
Towards Adaptive Resource Allocation for Database
Workloads

Cong Guo and Martin Karsten

David R. Cheriton School of Computer Science, University of Waterloo

{c8guo,mkarsten}@uwaterloo.ca

ABSTRACT
Modern computer systems provide hardware resources that
allow database systems to execute a large number of tasks
in parallel. However, no software system is perfectly scal-
able, and allocating more resources does not necessarily re-
sult in better performance. For commensurate resource al-
location and increased efficiency, it is desirable to dynami-
cally allocate hardware resources according to workload de-
mands and conduct hardware consolidation. Given the com-
plexity of database systems and their workloads, it is chal-
lenging to design such an adaptive algorithm. This pa-
per addresses this problem using a simple feedback mech-
anism. The contributions of this work are twofold. First, an
application-agnostic performance metric based on hardware
performance counters is proposed to measure system perfor-
mance online. This fine-grained metric enables agile feed-
back even for long running analytical workloads. Second,
an allocation algorithm is presented that is designed based
on fuzzy control techniques. The controller does not need
a system model or prior training. Evaluation results show
that a good correlation exists between the system-level met-
ric and application-specific performance metrics. Further,
a database system with our controller can achieve perfor-
mance comparable to that obtained with manual tuning.

1. INTRODUCTION
Modern applications need to process large quantities of

data. Database management systems (DBMSs) play an im-
portant role in these data-intensive applications, handling a
large number of concurrent transactions and/or analytical
queries. Modern computer systems provide hardware re-
sources that enable database systems to execute these tasks
in parallel. However, no software system is perfectly scal-
able, and database systems are no exception. Allocating
more resources to a DBMS does not necessarily result in
better performance. Beyond a certain point, the marginal
performance improvement becomes very small or even neg-

ative. In a multi-tenancy scenario, a physical machine may
host multiple database servers; a cloud service provider may
provide data management services to multiple customers
(Database-as-a-Service). It is a waste to allocate more re-
sources if a database system has achieved optimal perfor-
mance. The resource utilization of the whole system can
be improved by letting the remaining resources be utilized
by other database systems or other applications. Moreover,
the frequency of idle CPU cores can be scaled down to re-
duce power consumption. Database systems and workloads
are highly complex and dynamic, so it is challenging to al-
locate hardware resources to a DBMS to achieve optimal
performance. The manual tuning process is usually time-
consuming and skills-intensive for system administrators.
More importantly, a static configuration hardly meets the
time-varying requirements of DBMSs. This work focuses on
how to allocate appropriate hardware resources to a DBMS
automatically and dynamically.

We use CPU cores as a study case for adaptive resource
allocation. More CPU cores allow database systems to run
more threads in parallel. Database systems benefit from the
consequent increase of parallelism. However, the increase of
parallelism is something of a double-edged sword. Too many
simultaneously executing threads may cause contention for
resources like cache, memory bandwidth, and locks. For
typical transactional and analytical workloads, system per-
formance initially increases, if the number of cores increases,
but starts to level off beyond a certain point.

Due to the complex nature of database systems, feedback
control is used to conduct adaptive resource allocation in our
approach. The control loop consists of two components: one
measures the system performance online and the other one
determines the number of CPU cores based on the real-time
feedback and control rules. This work makes two contribu-
tions to constructing the two components of the resource
management system.

First, an application-agnostic fine-grained metric named
user-level instructions per time (UIPT) is proposed to mea-
sure workload performance online. The metric is based on
hardware performance counters and provides accurate and
real-time feedback to the control loop. Application-specific
performance metrics like throughput and response time can
be calculated or inferred indirectly from UIPT. This metric
works well for both OLTP and OLAP workloads. In par-
ticular, UIPT enables performance measurement on the fly
for analytical queries with long running times. UIPT is not
restricted to database systems. It is an application-agnostic

1

metric that allows the implementation of a resource man-
agement system transparent to applications.

Second, the allocation algorithm introduces fuzzy control
that incorporates both human knowledge and uncertainty.
Control theory provides principles to the design of feedback
loops to handle changes, uncertainties, and disturbances in
database systems. Fuzzy control simplifies the controller
design because no specific system model is required. The
heuristics are expressed through linguistic rules. The sim-
plicity of the algorithm allows agile responses to changes of
workloads and the operating environment. Classical con-
trollers are typically used for regulatory control, that is, to
keep the performance metric at a desired reference value.
The control objective for our fuzzy controller is optimization
instead of regulation. A reference input is not necessary in
fuzzy control, so this technique is suitable for this kind of
optimization problem.

Experiments are conducted to evaluate the UIPT metric
and the design of the fuzzy controller. It turns out that the
metric is a good indicator of system performance for typi-
cal database workloads and some other parallel programs.
The database system under control of our algorithm quickly
converges to a steady state with consistent workloads and
adapts to changeable workloads. The performance is close
to the optimal performance with a static number of cores.

The rest of the paper is organized as follows. Section 2
describes the characteristics of database workloads and the
background for the design of the controller. Section 3 intro-
duces the UIPT metric used to measure the real-time per-
formance of the target system. The details of the controller
architecture are illustrated in Section 4. Section 5 presents
the results of our evaluation experiments regarding UIPT
and the controller design. An overview of related work is
given in Section 6. The paper is concluded and future work
is briefly discussed in Section 7.

