provides the means to reach a higher core count
than single-chip systems, albeit at the (non-uniform) cost
of occasionally accessing remote memory. Clearly, with
remote memory, the efficacy of the CPU caching hierarchy
becomes even more important. However, CPU caches are
shared between cores with the particular nature of sharing
depending on the particulars of the hardware architecture.
Therefore, new scheduling algorithms are proposed that are
aware of the memory hierarchy and shared resources to
exploit cache and memory locality and minimize overhead
[16], [20], [21], [22], [23], [24], [25].

Accordingly, efficient scheduling of actors on NUMA
machines requires careful analysis of applications built using
actor programming. Application analysis must be combined
with a proper understanding of the underlying memory
hierarchy to limit the communication overhead, scheduling
costs, and achieve the best possible runtime performance.

III. RELATED WORK

There has been very limited research addressing locality-
aware or specifically NUMA-aware scheduling for actor
runtime systems. Francesquini et al. [22] provide a NUMA-
aware runtime environment based on the Erlang virtual
machine. They identify actor lifespan and communication
cost as information that the actor runtime can use to improve
performance. Actors with a longer lifespan that create and
communicate with many short-lived actors are called hub
actors. The proposed runtime system lowers the communi-
cation cost among actors and their hub actor by placing the
short-lived actors on the same NUMA node as the hub actor,
called home node. When a worker thread runs out of work, it
first tries to steal from workers on the same NUMA node. If
unsuccessful, the runtime system tries to migrate previously
migrated actors back to that home node. The private heap of
each actor is allocated on the home node, so executing on
the home node improves locality. As a last resort the runtime
steals actors from other NUMA nodes and moves them to
the worker’s NUMA node.

Although the evaluation results look promising, the
caveat, as stated by the authors, is in assuming that hub
actors are responsible for the creation of the majority of
actors. This is a strong assumption only applies to some
applications. Also, when multiple hub actors are responsible
for creating actors, the communication pattern among none-
hub actors can still be complicated. Another assumption is
that all NUMA nodes have the same distance from each
other, and the scheduler does not take the CPU cache hier-
archy into account. The approach presented takes advantage
of knowledge that is available within the Erlang virtual
machine, but not necessarily available in an unmanaged
language runtime, such as CAF.

In contrast, the work presented here is not based on any
assumptions about the communication pattern among actors
or information available through a virtual machine runtime.
Instead, it is solely focused on improving performance by
improving the scheduler. Also, the full extent and variability
of the memory hierarchy is taken into account.

A simple affinity-type modification to task scheduling
is reported in [26]. Tasks in this system are blocking on
a channel waiting for messages to arrive, and thus show
similar behavior to actors waiting on empty mailboxes. In
contrast to basic task scheduling, an existing task that is
unblocked is never placed on the local queue. Instead, it is
always placed at the end of the queue of the worker thread
previously executing the task. A task is only migrated to



another worker thread by stealing. This modification leads to
significant performance improvements for certain workloads
and thus contradicts assumptions about treating the queues
in LIFO manner. However, the system has a well-defined
communication pattern and long task lifespans, in contrast
to an actor system that is non-deterministic with a mixture
of short- and long-lived actors. We have implemented both a
LIFO and an affinity policy using our hierarchical scheduler
and present results in Section V.

Various locality-aware work-stealing schedulers have been
proposed for other parallel programming models and shown
to improve performance. Suksompong et al. [25] investigate
localized work-stealing and provide running time bounds
when workers try to steal their own work back. Acar et
al. [27] study the data locality of work-stealing scheduling
on shared-memory machines and provide lower and upper
bounds for the number of cache misses, and also provide
a locality-guided work-stealing scheduling scheme. Chen et
al. [28] present a cache-aware two-tier scheduler that uses an
automatic partitioning method to divide an execution DAG
into the inter-chip tier and the intra-chip tier.

Olivier et al. [29] provide a hierarchical scheduling strat-
egy where threads on the same chip share a FIFO task
queue. In this proposal, load balancing is performed by work
sharing within a chip, while work-stealing only happens be-
tween chips. In follow-up work, the proposal is improved by
using a shared LIFO queue to exploit cache locality between
sibling tasks as well as between a parent and newly created
task [23]. Moreover, the work-stealing strategy is changed,
so that only a single thread can steal work on behalf of other
threads on the same chip to limit the number of costly remote
steals. Pilla et al. [30] propose a hierarchical load balancing
approach to improve the performance of applications on
parallel multi-core systems and show that Charm++ can
benefit from such a NUMA-aware load balancing strategy.

Min et al. [21] propose a hierarchical work-stealing sched-
uler that uses the Hierarchical Victim Selection (HVS) policy
to determine from which thread a thief steals work, and the
Hierarchical Chunk Selection (HCS) policy that determines
how much work a thief steals from the victim. The HVS
policy relies on the scheduler having information about the
memory hierarchy: cache, socket, and node (this work also
considers many-core clusters). Threads first try to steal from
the nearest neighbors and only upon failure move up the
locality hierarchy. The number of times that each thread tries
to steal from different levels of the hierarchy is configurable.
The victim selection strategy presented here in Section IV-B
is similar to HVS, but takes NUMA distances into account.

