Latency in Embedded Systems

Sean Simmons
Director, DSP
RIM

Latency - Definitions

"Time delay between input event being applied to a system and the associated output action from the system"

Input event can be things like:

- Change in sound someone tells you a joke.
- Change in voltage interrupt line activation.
- Arrival of a message from another thread/process/computer.

• Output action can be things like:

- Change in sound you laugh at a joke.
- Change in voltage output pin changes polarity.
- Sending of a message to another thread/process/computer.

Latency – When is it Important?

Typically when there is feedback:

- Conversation between two people. Conversations suffer when there is a large time delay between what you say and then hearing their response.
- Client-server protocols. Either end may have expectations on how long a response should take
- Control systems. Car breaking systems or home heating systems.
- User interfaces. Time from key press to displaying character on screen.

Typically not important when there is no feedback:

- Broadcast. Of course there are limits a latency of hours/days/years might be problematic.
- Recording something for playback at some later time.

Latency – How Much?

- Tolerance to increasing latency is system dependent.
- Most systems have a point at which they cease to "function" as designed.
- "Point" of failure is very system dependent.
 Varies over many orders of magnitude
 - nanoseconds to hours.
- Failure mode (or degradation) is system dependent.
 - For most computer protocols degradation is catastrophic.
 - For control systems degradation usually results in instability.
 - For end-to-end-delay in speech tele-services, perceived degradation is gradual and "smooth".

Latency – Categorization

Scheduling

- Buffering to manage different clock domains (radio/packet clock vs sample clock)
- Buffering for network queuing 'jitter' of packets
- Buffering for task scheduling (sharing of processor resources)
- Inherent in system design (TDM Radio Interface)

Resource Limitations

- Time to execute functions (processor clock rate),
- Influence of memory hierarchies/system design
- HW limitations (serial ports)

Algorithmic

- Delay in filters
- Interleavers

Latency in Phone Calls

- One way delays >150 ms start to impact call quality.
- Delay can vary between calls.
- · Delay can vary within calls.

Figure 1/G.114 - Determination of the effects of absolute delay by the E-model

GSM Handset Block Diagram

GSM Handset – Radio Timing

GSM Handset – Timing and Latency

GSM Handset – Scheduling Jitter

GSM Handset – Memory Hierarchy

VoIP