2. PROBLEM BACKGROUND
This paper studies a situation in which a single database

server runs on a multi-core machine. Available CPU cores
determine how many threads run in parallel on the physical
machine. For a stable OLTP workload, increasing the num-
ber of CPU cores initially increases the throughput of the
system, but if too many cores are allocated the throughput
levels off. Similarly, for an OLAP workload, the execution
time initially decreases, but starts to increase at a certain
point. This trend is verified by the experimental results with
both OLTP and OLAP workloads. Figures 3 and 4 show
how system performance changes with the number of cores
allocated to a database system (See more details in Section
5.1). Furthermore, the workload of a database system may
not be stable. Therefore, the management system should
be able to identify any changes in the workload, and then
change the resource allocation accordingly. Our resource
management system aims to allocate a proper number of
CPU cores adaptive to the demand of workloads. The de-
sign contains two components that cover the two problems
respectively. The inner fuzzy controller looks for the opti-
mal point for the present workload; the outer self-adaptor
checks for workload changes and then adjusts the inner con-
troller. The architecture of the whole controller is shown in
Figure 1. This section introduces the rationale behind the
control loop. A management system for other more-complex
situations can be constructed based on this work.

Figure 1: Architecture of the Controller

Our controller design is based on the assumption that
the performance curve of database workloads is a concave
curve. Take the throughput of OLTP workloads as an exam-
ple. The throughput function f(x) of the number of cores x
can be approximated by a concave-downward curve whose
derivative f ′(x) decreases with the increment of cores. The
problem is to find the stationary point of f , which is the so-
lution to f ′(x) = 0, also known as the root of the derivative.
As the derivative monotonically decreases, a simple linear
search strategy can be used to find the stationary point.
The search strategy is to increase x when f ′(x) > 0 while
decreasing x when f ′(x) < 0. Instead of modelling the un-
known f(x), our approach uses ∆f

∆x
to estimate whether f ′(x)

is positive or negative. In the search, if adding cores by ∆x
causes ∆f to become negative, the number of cores must be
decreased by ∆x; otherwise more cores ought to be added.
The search from the opposite direction is similar. Because
the number of cores is discrete, the exact stationary point
may not be reached. The searching procedure will stop at
the integer point closest to the stationary point. The search
step (∆x) can adapt to the value of the derivative, i.e., ∆x
can be changed to a larger value when |∆f | is large, because
a large |∆f | implies that the system is far from the station-
ary point. It should be noted, though, that the throughput
curve of a complex database system is not a perfectly smooth
concave curve like that of a simple quadratic function. For
example, the throughput may not decline dramatically when
the number of cores is larger than the stationary point, but
fluctuate with a downward trend. The controller assumes
that the performance curve is essentially concave, but also
takes possible anomalies into consideration.

Feedback control is suitable for this kind of optimization
problem. This problem could also be solved using other opti-
mization techniques. The advantage of fuzzy control is that
an accurate model of the database system is not required.
Fuzzy control uses qualitative descriptions of target systems
and controller actions, so it is easier to incorporate human
expert knowledge on resource management in the form of
fuzzy rules. Fuzzy control handles the uncertainty caused
by measurement noise and system disturbances, in a natu-
ral way via fuzzy sets. Moreover, there is no specific quality
of service objective in the core allocation problem. Thus,
there is no reference input for the classical proportional-
integral-derivative controller. In contrast, a reference input
is not necessary in fuzzy control [5].

The feedback loop operates in discrete time. As shown
in Figure 1, the fuzzy controller has two inputs: the change

2

of control input (du(k)) and the change of measured output
(dy(k)) between the current and previous intervals. The
output of the target system is measured in each interval,
and the control input to the target system in the next in-
terval (du(k+ 1)) is determined based on previous measure-
ments. In our case the control input is the number of cores,
and the output of the target system is the low-level system
throughput UIPT. Fuzzy rules are expressed using linguistic
variables in ”IF-THEN” form. The qualitative rules do not
contain numeric values. A fuzzification process converts nu-
meric inputs into fuzzy sets that quantify the rules. Fuzzy
sets are associated with membership functions that quantify
the certainty that input values may be classified as linguistic
values. The inference mechanism determines which rules are
relevant and to what extent, and draws a conclusion using
the rules. Finally, a defuzzification method aggregates the
outcomes of all implied fuzzy rules and inversely translates
the resulting fuzzy set to a single numeric value.

The inner controller is designed to find the optimal re-
source allocation when assuming a stable workload. The
performance curve and its corresponding optimal point may
shift when the workload changes. The workload changes
are unpredictable in many real world applications. It is in-
feasible to include all environmental factors into a compli-
cated control system. An alternative way is to restart the
inner controller and find the new optimal point. Therefore,
a self-adaptor is used to detect a change in the workload
and restart the fuzzy controller. After the system reaches
a steady state for a certain time period, the self-adaptor
changes the allocation to probe whether the workload has
changed. Prior knowledge about workload characteristics
can be combined into this component to adjust the output
or parameters of the inner controller.

3. PERFORMANCE METRIC
Real-time performance measurement is necessary for agile

feedback control. Different application systems may adopt
different performance metrics. For example, the transac-
tions per second (TPS) metric is usually used to judge the
performance of OLTP workloads executed by a DBMS. For
OLAP workloads, the performance metric of interest is typ-
ically response time instead of throughput. However, ana-
lytical queries can have widely varying response times, from
seconds to hours. Therefore, TPS cannot reflect the real-
time progress of analytic workloads, and ad-hoc averages
of response times do not make much sense either. Neither
metric is thus suitable for online feedback measurement of
OLAP workloads.

This work proposes user-level instructions per time (UIPT)
as a real-time indicator of system performance. UIPT is cal-
culated by dividing the number of user-level retired instruc-
tions by the measurement interval. UIPT represents low-
level throughput itself, but it can also reflect the progress
of workloads. Hence, UIPT can be used to indirectly esti-
mate other performance metrics for both OLTP and OLAP
workloads.