Drebes et al. [31], [32] combine topology-aware work-
stealing with work pushing and dependence-aware memory
allocation to improve NUMA locality and performance for
data-flow task parallelism. Work pushing transfers a task to a
worker whose node contains the task’s input data according
to some dependence heuristics. Each worker has a Multiple-

Producer-Single-Consumer (MPSC) FIFO queue in addition
to a work-stealing dequeue. The MPSC queue is only
processed when the deque is empty. However, this approach
is not applicable to latency-sensitive actor application for
two reasons: first, the actor model is nondeterministic and
data dependence difficult to infer at runtime. Second, adding
a lower-priority MPSC queue adds complexity and can
cause some actors to be inactive for a long time, which
violates fairness and thus causes long tail latencies for the
application. Moreover, the proposed deferred memory allo-
cation relies on knowing the task dependencies in advance,
which is not possible with the actor model. Therefore, this
optimization cannot be applied to the actor model. The
topology-aware work-stealing introduced by this work is
similar to ours, but it is evaluated in combination with
deferred memory allocation and work-pushing. Thus, it is
not possible to discern the isolated contribution of topology-
aware work-stealing.

Majo et al. [2] specify that optimizing for data locality can
counteract the benefits of cache contention avoidance and
vice versa. In Section V we present results that demonstrate
this effect for actor workloads where aggressive optimization
for locality increases the last-level cache contention.

IV. LOCALITY-AWARE SCHEDULER FOR ACTORS

This section first discusses the key characteristics of an
actor-based application and workload that need to be consid-
ered when designing a locality-aware, work-stealing sched-
uler. These characteristics also provide valuable hints for
designing evaluation benchmarks. Based on these findings,
a novel hierarchical, locality-aware work-stealing scheduler
is presented.

A. Characteristics of Actor Applications

Key operations can be slowed down when an actor
migrates to another core on a NUMA system, depending
on the NUMA distance. This performance degradation can
come from messages that arrive from another core, or from
accessing the actor’s state that is allocated on different
NUMA node. Depending on the type of actor and the
communication pattern, the amount of degradation differs.
Therefore, improving locality does not benefit all work-
loads. We identify the following factors in applications and
workloads for actor-based programming that can affect the
performance of a work-stealing scheduler on a hierarchical
NUMA machine:

1) Memory allocated for actor and access pattern: Actors
sometimes only perform computations on data passed to
them through messages. For simplicity, we denote actors
that only depend on message data as stateless actors, and
actors that do manage local state as stateful actors.

Stateful actors allocate local memory upon creation and
access it or perform other computations depending on the
type of a message and their state when they receive a



message. A stateful actor with sizable state and intensive
memory access to that state is better executed closer to the
NUMA node where it was created. Also, for better cache
locality, especially if the actor receives messages from its
spawner frequently, it is better to keep such an actor on the
same core, or a core that shares a higher-level CPU cache
with the spawner core. The reason is that those messages
are hot in the cache of the spawner actor.

On the other hand, stateless actors do not allocate any
local memory and can be spawned multiple times for better
scalability. For such actors, the required memory to process
messages is allocated when they start processing a message
and deallocated when the processing is done. Therefore, the
only substantial memory that is accessed is the one allocated
for the received message by the sender of that message. Such
actors are better executed closer to the message sender.

2) Message size and access pattern: The size of messages
has a direct impact on the performance and locality of actors
on NUMA machines. Messages are allocated on the NUMA
node of the sender, but accessed on the core that is executing
the receiver actor. If the size of messages is typically larger
than the size of the local state of an actor, and the receiving
actor accesses the message intensively, actors are better to
be activated on the same node as the sender of the message.

3) Communication pattern: Since the actor model is non-
deterministic, it is difficult to generally analyze the commu-
nication pattern between actors. Two actors that are sending
messages to each other can go through different states and
thus have various memory access patterns. In addition, the
type and size of each message can vary depending on the
state of the actor. We do not make any assumptions about
the communication pattern of actors, unlike others [22].

Aside from illustrating the trade-offs involved in actor
scheduling, these observations are also useful to determine
which benchmarks realistically demonstrate the benefits of
locality-aware work stealing schedulers and which represent
worst-case tests.

B. Locality-Aware Scheduler (LAS)

Our locality-aware scheduler consists of three stages:
memory hierarchy detection, work placement, and work
stealing. When an application starts running, the scheduler
determines the memory hierarchy of the machine. Also, a
new actor is is placed on the local or a remote NUMA node
depending on the type of the actor. Finally, when a worker
thread runs out of work it uses a locality-aware policy to
steal work from another work thread.

1) Memory Hierarchy Detection: Our work-stealing al-
gorithm needs to be aware of the memory hierarchy of the
underlying system. In addition to the cache and NUMA
hierarchy, differing distances between NUMA nodes are an
important factor in deciding where to steal tasks from. Ac-
cess latencies can vary significantly based on the topological
distance between access node and storage node.

