CS 856 – Latency in Communication Systems Winter 2010

Latency Challenges

CS 856, Winter 2010, Latency Challenges

Overview

- Sources of Latency
 - low-level mechanisms
 - services
- Application Requirements
- Latency Measurement
- Summary & Classification

Low-level Mechanisms

- Memory Access (Hierarchy)
- Bus Contention
- Disk Access
- Asynchronous Processing
- CPU Scheduling
- Network Transmission
 - packetization, processing, queueing, propagation

Services

- System Calls
- Transport
- Messaging
- Remote Service Invocation
- Encryption

Application Requirements

- Web Surfing
- Telecommunication
- Interactive Games
- Streaming
- User Interfaces
- Algorithmic Trading
- Monitoring & Control
- High-performance Computing

Low-level Mechanisms

Memory Access

- memory hierarchy
 - registers O(1) cycles
 - cache O(10) cycles
 - RAM O(100) cycles
- relevant for
 - effective CPU throughput
 - e.g. routers: per-packet processing budget very small!

Bus Contention

- multiple access & arbitration
- similar to link layer medium access control (later)

Disk Access

- physical characteristics
 - head movement, speedup/slowdown
 - disk rotation
 - I/O transfer via bus

Asynchronous Processing

- cost of context-switching (and/or preemption)
- e.g. network stack
 - socket queue network queue interface
 - multi-threading
- send side: multiplexing with other traffic
- receive side: traditional interrupt levels

• OS and application programming

CPU Scheduling

- control of asynchronous processing
- priorities & deadlines, real-time
- waiting time on ready queue -> latency

Network Transmission

- transmission
 - serialization of data: (file size / link speed)
 - packetization: discrete units of data
 - cost at each node vs. cut-through processing
- medium access control & back-off
- processing
 - cf. memory latency
 - cf. asynchronous processing

Network Transmission (2)

- queueing
 - well-studied
 - queueing theory
 - packet scheduling: average vs. worst-case
- propagation
 - determined by fundamental physics
 - e.g. global communication: Toronto Sydney ~10msec propagation (linear distance only)
 - e.g. inter-planetary communication...

Synchronous Networks

- e.g. SONET, CDMA
- no medium access control
- no queueing
- but: fixed upper bound rate
 - cf. transmission delay

Services

System Calls

- blocking system calls
 - typically I/O operations
- cf. asynchronous processing

Transport

- network transmission
- signalling
- reliability
 - timeout
 - retransmission

Messaging

- transport
- signalling
- encoding / decoding
 - might include segmentation & reassembly
- network stack
- process interaction (system calls)

Remote Service Invocation

- messaging and transport
- 2-way request / reply interaction
- e.g. name lookup
- e.g. "web services" (aka RPC)

Transcoding

- e.g. encryption, video transcoding
- computational overhead
- offloading (e.g. special-purpose chip)
- throughput vs. latency gains?

Application Requirements

Web Surfing

- browsing user expectations
- responsiveness: a few seconds
 - 8- resp. 4-second rules
- commercial web services (B2B)
- retail: shopping, banking, payments
 - avoid duplicate transaction
 - "do not hit reload!" messages...
- online auctions, brokering, etc. -> much faster?

Telecommunication

- telephony
 - call setup and control
 - authentication & authorisation
 - e.g. cell phone roaming
 - data
 - human perception of interactivity
 - good: one-way 150-300 msec, end-to-end!
 - e.g. packetization: 64 kbit in 40x 200-byte packets/sec
 - 25 msec packetization
 - vs. header overhead (cf. ATM)

Telecommunication (2)

- videoconferencing
 - similar delay bound than audio (also: lip-sync)
 - need ~25 frames/sec for continuous presentation
 => upper bound on packetization
- collaborative work
 - e.g. document editing
 - "instantaneous" interaction
 - locking and event ordering important

Interactive Games

- event distribution / roundtrip
- FPS, Car Racing similar to video/telephony
 - simulate continuous action trick human brain
- RT Strategy seconds ok?
- event order relevant
 - ignore/overwrite "old" events

Streaming

- startup delay several seconds ok
 - cf. VCR, DVD
- live vs. stored content?
 - no difference?
- latency variation => playout buffer

User Interfaces

- asynchronous: multi-threaded or event-based
- need instantaneous response
 - show at least brief immediate effect (button click)
- and/or drive continuous presentation
 - e.g. video presentation + interactivity

Algorithmic Trading

- receive electronic market data
- compute price quotes
- feed back into the market

- everybody else does the same
- speed matters, i.e., fast reaction to market data
- ... at high volumes

Monitoring & Control

- examples
 - monitor factory automation
 - monitor nuclear power plant
 - control anti-lock brake system (ABS)
- reaction speed matters
- tight control loop

High-Performance Computing

- distributed computation
- compete with integrated systems
 - price/performance trade-off
- remote memory access
- communication and synchronization overhead

Wrap-Up

Latency Measurement

- round-trip latency
 - easy to measure with local clock
 - accuracy, statistics?
- one-way latency
 - difficult requires synchronized clocks
 - derive from round-trip? symmetry?

Summary & Classification

- fundamental physical limitations
 - propagation speed and latency
- contention: bus, MAC, router, etc.
- latency vs. throughput
 - synchronous better for latency
 - asynchronous better for throughput
- average vs. worst-case considerations

Summary & Classification

- performance modelling
 - memory and communication latencies
 - chip, board, chassis, cluster, data center
- latency classes?
 - machine (ns) computation
 - human subconscious (ms) interactive
 - human conscious (s) response time
 - asynchronous (m) backup
 - human asynchronous (h) email