Most modern microprocessors provide hardware perfor-
mance counters that can be used to monitor performance in
real time. The number of retired instructions is measured
during runtime. All threads of the target system are moni-
tored, and counts are aggregated. With a highly concurrent
workload, threads in a database system might wait for locks,
but blocking waits typically happen in the operating system

kernel. These operations do not reflect workload progress
in a database system. According to profiling results in our
testbed, most of the instructions retired at the kernel level
belong to this category. Therefore, only user-level instruc-
tions are counted in UIPT, whereas kernel-level instructions
are excluded. In UIPT, the number of user-level instructions
is used to estimate the number of productive instructions.
In certain (but hopefully rare) cases, if a considerable num-
ber of instructions are retired in user-level synchronization
routines, thus not productive, UIPT cannot reflect the ap-
plication’s progress accurately.

Instructions per cycle (IPC) is a traditional metric for low-
level system throughput. However, while IPC can be used
to measure some form of resource utilization, it is not mean-
ingful as a progress metric on modern multi-core platforms.
CPU cycles do not represent the absolute length of time,
and thus IPC does not reflect system throughput accurately.
First, CPU frequencies may (independently for individual
cores) change while a program is executed. Second, hard-
ware performance counters do not necessarily count cycles
when cores are idle, thus potentially overstating progress.
In addition, for a multi-core machine, it is not clear whether
the total or average number of cycles across cores should
be used in the calculation. The Linux perf tool uses the
total number of cycles to calculate IPC when it measures
multiple cores. In our experiments, the correlation between
IPC from the perf tool and high-level performance metrics is
poor. Previous studies in the literature also show that the
classical IPC metric may inaccurately reflect performance
and lead to incorrect or misleading conclusions for multi-
threaded programs on multi-processor systems [1]. Finally,
as discussed above, not all the retired instructions should be
counted when assessing application-level progress. In con-
trast, UIPT is calculated using wall-clock time instead of
CPU cycles, and the the above issues are avoided. We con-
jecture that blocking time does not affect the feasibility of
UIPT, but for the sake of clarity, this paper focuses on CPU-
bound workloads. Experimental results in Section 5.1 show
that UIPT performs better than IPC with respect to corre-
lation with high-level performance metrics.

Our algorithm continually measures UIPT values and com-
pares the relative changes between adjacent time intervals.
This fine-grained metric allows agile and accurate reactions.
In addition, UIPT is a generic metric that applies to pro-
grams other than database systems. With such a low-level
metric, the controller can be implemented without modi-
fying the database system or even used to schedule various
software systems in the operating system or hypervisor. The
correlation between UIPT and high-level performance met-
rics like throughput of transactions and execution time is
studied in Section 5.1. The results show a strong correla-
tion, thus UIPT is used to estimate high-level performance
metrics.

4. CONTROLLER DESIGN
This section introduces a proof-of-concept design for the

resource management system. The control system consists
of the outer self-adaptor and the inner controller. When the
control system initializes, the self-adaptor first detects the
position of the system at the curve via a probing allocation.
Next, the inner controller based on fuzzy control searches
for the number of cores that is optimal for the target sys-
tem. After the inner controller reaches the steady state for a

3

Algorithm 1 Control(pid, du)

y: measured UIPT
prey: previous measured UIPT
du: previous change of cores
dy: relative change of UIPT
dC: change of cores
interval: measurement/control interval
period: period that the controller keeps stable
accum: accumulated change of UIPT during the period
probe: probe flag
decr threshold: threshold deciding whether to reduce cores
incr threshold: threshold deciding whether to add cores

1: y ←Measure(pid, interval)
2: dy ← (y − prey)/prey
3: dC ← Fuzzy(du, dy)
4: if du = 0 then
5: accum← accum ∗ (1 + dy)
6: if period is up then
7: if accum < decr threshold then
8: dC ← −1
9: else

10: dC ← +1
11: probe← True
12: end if
13: accum← 1
14: end if
15: else
16: if probe then
17: if dy < incr threshold then
18: dC ← −1
19: end if
20: else
21: if du < 0 AND dC = 0 then
22: dC ← −1
23: end if
24: end if
25: end if
26: return dC

window of time, the self-adaptor performs another probing
allocation to check whether the workload has changed. The
algorithm details are illustrated in Algorithm 1 and 2 and
explained in the following sections.

4.1 Inner Fuzzy Controller
The basic components of the inner fuzzy controller are

shown in Figure 1. As introduced in Section 2, linguistic
variables and fuzzy rules are central to fuzzy control. Three
linguistic variables are used to describe two discrete inputs
and one output of the inner controller. change-in-cores de-
scribes how the number of cores changes in the current in-
terval (refer to du(k) in Figure 1), and it takes on the two
values: decrease and increase, no matter how many cores
decrease or increase. change-in-throughput, as the name
implies, is the relative change of UIPT between the cur-
rent and previous intervals (dy(k)). This variable’s value
should also be ”decrease” or ”increase”. However, in order
to describe to what extent the throughput changes, this vari-
able employs four values: decrease, decrease large, increase,
and increase large. next-change-in-cores is the output to
the target database system, i.e., du(k + 1). Like change-in-
throughput, it also has four values. The actual change in

Algorithm 2 Fuzzy(du, dy)

FS: consequents of control rules
PS: certainty of consequents
gdu: gain factor for du
gdy: gain factor for dy
gdC: gain factor for dC

1: Fuzzification(du*gdu, dy*gdy, FS, PS)
2: dC ← AV G(FS, PS)
3: return dC*gdC

cores may be zero as a result of multiple rules.
Table 1 shows the ”IF-THEN” form fuzzy rules applied

in our controller. The first four fuzzy rules are basic rules
that search for the optimal point in a curve. They cover the
four situations described in the search procedure in Section
2. The last four rules just enlarge the search step ∆ when
change-in-throughput is large and the system is far from
the optimal point. Sometimes the increment of throughput
may be very small when one additional core is allocated,
but actually the system has not reached the optimal state,
and adding more cores could bring obvious improvement of
throughput. A large step in Rule 5 may bypass this phase.
The probing allocation of the self-adaptor can also solve this
problem.