The scheduler builds a representation of the locality
hierarchy using the hwloc library [33] that uses hardware
information to determine the memory hierarchy, which the
scheduler represents as a tree. The root is a place-holder
representing the whole system, while intermediate levels rep-
resent NUMA nodes and groups, taking into account NUMA
distances. Subsequent nodes represent shared caches and the
leaves represent the cores on the system. This approach is
independent from any particular hardware architecture.

2) Actor Placement: For fully-strict computations, data
dependencies of a task only go to its parent. Thus the
natural placement for new tasks the core of the parent
task. However, actors can communicate arbitrarily and thus,
local placement of newly created actors does not guarantee
the best performance. For example, actors receiving remote
messages pollute the CPU cache for actors that execute later
and process messages from their parents. Also, as stated
earlier, depending on the size of the message in comparison
to state variables, placing the actor in the sender’s NUMA
node can help or hurt performance. Determining the best
strategy at runtime can add significant overhead, so there is
no apparent optimal approach.

The exception are hub actors [22], i.e., long-living actors
that spawn many children and communicate with them
frequently. Such actors place high demand on the memory
allocator and can interfere with each other if placed on
the same NUMA node. Furthermore, if a locality-aware
affinity policy tries to keep actors on their home node,
placing multiple hub actors on the same NUMA node
further increases contention over shared resources and thus
reduces the performance. Hence, our scheduler uses the same
algorithm for initial placement of hub actors [22] to spread
them across different NUMA nodes. The programmer needs
to annotate hub actors. The system then tags corresponding
structures at compile time and the runtime scheduler uses
this information to place such actors far from each other.

3) Locality-aware Work-stealing: A locality-aware victim
selection policy attempts to keep tasks closer to the core
that created them or was running them previously to take
advantage of better cache locality. Depending on the hard-
ware architecture, cores might share higher-level CPU cache.
Therefore, in our scheduler the thief worker thread first
steals from worker threads executing on nearby cores in the
same NUMA node with shared caches to improve locality.
If there is no work available in the local NUMA node,
the hierarchical victim selection policy tries to steal jobs
from worker threads of other NUMA nodes with increasing
NUMA distance. The goal of NUMA-aware work stealing
is to avoid migrating actors between NUMA nodes to the
extent possible, and thus to remove the need for remote
memory accesses.

Limiting the worker threads to initially choose their
victims within their own NUMA node can lead to more
frequent contention over deques on the local NUMA node



in comparison to using the random victim selection strategy.
For example, if a single queue still has work, while all other
worker threads run out of work, is the worst-case scenario
for a work-stealing scheduler. However, this case appears
frequently in actor applications, where a hub actor creates
multiple actors and other worker threads steal from the local
deque of the thread that runs the hub actor. Our investigation
shows that when stealing fine-grained tasks with workloads
that are 20µs or shorter, the performance penalty ratio in-
creases exponentially as the number of thief threads increase.
For more coarse-grained tasks, the performance penalty is
not significant, since the probability of contention decreases.

To alleviate this problem, our scheduler keeps track of the
number of threads per NUMA node that are polling the local
node. This number is used along with the approximate size
of the deques in the node to reduce the number of threads
that are simultaneously polling a deque (Algorithm 1). If
there is only a single non-empty deque and more than half
of threads under that node are polling that deque, the thief
thread backs off and tries again later.

In addition, polling the queue of many other worker
threads with empty queues can result in wasting CPU cycles
when the number of potential victims is limited. In CAF, a
worker thread constantly polls its own deque and after a
certain number of attempts, polls a victim deque. To avoid
wasting CPU cycles, we have modified the deque and added
an approximate size of the deque using a counter. A thief
uses this approximate size when it attempts to steal from
other workers executing on the same NUMA node. If there
are non-empty queues, it chooses one randomly, otherwise if
all the queues are empty, the thief immediately moves up to
the next higher level (Algorithm 1). This approach removes
the overhead of polling empty queues on the local NUMA
node and thus decreases the number of wasted CPU cycles.
Since there is a fixed number of cores on a NUMA node,
scanning their queue sizes adds little overhead that remains
constant even when the application scales.

When a worker runs out of work, it becomes a thief and
uses the memory hierarchy tree provided by the scheduler
to perform hierarchical victim selection as described in
Algorithm 1. The updated vertex v is passed to the function
each time to complete the tree traversal. An empty result or
a victim with an empty deque means that the thief has to
try again.