Membership functions are used to quantify all three lin-
guistic variables. Commonly used membership functions
include singleton, triangular, gaussian, sigmoidal, etc. As
shown in Figure 2, triangular membership functions are used
in our design. To get rid of the impact of measurement noise
and system disturbances, uncertainty is introduced to de-
scribe to what extent the change of throughput is caused by
the change of cores. The membership functions characterize
this certainty/uncertainty. For example, in Figure 2(b), if
dy = 0.5 then µincrease(0.5) = 0.75 and µdecrease(0.5) =
0.25, so the controller is more certain that the through-
put increases. In Figure 2(a), when the actual change-
in-cores is 0, it is considered as both ”increase” and ”de-
crease”. After getting the certainty of each premise term in
a rule via the membership functions, the minimum function
is used to calculate the certainty of the premise of a rule, i.e.,
µpremise = min(µchange−in−cores, µchange−in−throughput).

The input values to the membership functions are not the
readings from the system. All the input variables are nor-
malized before the membership functions are applied. The
measured values are multiplied by normalizing factors called
gains. There are three gains in our controller, for du, dy and
C, respectively. Here C is the notation for next-change-in-
cores, i.e., du(k + 1) in Figure 1. The gains are denoted by
gdu, gdy and gC , and have a significant impact on the system
performance. For example, gdy used in our experiments is
10, and change-in-throughput is one hundred percent con-
sidered as ”increase large” if the measured change is larger
than 20% (see Figure 2(b)). If gdy is 20, the threshold would
be 10%, and the whole system will be more sensitive to
change-in-throughput. Besides the three normalizing gains,
the control interval is also an important parameter. With a
shorter control interval, the system responds more quickly,
but the system may become more fluctuating.

The final output of next-change-in-cores is the combi-
nation of the consequents of all the involved rules. The
weighted average method, i.e., the AVG function in Algo-

4

Table 1: Fuzzy Rules

Rule
IF THEN

change-in-cores (du) change-in-throughput (dy) next-change-in-cores (dC)
1 increase increase increase
2 increase decrease decrease
3 decrease decrease increase
4 decrease increase decrease
5 increase increase large increase large
6 increase decrease large decrease large
7 decrease decrease large increase large
8 decrease increase large decrease large

(a) change-in-cores (b) change-in-throughput (c) next-change-in-cores

Figure 2: Membership Functions

rithm 2 is used for defuzzification. The equation to calculate
the final output value is

u∗ =

∑
µC(u) · u∑
µC(u)

(1)

where u is the center value of each membership function in
Figure 2(c) (±1,±2), and µC(u) is the respective certainty
of that consequent. The weighted average method is only
valid for symmetrical output membership functions.

A target system with this controller is stable by defini-
tion. If the workload does not change, the controller will
converge at the optimal point as explained in the problem
formulation. With a bounded input, i.e., a specific number
of CPU cores, the output of the system is bounded. The
experimental results in Section 5 also verify this point.

4.2 Self-Adaptor
In database systems, when the workload changes, the per-

formance curve also shifts. Our design takes workload chang-
es into consideration. Once the simple controller introduced
above converges to a steady state, it cannot adapt to such
changes. Our strategy is to keep the inner controller sim-
ple and stable, but using an outer self-adaptor to alter the
inner controller in response to the workload changes. The
outer self-adapter has two features in our design, monitoring
workload changes and adjusting the parameters or output of
the inner controller. In the current design, the self-adaptor
just uses a probing allocation to detect whether the per-
formance curve has shifted. The automatic adjustment of
parameters such as the control interval and three gains is our
future work. We currently set the parameters based on the
knowledge about how UIPT changes with a fixed number of
cores. It is not difficult to find a usable set of parameters,

and the same parameters work well in the experiments with
both TPC-H and TPC-E workloads.

The inputs to the self-adaptor include change-in-cores and
change-in-throughput during the current control interval. The
output is the adjusted value of next-change-in-cores (see Fig-
ure 1). The self-adaptor maintains status information about
the inner controller and the target system. When the self-
adaptor finds that the inner controller has converged for a
window of time, it will start another probing allocation to
check whether the workload has changed. As shown in Al-
gorithm 1, if the accumulated change of UIPT during the
window is less than a decr threshold, the self-adaptor re-
duces one core. Otherwise, it tries adding one core, and if
the UIPT does not increase more than an incr threshold,
this additional core will be reduced.

It is easy for the self-adaptor to find out whether the work-
load is declining. The UIPT decreases dramatically no mat-
ter how the number of cores is adjusted. However, when the
cores allocated are not sufficient, the UIPT will not increase
even though the workload increases. Hence, when the UIPT
decreases dramatically, the self-adaptor reduces cores. Oth-
erwise, it tries adding one core to the database server. If
the UIPT increases, it means that the workload increases,
so the inner fuzzy controller starts searching for the new op-
timal point. If the UIPT does not change obviously, or even
decreases, the inner controller just takes back the trial allo-
cation and returns to the original status. Moreover, there
may not be an outstanding optimal point, especially taking
into account the discrete characteristic of CPU cores. The
database system may have similar performance with several
different numbers of cores. The inner controller may con-
verge to a sub-optimal point and allocate more cores than
necessary. To improve the system efficiency, i.e., to use fewer

5

cores to get the same performance, the self-adaptor keeps re-
ducing cores if the change-in-throughput is very small.

5. EXPERIMENTAL EVALUATION
This section evaluates UIPT as a proxy metric for applicat-

ion-level performance and the design of the controller using
typical database workloads. We focus on the CPU-bound
scenarios in the evaluation. The testbed is a multi-core
server with 4 AMD OpteronTM 6274 processors (4x16 cores)
and 64 GB memory. Experiments are run with 2 processors
dedicated to the experimental system, and 2 processors used
for workload generation. The operating system is Ubuntu
Server 14.04 with kernel 3.2.0.

All the experiments are conducted in an exclusive envi-
ronment. Linux control groups (CGroups) are used to iso-
late and control the hardware resources. We do not assign
queries to cores explicitly in the experiments. The cpuset
subsystem of CGroups specifies the cores that the database
server can use. CGroups modifies only the cpu allowed field
in each thread structure, and leaves thread migration to
the system scheduler. When the system scheduler schedules
threads, it always chooses a CPU core that is allowed, re-
gardless of whether the thread is created or resumed. The
additional cost of this functionality is very small. Moreover,
since all the data is stored in main memory and working
sets of workloads considerably exceed the capacity of on-chip
caches, the data locality does not have an obvious impact on
the system performance in our experiments, either. To sum
up, the control cost in our experiments is not significant.

The number of user-level instructions is measured via the
Linux perf tool. The database server used in all the exper-
iments is MariaDB-10.0.111. Most of the system variables
keep their default values except that the size of the buffer
pool is set to 20 GB, and innodb flush log at trx commit
is set to 0. The buffer pool size is larger than the size of
tables and indexes, and a warm-up is performed before the
experiments, so that all workloads used in the evaluation
are CPU-bound.

5.1 UIPT Evaluation
UIPT reflects the progress of programs and can be used to

estimate performance changes of systems. This section eval-
uates the correlation between UIPT and application-level
performance metrics with varying numbers of CPU cores.
Results show that UIPT is a good proxy metric for various
systems and workloads.

UIPT provides a solution for real-time feedback measure-
ment of OLAP workloads. The correlation between execu-
tion time and UIPT is studied for analytical queries using
a TPC-H-based workload [13]. The database size is 16 GB.
TPC-H contains 22 queries of a business decision support
system. These queries that process large volumes of data
are usually time-consuming. Running all these queries se-
rially on our testbed takes about 2498 seconds on average.
We construct a synthetic workload of 20 concurrent clients.
Each client submits all 22 queries to the database server se-
rially, but in a different order. The database server employs
20 connection threads to process the queries from each client
respectively. The same workload is executed repeatedly with
the number of cores being increased from 2 to 32.

1https://mariadb.org/

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 2 8 14 20 26 32
2

4

6

8

10

12

14

16

18

20

22

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Number of Cores

Time
UIPT

Figure 3: UIPT for TPC-H

 200

 300

 400

 500

 600

 700

 800

 900

 2 8 14 20 26 32
2

3

4

5

6

7

8

9

T
h
ro

u
g
h
p
u
t
(T

P
S

)

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Number of Cores

TPS
UIPT

Figure 4: UIPT for TPC-E

The concurrent client sessions do not complete at the same
time. Therefore, at the end of the experiments, some cores
become idle while some are still busy, so the completion time
of the last query does not reflect the overall time cost for
the whole batch of queries. Instead, an average value is used
as an estimation of the execution time in this experiment.
Assume the number of cores is c. The estimation is the
average of the execution time of the last c client sessions.

The Pearson product-moment correlation coefficient used
in this study is +1 in the case of a perfect direct linear
relationship, −1 in the case of a perfect inverse linear re-
lationship. The execution time and UIPT with different
numbers of cores shows a clearly inverse correlation in Fig-
ure 3. When the UIPT becomes higher, the final execution
time is shorter. The correlation coefficient between time and
UIPT is −0.9845 in this experiment. However, as discussed
in Section 4, the relative change of UIPT compared to the
last measurement is used in the controller. The correlation
between time change and UIPT change with an increasing
number of cores is −0.9783.

In a second experiment, the correlation between UIPT and
transaction-level throughput is measured for OLTP work-
loads. The database and workload of TPC-E [12] is used.
The total size of the database is about 8 GB. Transactions
are generated using the TPC tool EGen [12]. In contrast
to the standard benchmark, all types of transactions are

6

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 2 8 14 20 26 32
4

5

6

7

8

9

10

11

12

13
T

h
ro

u
g
h
p
u
t
(O

P
S

)

U
IP

T
 (

1
0
^8

 i
n
s
tr

/s
e
c
)

Number of Cores

OPS
UIPT

Figure 5: UIPT for Memcached

counted in our experiments. We use 100 user threads in this
experiment. The same workload is repeated as the num-
ber of cores is varied from 2 to 32. The experiment time is
300 seconds. TPS and UIPT are measured. In the OLTP
case, the variability of TPS results in repeated experiments
with the same number of cores cannot be ignored. The rela-
tive change (increasing or decreasing) of TPS with different
number of cores might change (see Figure 11). However,
the correlation between TPS and UIPT is always close to
+1 in spite of the variability the system performance. The
results of one group of experiments are shown in Figure 4
as an example. It can be seen that the two metrics match
very well, and the correlation is 0.9868. The correlation be-
tween the relative change of TPS and that of UIPT is 0.9878.
The direct linear relationship is strong, thus the throughput
of transactional workloads can be estimated using UIPT as
well.