We have created two variants of LAS that differ in their
placement strategy. When an existing actor is unblocked by
a message, the local variant (LAS/L) places the actor on the
local deque, while the affinity variant (LAS/A) places the
actor at the end of the deque of the worker thread previously
executing it. In both cases, newly created actors are pushed
to the head of the local deque. LAS/L is similar to typi-
cal work-stealing placement where all activated and newly
created tasks are pushed to the head of the local deque.
LAS/A improves actor-to-thread (and thus to-core) affinity,

Algorithm 1 Hierarchical Victim Selection
1: T: Memory hierarchy tree
2: C: Set of cores under v
3: p: Number of threads polling under local NUMA node
4: r: Number of steal attempts for v
5: procedure CHOOSEVICTIM(V)
6: if r = Size(C) and v 6= root(T ) then
7: v ← parent(v)
8: if v is in local NUMA node then
9: S = {s | all non-empty local deques}

10: if S = ∅ then
11: v ← parent(v)
12: else if size(S) = 1 and p > size(C)

2 then
13: return ∅
14: else return random from S
15: return random from C

because actors are moved only by stealing. However, it adds
overhead to saturated workers and increases contention when
placing actors on remote deques, which is further discussed
in Section V-C.

V. EXPERIMENTS AND EVALUATION

Experiments are conducted on an Intel and an AMD
machine that have different NUMA topologies and memory
hierarchies. The Intel machine is a Xeon with 4 sockets, 4
NUMA nodes, and 32 cores. Each NUMA node has 64 GB
of memory for a total of 256 GB. Each socket has 8 cores,
running at 2.3 GHz, that share 16 MB L3 Cache, and each
core has private L1 and L2 caches. Each NUMA node is
only directly connected to two other NUMA nodes. Hpyer-
threading is disabled. The AMD machine is an Opteron with
4 sockets, 8 NUMA nodes, and 64 cores. Each NUMA node
contains 64 GB of memory for total of 512 GB. Each socket
has 8 cores running at 2.5 GHz. Each core has a private L1
data cache, and shares the L1 instruction cache and an L2
cache (2 MB) with a neighbour core. All cores in the same
socket share one L3 cache (6 MB). The experiments are
performed with CAF version 0.12.2, compiled with GCC
5.4.0, on Ubuntu Linux 16.04 with kernel 4.4.0.

The experiments compare CAF’s default Randomized
Work-Stealing (RWS) scheduler with LAS/L and LAS/A.
We first evaluate the performance using benchmarks to study
the effect of scheduling policy on different communication
patterns and message sizes. Next, we use a simple chat server
to observe the efficiency of schedulers for an application that
has a large number of actors with non-trivial communication
patterns, different behaviors, and various message sizes.

A. Benchmarks

The first set of experiments attempts to isolate the effects
of each scheduling policy for different actor communication
patterns. A subset of benchmarks from the BenchErl [34]



and Savina [35] benchmark suites is chosen that represents
typical communication patterns used in actor-based appli-
cations. Some of these benchmarks are adopted from task-
parallelism benchmarks, but modified to fit the actor model.

• Big (BIG): In a many-to-many message passing sce-
nario many actors are spawned and each one sends a ping
message to all other actors. An actor responds with a pong
message to any ping message it receives.
• Bang (BANG): In a many-to-one scenario, multiple

senders flood the one receiver with messages. Senders send
messages in a loop without waiting for any response.
• Logistic Map Series (LOGM): A synchronous request-

response benchmark pairs control actors with compute actors
to calculate logistic map polynomials through a sequence of
requests and responses between each pair.
• All-Pairs Shortest Path (APSP): This benchmark is a

weighted graph exploration application that uses the Floyd-
Warshall algorithm to compute the shortest path among all
pairs of nodes. The weight matrix is divided into blocks.
Each actor performs calculations on a particular block and
communicates with the actors holding adjacent blocks.
• Concurrent Dictionary (CDICT): This benchmark

maintains a key-value store by spawning a dictionary actor
with a constant-time data structure (hash table). It also
spawns multiple sender actors that send write and read
requests to the dictionary actor. Each request is served with
a constant-time operation on the hash table.
• Concurrent Sorted Linked-List (CSLL): This benchmark

is similar to CDICT but the data-structure has linear access
time (linked list). The time to serve each request depends the
type of the operation and the location of the requested item.
Also, actors can inquire about the size of the list, which
requires iterating through all items.
• NQueens first N Solutions (NQN): A divide-and-

conquer style algorithm searches a solution for the problem:
”How can N queens be placed on an N × N chessboard,
so that no pair attacks each other?”
• Trapezoid approximation (TRAPR): This benchmark

consists of a master actor that partitions an integral and
assigns each part to a worker. After receiving all responses
they are added up to approximate the total integral. The
message size and computation time is the same for all
workers.
• Publish-Subscribe (PUBSUB): Publish/subscribe is an

important communication pattern in actor programs that is
used extensively in many applications, such as chat servers
and message brokers. This benchmark is implemented using
CAF’s group communication feature and measures the end-
to-end latency of individual messages. It represents a one-to-
many communication pattern where a publisher actor sends
messages to multiple subscribers. Actors can subscribe to
more than one publisher.

B. Experiments

The benchmark results are shown in Figure 1. The exe-
cution time is the average of 10 runs and normalized to the
slowest scheduler. All experiments are configured to keep
all cores busy most of the time, i.e., the system operates at
peak load.