UIPT is an application-agnostic metric that can also be
used for tuning of other software systems. Memcached is
a distributed memory caching system for small chunks of
arbitrary data. It is a key-value store whose main opera-
tions are get and set. We study the correlation between
UIPT and the throughput of the memcached server (oper-
ations per second). A load generation and benchmark tool
for memcached servers called memaslap is used in the ex-
periment. The number of cores is varied from 2 to 32. The
experiment time is 300 seconds. The ratio of get to set is 9:1,
and the concurrency level is set to 128. Again UIPT shows
a very strong positive correlation with the application-level
throughput operations per second (OPS in Figure 5). The
correlation coefficient is 0.9958. The correlation between
relative changes of OPS and UIPT is 0.9527.

We expand the evaluation to various types of parallel pro-
grams. The PARSEC benchmark suite consists of 13 pro-
grams from a wide range of areas, such as computer vision,
video encoding, financial analytics, animation physics and
image processing [3]. In contrast to a previous study on the
scalability of PARSEC benchmarks[6], our experiments use
a fixed number of threads with varying numbers of cores.
All programs are executed with 256 threads, except that
blackscholes runs with 64 threads. The native input data
set for execution on real machines is used in the experi-
ments. The number of cores is varied from 2 to 32. The
correlation results are shown in Table 2. In most cases the

Table 2: Parsec Results

Correlation Correlation
Program between between

Time and UIPT Relative Changes
blackscholes -0.9273 -0.9946
bodytrack -0.9531 -0.9939

canneal -0.9764 -0.9886
dedup -0.9944 -0.9987
facesim -0.9927 -0.9919
ferret -0.8073 -0.9931

fluidanimate -0.8994 -0.9907
freqmine -0.8425 -0.9873
raytrace -0.9664 -0.9979

streamcluster -0.9604 -0.9875
swaptions -0.9945 -0.9910

vips -0.8635 -0.9911
x264 -0.8924 -0.9891

negative correlation between time and UIPT is very clear2,
and the correlation between relative changes of the two met-
rics is very obvious, too. Therefore, tuning of these programs
could utilize the relative change of UIPT.

The blackscholes benchmark uses a thread barrier to make
sure that worker threads do not start working until all the
threads are created. The last thread enters the barrier and
unblocks other threads. The number of instructions retired
in this synchronization operation is proportional to the num-
ber of threads. When the number of threads is 256, the num-
ber of non-productive user-level instructions is so large that
UIPT does not reflect the system performance accurately.

As a comparison, we also measure the correlation between
IPC and other performance metrics for the above exper-
iments. In TPC-H-based experiments, if the aggregated
number of cycles measured using the perf tool is used for
the calculation directly, IPC keeps decreasing as the num-
ber of cores increases no matter how the execution time
changes. The correlation between IPC and the execution
time is only 0.3301. If the average number of cycles across
cores is used, the correlation is -0.8131, but still worse than
UIPT. In TPC-E-based experiments, if the aggregated num-
ber of cycles is used, IPC also shows a descending trend
in general, and the correlation between IPC and TPS is
-0.5981 which should be positive since both of them repre-
sent throughput. If the average number of cycles is used,
the correlation is 0.8336 which is much worse than UIPT.
Obviously, for typical database workloads, IPC is not a very
good candidate for online performance measurement.

5.2 Adaptive CPU Core Allocation
This section evaluates how the control system works with

OLAP and OLTP workloads. In all the experiments, the
database system with our controller performs as well as that
using the best static configuration. The average number of
CPU cores used is also close to the optimal value in experi-
ments with static allocation. The simple controller does not
require a complex model or manual tuning to achieve these
results.

2If we consider the experiments with 4 to 32 cores only, for
all the programs, the correlation between time and UIPT is
stronger than -0.90.

7

0

5

10

15

20

25

30

35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Execution Time

(1) Throughput

controller
baseline (16)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

N
u
m

b
e
r

o
f
C

o
re

s

Execution Time

(2) Core Count

controller
baseline (16)

Figure 6: TPC-H: Start from 8

5.2.1 OLAP Workload
The database system and TPC-H workload used in Sec-

tion 5.1 is used to evaluate how the controller works with
OLAP workloads. Prior experiments with different num-
bers of cores show that, in the given testbed, the optimal
performance of this workload is obtained with 16 cores –
presumably because of NUMA effects when utilizing more
than one socket. Using our controller, the performance of
the database system is close to that optimal performance.
Figures 6 and 7 show the execution time of each experiment
and how the controller works during the execution. The con-
trol interval is 5 seconds. All threads of the database server
are automatically included in the monitoring by hardware
performance counters. The baseline in the two figures shows
how the throughput changes when the same workload is ex-
ecuted with 16 cores.

Figure 6 shows an experiment with 8 CPU cores allocated
to the database server at the beginning. The fuzzy controller
starts the search with fewer cores than the optimal value.
The execution time is 7730 seconds, only 2.7% longer than
the baseline, and the average number of cores used is 15.07.
In Figure 7, the number of cores allocated to the database
server is 20 initially. The controller starts with more cores
than the optimal value. The execution time is 7588 seconds,
that is, 0.8% longer than the baseline, and the average num-
ber of cores is 15.83. In repeated experiments, the execution
time with our controller is 1% to 4% longer than the average
optimal time. The controller converges quickly to a steady
state in all the experiments. Without any prior knowledge
about the optimal number of cores, the inner controller can
find the local optimal point no matter what the initial state
is. It can be seen from the curves that the throughput has
small fluctuations even with a fixed number of cores, but the
outer self-adaptor makes the system catch the fluctuations
very well.