The RWS scheduler performs relatively better for the
BIG benchmark and it outperforms both LAS/L and LAS/A.
This benchmark represents a symmetric many-to-many com-
munication pattern where all actors are sending messages
to each other. This workload benefits from a symmetric
distribution of work. Other experiments (not shown here)
show that using the NUMA interleave memory allocation
policy improves the performance further. For this particular
workload, improving locality does not translate to improving
the performance.

The BANG benchmark represents workloads using many-
to-one communication. Messages have very small sizes and
no computation is performed. Since the receiver’s mailbox
is the bottleneck, improving locality does not significantly
affect the overall performance. LAS/L only improves the
performance slightly by allocating more messages on the
local node.

LOGM and APSP both create multiple actors during
startup and each actor frequently communicates with a
limited number of other actors. In addition, computation
depend on an actor’s local state and message content. For
both workloads, LAS/L and LAS/A outperform RWS by
a great margin. In such workloads, each actor can only
be activated by one of the actors it communicates with. If
one of the communicating actors is stolen and executes on
another core, in RWS and LAS/L it causes the other actors
to follow and execute on the new core upon activation. Since
all actors maintain local state that is allocated upon creation
of the actor, all actors that are part of the communication
group experience longer memory access times if one of them
migrates to another NUMA node. Keeping actors on the
same NUMA node and closer to the core they were run-
ning before can prevent this. LAS/A improves performance
further by preventing other actors to migrate along with the
stolen actor. Even though actors are occasionally moved to
another NUMA node, the rest of the group stays on their
own NUMA node. Thus, LAS/A performs better than LAS/L
by preventing group migration of actors. For LOGM, since
each pair of actors is isolated from other actors, stealing
one actor translates to moving one other actor along with it.
However, in APSP each actor communicates with multiple
actors, which means stealing one actor can cause a chain
reaction and several actors that do not directly communicate
with the stolen actor might also migrate. LAS/A therefore
has a stronger effect on APSP than LOGM.

CDICT and CSLL represent workloads where a central
actor spawns multiple worker actors and communicates with



B
IG

B
A

N
G

LO
G

M

A
P

S
P

C
D

IC
T

C
S

LL

N
Q

N

T
R

A
P

R

P
U

B
S

U
B0

20

40

60

80

100

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Scheduling Policy
RWS
LAS/L
LAS/A

(a)

B
IG

B
A

N
G

LO
G

M

A
P

S
P

C
D

IC
T

C
S

LL

N
Q

N

T
R

A
P

R

P
U

B
S

U
B0

20

40

60

80

100

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Scheduling Policy
RWS
LAS/L
LAS/A

(b)

Figure 1. Results of running the benchmarks with various schedulers on (a) AMD Opteron and (b) Intel Xeon. The results are normalized to slowest
scheduler (lower is better).

them frequently. The central actor is responsible for manag-
ing a data structure and receives read and write requests from
the worker actors. CDICT benefits from improved locality
provided by both locality-aware schedulers. Since the ma-
jority of operations are allocating and accessing messages
between the central actor and the worker actors, placing
worker actors closer to the central actor leads to improved
performance due to faster memory accesses. In CDICT all
requests are served from a hash table in roughly constant
time. In such a setting, LAS/A can cause an imbalance in
service times, because some actors are being placed on cores
with higher memory access times. Since the service time
for each request is fairly small, this additional overhead can
slightly slow down the application.

However, in CSLL LAS/A outperforms LAS/L and RWS.
First, the overhead that LAS/A imposes on the central actor
becomes negligible in comparison with the linear lookup
time into the linked list. Because of the resulting increased
service times, most actors ultimately become inactive, wait-
ing for a response from the central actor. The corresponding
worker threads end up being idle and seeking work. With
LAS/A, the response unblocks a worker actor on its previous
worker thread, so that execution can continue right away.
However, LAS/L unblocks worker actors on the same worker
thread as the central actor. This introduces additional latency
until the worker actor executed or alternatively, until it is
stolen by an idle worker thread.

NQN is a divide-and-conquer algorithm where a master

actor is responsible for dividing the work among fixed
number of worker actors. Each worker actor performs a
recursive operation on the task assigned to it and further
divides the task to smaller subtasks. But instead of spawning
new actors, it reports back to the master actor that assigns
the new tasks to the worker actors in a round-robin fashion.
Therefore, all worker actors are constantly producing and
consuming messages. The computation performed for each
message depends on the content of the message and all
items in each message are accessed during computation.
Improving locality and placing worker actors closer to each
other and to the master actor has a significant impact on
performance. LAS/L and LAS/A perform 5 times faster than
RWS in this case.

In TRAPAR worker actors receive a message from a mas-
ter actor, perform some calculations, send back a message,
and exit. LAS/L and LAS/A improve the performance up to
10 times for this benchmark. Since all actors are created on
the local deque of the master actor, and the tasks are very
fine-grained, locality-aware scheduling increases the chance
of local cores to steal and run these tasks closer to the master
actor. Since all communications are with the master actor,
the performance is improved significantly.