Figure 8 shows how the controller adapts to dynamic work-
loads in a designed experiment. There are three phases
in this experiment. The workload is changed from heavy
to light and back to heavy. The heavy workload contains
20 concurrent clients, while the light workload has only 5
clients. The vertical dash lines indicate when the workload
changes. Initially 8 cores are allocated to the database sys-
tem. The changes of UIPT and cores are plotted in the
figure. At the beginning, the number of cores increases

0

5

10

15

20

25

30

35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Execution Time

(1) Throughput

controller
baseline (16)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

N
u
m

b
e
r

o
f
C

o
re

s

Execution Time

(2) Core Count

controller
baseline (16)

Figure 7: TPC-H: Start from 20

0

5

10

15

20

25

30

35

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Execution Time

(1) Throughput

0

4

8

12

16

20

24

28

32

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
u
m

b
e
r

o
f
C

o
re

s

Execution Time

(2) Core Count

Figure 8: Changing Workloads

quickly, and so does the UIPT. The whole system reaches
a steady state. When the workload switches from heavy
to light, the number of cores drops and the system finds a
different optimal point. When the workload changes back
to the heavy one, the number of cores recovers to a higher
level because more computing resources are required. The
changes of UIPT and cores show that our system, partic-
ularly the self-adaptor, can identify workload changes and
make adjustments accordingly. The total execution time of
this experiment is only 3% more than the sum of optimal
execution times of three workloads with best static configu-
rations.

5.2.2 OLTP Workload
The TPC-E workload and configuration used in Section 5.1

is used in the evaluation of the controller for transactional
workloads. As in the OLAP experiments, two groups of
experiments starting with 8 and 20 cores are conducted re-
spectively. The execution time is 300 seconds in all the
experiments. The control interval is still 5 seconds. The
measured UIPT values and the responses of the control sys-
tem in two experiments are shown in Figure 9 and Figure 10.
The baseline in the two figures shows the throughput of the
same workload executed with 16 cores. The throughput of
the baseline is 873 TPS. The throughput of the experiment
in Figure 9 is 863 TPS, and the average number of cores used

8

0

2

4

6

8

10

12

 0 50 100 150 200 250 300

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Execution Time

(1) Throughput

controller
baseline (16)

0

4

8

12

16

20

24

28

32

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f
C

o
re

s

Execution Time

(2) Core Count

controller
baseline (16)

Figure 9: TPC-E: Start from 8

0

2

4

6

8

10

12

 0 50 100 150 200 250 300

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Execution Time

(1) Throughput

controller
baseline (16)

0

4

8

12

16

20

24

28

32

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f
C

o
re

s

Execution Time

(2) Core Count

controller
baseline (16)

Figure 10: TPC-E: Start from 20

is 13.85. The throughput of the experiment in Figure 10 is
886 TPS, and the average number of cores used is 13.49.
The UIPT measurement shows that at the beginning of the
execution the throughput is high and stable. Our controller
quickly converges to the optimal point no matter what the
initial allocation is. However, even when the configuration of
the workload does not change, large throughput fluctuations
occur at the late stage. The baseline experiment shows that
the fluctuation is not caused by the controller. The results
confirm that the fluctuation does not prevent the controller
from achieving good performance.

We do not directly compare the average results of dynamic
and static allocation since the variability of TPS in repeated
experiments is large. Instead, the minimum, median and
maximum TPS values in 20 repeated experiments with dif-
ferent configurations are presented in Figure 11. Without
too much prior knowledge, the controller can achieve per-
formance comparable to that obtained with best static con-
figurations.

A three-phase experiment is used to test how the con-
troller works with changes of transactional workloads. The
workload is changed from heavy to light and back to heavy,
and each phase is 300 seconds. The heavy work load has
100 concurrent user threads, while the light workload has
only 4 users. Initially 8 cores are allocated to the database
system. The changes of UIPT and cores in Figure 12 show

 300

 400

 500

 600

 700

 800

 900

 1000

10 12 14 16 18 control-8 control-20

T
P

S

Number of Cores

Figure 11: TPC-E Results Comparison

0

2

4

6

8

10

12

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

U
IP

T
 (

1
0
^9

 i
n
s
tr

/s
e
c
)

Execution Time

(1) Throughput

controller
baseline

0

4

8

12

16

20

24

28

32

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

N
u
m

b
e
r

o
f
C

o
re

s

Execution Time

(2) Core Count

controller

Figure 12: Changing Workloads

how the controller performs. The vertical dash lines indicate
when the workload changes. The throughput fluctuation
still takes place for the heavy workload. As a comparison,
we plot a baseline result with fixed numbers of cores. The
heavy workload is executed with 16 cores at the first and last
phase, while 7 cores are allocated to the light workload. The
inner controller converges within each phase while the self-
adaptor keeps watching and enables the controller to react
quickly to workload changes. The number of transactions
completed at each phase reaches 99% of the corresponding
baseline result. The TPS of the second heavy workload is
not as good as that of the first heavy workload even though
they have the same configuration. The baseline in Figure 12
confirms that the degradation is not caused by the controller.

6. RELATED WORK
Hardware performance counters provide valuable informa-

tion about system status. Previous work has shown how
hardware performance monitoring can be used in a fine-
grained feedback loop for dynamic optimizations. Hard-
ware performance events are used to determine cache par-
titioning and detect cache pollution and sharing patterns
among threads in a multicore-aware operating system [2]. A
low-level throughput metric similar to UIPT, named micro-
operations/microsecond, is proposed in [9]. Automatic CPU

9

frequency scaling for Message Passing Interface (MPI) pro-
grams is done based on this indicator of CPU load. Whether
this metric can be used in other scenarios is not studied in
that paper. CPU utilization is used as the feedback metric
in adaptive resource provisioning for virtual machines [7].
However, in the scenarios studied in this paper, the CPU
utilization is high most of the time, and the variation is not
large enough for a feedback controller to detect performance
changes.

The classical multi-programming level (MPL) problem of
database systems [11] is different from the hardware resource
allocation problem studied in this paper. The basic objec-
tive of the MPL problem is to determine the proper number
of transactions allowed in the database given a fixed set of
resources, whereas this work allocates resources dynamically
to match the demands of database workloads.