The PUBSUB benchmark shows significant end-to-end
message latency improvement when LAS/L policy is used in
comparison with RWS. LAS/L keeps the subscribers closer
to the publisher that sends them a message and improves
the locality. However, LAS/A shows worse performance than



1 4 16 64 25
6

10
24

40
56

81
12

0

20

40

60

80

100
N

or
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

Scheduler
RWS
LAS/L
LAS/A

Message Size(words)

Figure 2. Results for varying the size of the value in CDICT benchmark.
The execution times are normalized to the slowest scheduler (lower is
better)

the other two policies. Profiling the code reveals that worker
threads are stalled by lock contention most of the time. The
reason is that with LAS/A, worker threads place the newly
created tasks on the deque of other cores rather than the local
core. Since publishers are constantly unblocking actors on
other cores, this leads to higher contention when there are
large number of publishers and subscribers.

There are minor differences between the results from the
AMD machine and the Intel machine. These differences
come from the differences in the NUMA setup of each
machine, explained at the beginning of this section. The
probability that RWS moves tasks to a NUMA node with
higher access times is higher for the AMD machine. Thus,
locality-aware schedulers are slightly more effective on the
AMD machine.

In general, the results indicate that workloads with many-
to-many communication patterns (BIG) do not benefit from
locality-aware schedulers. On the other hand, workloads
where actors are communicating with a small cluster of other
actors (LOGM and APSP), actors communicate with a cen-
tral actor and access message contents (CDICT and CSLL),
or actors communicate with a central actor one or multiple
times and perform computations that depend on the content
of the message (NQN and TRAPR), benefit from locality-
aware schedulers. Moreover, in most cases where locality
improves performance, LAS/A performs similar or better in
comparison with LAS/L. However, in one case (PUBSUB)
LAS/A causes high contention and a performance decrease.

We have performed another experiment to study the
effect of message size on the performance of locality-aware
schedulers. The CDICT benchmark is modified to make the
value size configurable for each key-value pair. This affects
the size of messages and the size of memory operations
performed by the central actor. Worker actors submit write
requests 20% of the time. Figure 2 shows the results for this
experiment executed on the AMD machine. Experiments on
the Intel machine show similar results, but are not shown

here due to limited space.
The results show that the LAS/L scheduler outperforms

both RWS and LAS/A for value sizes smaller than 256
words. LAS/L improves locality and since most messages
and objects fit into lower level caches (L1 and L2), improved
locality further improves the performance. RWS distributes
tasks among NUMA nodes and therefore imposes higher
memory access times. LAS/A also adds additional overhead,
because it causes the dictionary actor to unblock some
actors on remote NUMA nodes. However, as the value
size gets larger, messages and objects do not fit into lower
level caches. Since LAS/L keeps most actors on the same
NUMA node as the dictionary actor, this creates contention
in the L3 cache, which slows down the dictionary actor.
LAS/A, on the other hand, distributes actors to other NUMA
nodes as well, which avoids the contention in L3, such that
remote access overhead is compensated by lower contention.
RWS also avoids the contention problem and therefore the
difference between LAS/L and RWS decreases. In fact,
when increasing the percentage of write requests, we have
observed that RWS can even outperform LAS/L (not shown
due to limited space).

C. Chat Server

To evaluate both variants of LAS using a more realistic
scenario, we have implemented a chat server similar to [36]
that supports one-to-one and group chats. Each user (session)
is represented by an actor that holds the state for the
session in the server application. Chat groups are created
using the publish/subscribe based group communication in
CAF. To simplify the implementation the server does not
include network operations and the workload is generated
and consumed in the same process. However, the chat server
implements pre- and post-processing operations that would
normally be carried out in the context of communication
with remote clients, such as encryption.

Each user has a friend list, group list, and blocked list,
which represent the corresponding lists of users respectively.
Information about each session and a log of messages is
stored in an in-memory key-value storage controlled by a
database actor. In addition, each session actor stores its
information in a local cache controlled by a local cache actor.
When a session actor receives a message, it first decrypts the
message, uses the receiver user ID to find the reference to the
receiving actor, and forwards the message to that actor. The
message is also logged in both the local cache and the central
storage. When the receiver actor receives the message, it
first checks whether the sender is in its blocked list. If not,
it encrypts the message as if it was sent out to a remote
client. If a message is sent to a group, an actor representing
the group forwards the message to all subscribers, which
creates a one-to-many communication pattern.