Predictive modelling is used for automatic resource man-
agement for database systems in previous work [15]. How-
ever, a good prediction model requires a well-designed learn-
ing algorithm and sufficient empirical data. Moreover, a pre-
diction model for a system with volatile workloads, e.g., a
cloud database, might be too complex for humans to under-
stand. It is difficult to maintain and improve such a system.

Classical control theory has been applied to database self-
management problems [8]. Multi-layer controllers are used
for adaptive resource management for virtual machines and
web servers [7, 10]. Classical control theory is used for per-
formance regulation in these works. In some scenarios, an
optimization problem is transformed into a regulation prob-
lem, so that the classical feedback control can be applied
[8]. However, many database problems focus on optimiza-
tion rather than regulation, and fuzzy control is a better
choice.

Fuzzy control is used for the automatic tuning of the
Apache web server in [4]. This work considers only a sin-
gle performance curve, whereas we introduce a self-adaptor
to deal with the workload changes and consequent shift
of performance curves. Adaptive fuzzy modelling can be
combined with prediction techniques for automatic resource
management [14], whereas our simple feedback controller
does not need the workload-to-resource model based on ma-
chine learning.

7. CONCLUSION
This paper proposes a novel application-agnostic perfor-

mance metric for online performance measurement and an
allocation algorithm based on fuzzy control that incorpo-
rates human knowledge and uncertainty. Experimental re-
sults show that UIPT is a generic metric that works well in
various scenarios, and fuzzy control is a promising technique
for managing hardware resources for complex computer sys-
tems. The algorithm based on fuzzy control is simple and
reflects human intuition directly. The performance of the in-
ner controller can be improved by tuning parameters such as
the measurement interval and normalizing gains. Combined
with other techniques, the self-adaptor can do the tuning au-
tomatically according to workload changes. A management
system that allocates and configures hardware resources be-
tween database workloads with different priorities can be
constructed based on this work.

Techniques in this paper can also apply to the balance be-
tween power efficiency and application performance. Mod-
ern hardware offers fine-grained and dynamic power man-

agement like Dynamic Voltage and Frequency Scaling (DVFS).
Power consumption can be measured and controlled online
as well. Software management problems, e.g. the MPL
problem may also benefit from the search based on feed-
back control. Study of these relevant problems is also part
of our future work.

8. ACKNOWLEDGEMENTS
This work is supported by the Natural Sciences and En-

gineering Research Council of Canada (NSERC).

9. REFERENCES
[1] A. R. Alameldeen and D. A. Wood. IPC Considered

Harmful for Multiprocessor Workloads. IEEE Micro,
26(4):8–17, 2006.

[2] R. Azimi, D. K. Tam, L. Soares, and M. Stumm.
Enhancing Operating System Support for Multicore
Processors by Using Hardware Performance
Monitoring. ACM SIGOPS Operating Systems Review,
43(2):56–65, 2009.

[3] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[4] Y. Diao, J. L. Hellerstein, and S. Parekh. Optimizing
Quality of Service Using Fuzzy Control. In Proceedings
of the 13th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management:
Management Technologies for E-Commerce and
E-Business Applications, pages 42–53.
Springer-Verlag, 2002.

[5] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback Control of Computing Systems.
John Wiley & Sons, 2004.

[6] O. Itzhak, I. Keidar, A. Kolodny, and U. C. Weiser.
Performance Scalability and Dynamic Behavior of
Parsec Benchmarks on Many-Core Processors. The
4th Workshop on Systems for Future Multicore
Architectures, http://sfma14.cs.washington.edu/
(accessed June 15, 2015), 2014.

[7] E. Kalyvianaki, T. Charalambous, and S. Hand.
Adaptive Resource Provisioning for Virtualized
Servers Using Kalman Filters. ACM Transactions on
Autonomous and Adaptive Systems (TAAS),
9(2):10:1–10:35, 2014.

[8] S. S. Lightstone, M. Surendra, Y. Diao, S. Parekh,
J. L. Hellerstein, K. Rose, A. J. Storm, and
C. Garcia-Arellano. Control Theory: a Foundational
Technique for Self Managing Databases. In Data
Engineering Workshop, IEEE 23rd International
Conference on, pages 395–403. IEEE, 2007.

[9] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal.
Adaptive, Transparent CPU Scaling Algorithms
Leveraging Inter-node MPI Communication Regions.
Parallel Computing, 37(10-11):667–683, 2011.

[10] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant. Automated
Control of Multiple Virtualized Resources. In
Proceedings of the 4th ACM European Conference on
Computer Systems (EuroSys), pages 13–26. ACM,
2009.

[11] B. Schroeder, M. Harchol-Balter, A. Iyengar,
E. Nahum, and A. Wierman. How to Determine a

10

Good Multi-programming Level for External
Scheduling. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE), pages
60–71. IEEE, 2006.

[12] TPC-E Benchmark. Transaction Processing
Performance Council. http://www.tpc.org/tpce/
(accessed June 15, 2015).

[13] TPC-H Benchmark. Transaction Processing
Performance Council. http://www.tpc.org/tpch/
(accessed June 15, 2015).

[14] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. A. Fortes.
Fuzzy Modeling Based Resource Management for
Virtualized Database Systems. In Modeling, Analysis
& Simulation of Computer and Telecommunication
Systems (MASCOTS), IEEE 19th International
Symposium on, pages 32–42. IEEE, 2011.

[15] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigumus. Intelligent Management of Virtualized
Resources for Database Systems in Cloud
Environment. In Proceedings of the 27nd International
Conference on Data Engineering (ICDE), pages
87–98. IEEE, 2011.

11