The chat server is configured to run with 1 million
actors and 10000 groups. Each user has random number of



RWS LAS/L LAS/A10 3

10 2

10 1

100

101

102

103

104

105

106

La
te

nc
y(

m
s)

300

400

500

600

700

800

Th
ro

ug
hp

ut
(K

m
sg

/s
ec

)

Throughput

(a)

RWS LAS/L LAS/A10 3

10 2

10 1

100

101

102

103

104

105

106

La
te

nc
y(

m
s)

600

700

800

900

1000

Th
ro

ug
hp

ut
(K

m
sg

/s
ec

)

Throughput

(b)

Figure 3. Throughput and distribution of end-to-end message latency using different scheduling policies on (a) AMD Opteron and (b) Intel Xeon. Latencies
are quantified on the left Y-axis that a logarithmic scale (lower is better). Throughput is quantified on the 2nd Y-axis (Higher is better).

friends (max. 100), subscribes to a random number of groups
(max. 10), and blocks random number of users (max. 5).
Random numbers uniformly distributed and all session and
group actors are spawned before the experiment starts. To
simulate receiving messages from users, every second each
session actor uses a timer to send a message with a random
length up to 1024 bytes to a randomly chosen user or
group from its friend or group list. 5% of the messages
are sent to groups and the rest are direct messages. The
experiment drives each system to peak load. We measure the
overall throughput, along with the end-to-end latency of each
message from the moment the sender actor (on the server
side) generates the message until the moment the receiver
actor would be ready to send it to the remote client.

Figure 3 uses letter-value plots to show the distribution
of latencies using different scheduling policies on the AMD
and Intel machines. LAS/L has higher throughput and better
latency distribution than the other two policies on both AMD
and Intel machines. LAS/A has significant lower throughput
than both RWS and LAS/L and the latency distribution
shows a higher average latency with a long latency tail
that goes up to 1000 seconds on both machines. Profiling
indicates that the workload is dominated by deque lock
contention, similar to PUBSUB. This contention causes vari-
able and high latency numbers, and fairly low throughput,
because threads are relatively often blocked on a lock.

Hence, although LAS/A is performing fairly good in sim-
ple scenarios and benchmarks, lock contention significantly
affects its performance when the application scales and
number of actors increases. Therefore, the proposal in [26]
does not apply to large-scale actor-based applications. The
LAS/L policy, on the other hand, shows stable performance
improvements over RWS and reduces the latency.

VI. CONCLUSION

This paper present a study of the effectiveness of locality-
aware schedulers for actor runtime systems. Various charac-
teristics of the actor model and message passing frameworks
are investigated that can affect execution performance on
NUMA machines. In addition, the applicability of existing
work-stealing schedulers is discussed. We use these findings
to develop two variants of a novel locality-aware work steal-
ing scheduler (LAS) for the C++ Actor Framework (CAF)
that takes into account the distance between cores and
NUMA nodes. The performance of LAS/L and LAS/A is
compared with CAF’s default randomized victim scheduler.
Locality-aware work stealing shows comparable or better
performance in most cases. However, it is also demonstrated
that the effectiveness of locality-aware schedulers depends
on the workload. In particular, affinity-unblocking can cause
lock contention.

ACKNOWLEDGMENT

This work has been supported by the Natural Sciences
an Engineering Research Council of Canada (NSERC) and
Huawei Technologies.

REFERENCES

[1] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET
Scaling Paper,” IEEE Solid-State Circuits Society Newsletter,
vol. 12, no. 1, pp. 11–13, Winter 2007.

[2] Z. Majo and T. R. Gross, “Memory System Performance in
a NUMA Multicore Multiprocessor,” in Proc. 4th Ann. Int’l
Conf. Systems and Storage, 2011, pp. 12:1–12:10.

[3] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller,
“Memory Performance and Cache Coherency Effects on an
Intel Nehalem Multiprocessor System,” in Proc. 18th Int’l
Conf. Parallel Architectures and Compilation Techniques,
2009, pp. 261–270.



[4] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular
ACTOR Formalism for Artificial Intelligence,” in Advance
Papers of the Conf., vol. 3. Stanford Research Inst., 1973,
p. 235.

[5] C. Hewitt and H. G. Baker, “Actors and Continuous Function-
als,” Massachusetts Inst. of Technology, Tech. Rep., 1978.

[6] G. Agha, Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[7] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting
Actor Programming in C++,” Computer Languages, Systems
& Structures, vol. 45, pp. 105–131, April 2016.

[8] G. Agha, “Concurrent Object-oriented Programming,” Com-
mun. ACM, vol. 33, no. 9, pp. 125–141, Sep. 1990.

[9] J. De Koster, T. Van Cutsem, and W. De Meuter, “43 Years
of Actors: A Taxonomy of Actor Models and Their Key
Properties,” in Proc. 6th Int’l Workshop on Programming
Based on Actors, Agents, and Decentralized Control, 2016,
pp. 31–40.

[10] J. Armstrong, R. Virding, C. Wikström, and M. Williams,
“Concurrent Programming in ERLANG,” 1993.

[11] J. Bonér, “Introducing Akka - Simpler Scalability, Fault-
Tolerance, Concurrency & Remoting through Actors,” 2010,
http://jonasboner.com/introducing-akka.

[12] S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil,
“Deny Capabilities for Safe, Fast Actors,” in Proc. 5th Int’l
Workshop on Programming Based on Actors, Agents, and
Decentralized Control, 2015, pp. 1–12.

[13] R. D. Blumofe et al., Cilk: An Efficient Multithreaded Runtime
System. ACM, 1995, vol. 30, no. 8.

[14] A. Pop and A. Cohen, “OpenStream,” ACM Trans. Architec-
ture and Code Optimization, vol. 9, no. 4, pp. 1–25, 2013.

[15] OpenMP, “OpenMP Application Program Interface Version
4.0,” 2013.

[16] J. Yang and Q. He, “Scheduling Parallel Computations by
Work Stealing: A Survey,” Int’l J. Parallel Programming, pp.
1–25, 2017.

[17] R. D. Blumofe and C. E. Leiserson, “Scheduling Mul-
tithreaded Computations by Work Stealing,” J. the ACM
(JACM), vol. 46, no. 5, pp. 720–748, Sep. 1999.

[18] Z. Vrba, H. Espeland, P. Halvorsen, and C. Griwodz, “Limits
of Work-Stealing Scheduling,” in Job Scheduling Strategies
for Parallel Processing, 2009, pp. 280–299.

[19] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha, “Scalable Work Stealing,” in Proc. Conf.
High Performance Computing Networking, Storage and Anal-
ysis, 2009, pp. 53:1–53:11.

[20] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: a Scalable
Locality-aware Adaptive Work-stealing Scheduler,” in 2010
IEEE Int’l Symp. Parallel Distributed Processing (IPDPS 10),
2010, pp. 1–12.

[21] S. Min, C. Iancu, and K. Yelick, “Hierarchical Work Stealing
on Manycore Clusters,” in In 5th Conf. Partitioned Global
Address Space Programming Models, 2011.

[22] E. Francesquini, A. Goldman, and J. F. Mhaut, “A NUMA-
Aware Runtime Environment for the Actor Model,” in 2013
42nd Int’l Conf. on Parallel Processing, 2013, pp. 250–259.

[23] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel,
and J. F. Prins, “OpenMP Task Scheduling Strategies for
Multicore NUMA Systems,” The Int’l J. High Performance
Computing Applications, vol. 26, no. 2, pp. 110–124, 2012.

[24] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and
M. Prieto, “Survey of Scheduling Techniques for Addressing
Shared Resources in Multicore Processors,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, pp. 4:1–4:28, Dec. 2012.

[25] W. Suksompong, C. E. Leiserson, and T. B. Schardl, “On the
Efficiency of Localized Work Stealing,” Information Process-
ing Letters, vol. 116, no. 2, pp. 100–106, 2016.

[26] Z. Vrba, P. Halvorsen, and C. Griwodz, “A Simple Im-
provement of the Work-stealing Scheduling Algorithm,” in
Proc. Int’l Conf. Complex, Intelligent and Software Intensive
Systems, 2010, pp. 925–930.

[27] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The Data
Locality of Work Stealing,” in Proc. 12th Ann. ACM Symp.
Parallel Algorithms and Architectures, 2000, pp. 1–12.

[28] Q. Chen, M. Guo, and Z. Huang, “Adaptive Cache Aware
Bitier Work-Stealing in Multisocket Multicore Architectures,”
IEEE Trans. Parallel and Distributed Systems, vol. 24, no. 12,
pp. 2334–2343, 2013.

[29] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins,
“Scheduling Task Parallelism on Multi-socket Multicore Sys-
tems,” in Proc. 1st Int’l Workshop on Runtime and Operating
Systems for Supercomputers, 2011, pp. 49–56.

[30] L. L. Pilla et al., “A Hierarchical Approach for Load Balanc-
ing on Parallel Multi-core Systems,” in Proc. 41st Int’l Conf.
Parallel Processing, 2012, pp. 118–127.

[31] A. Drebes, K. Heydemann, N. Drach, A. Pop, and A. Co-
hen, “Topology-Aware and Dependence-Aware Scheduling
and Memory Allocation for Task-Parallel Languages,” ACM
Trans. Architecture and Code Optimization, vol. 11, no. 3,
pp. 1–25, Aug. 2014.

[32] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach,
“Scalable Task Parallelism for NUMA,” in Proc. Int’l Conf.
Parallel Architectures and Compilation (PACT 16), 2016.

[33] F. Broquedis et. al, “hwloc: A Generic Framework for Man-
aging Hardware Affinities in HPC Applications,” in 2010 18th
Euromicro Conf. on Parallel, Distributed and Network-based
Processing. IEEE, 2010, pp. 180–186.

[34] S. Aronis et al., “A Scalability Benchmark Suite for Er-
lang/OTP,” in Proc. 11th ACM SIGPLAN Workshop on Erlang
Workshop, 2012, pp. 33–42.

[35] S. M. Imam and V. Sarkar, “Savina - An Actor Benchmark
Suite: Enabling Empirical Evaluation of Actor Libraries,” in
Proc. 4th Int’l Workshop on Programming Based on Actors
Agents & Decentralized Control, 2014, pp. 67–80.

[36] Riot Games, “Chat Service Architecture: Servers,”
Sep. 2015, https://engineering.riotgames.com/news/
chat-service-architecture-servers.


