
CS 856 Internet Transport Performance

Network Architecture: Mobility, Multicast and Overlays

Martin Karsten

School of Computer Science, University of Waterloo mkarsten@uwaterloo.ca

Contents

IP Mobility

IP Multicast

Multicast Overlays

Mobile Communication

Current Predominant Application: Voice Communication

Current System Architectures

- multiple layers of packet switching and virtual circuits
 - extension of TDMA wireless access channels

Future?

- increasing amount of data communication
- changing access technologies, e.g. WLAN
- switch architectures to all packet switching

Main Issues

- handover: latency, packet loss, overhead
- paging
 - relates to naming and addressing
- hardware restrictions: processing & power
- efficient support of intra-domain traffic

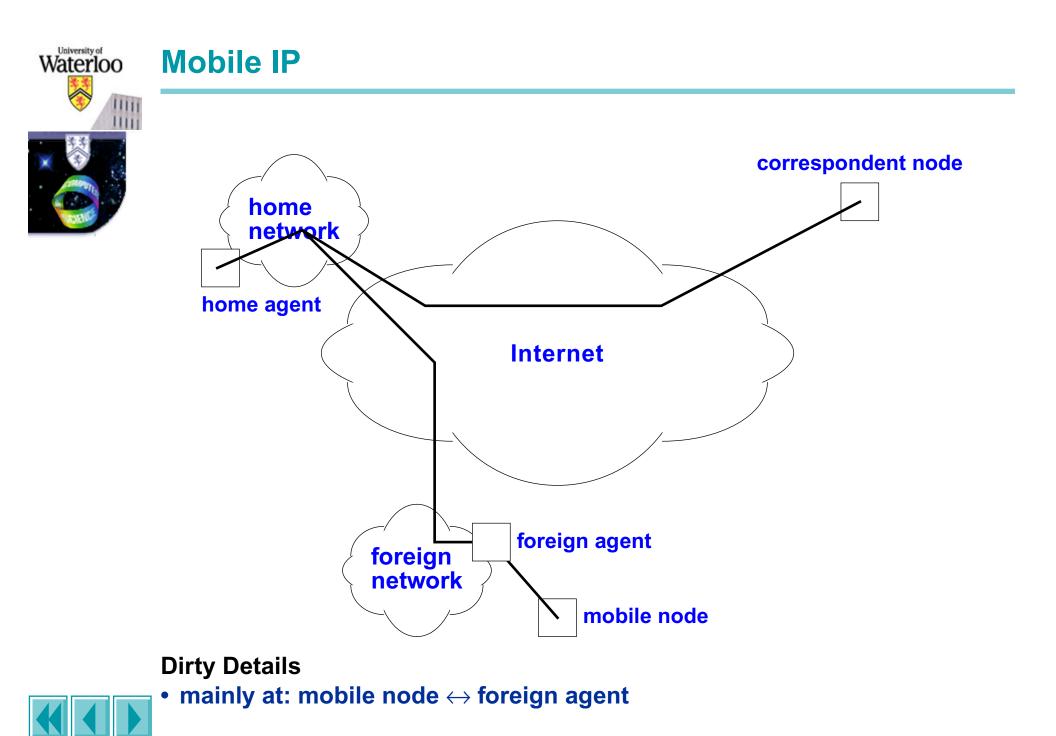
IP Mobility

Addressing

Waterloo

諎措

- IP address \rightarrow identification AND location
- separation needed for mobile communication


Mobile IP - Goals

- transparency for correspondent node
- seamless integration into IP architecture
- not specifically targeted to voice communication
 - e.g. scenario: mobile laptop connects to Internet for data communication
 - slower mobility timescale than e.g. cell phones

Mobile IP - Addressing

- home address \rightarrow identification
- care-of-address \rightarrow location
 - unique address
 - address of foreign agent (if mobile node can be reached via layer 2)

5-architecture.fm **5/34** Jun 2, 2004

Mobile IP - Evaluation

Waterloo

$\textbf{Transparency} \Rightarrow \textbf{Triangle Routing}$

"route optimization" (IPv4) / "binding update" (IPv6)

No Interaction with Radio Layer

- no notification mechanisms specified, no bicasting
- no fundamental obstacles either

End-to-End Operation

- triangle routing \rightarrow home agent
- binding update \rightarrow correspondent node
- high delay and potentially packet loss during handover
- active connectivity needed for paging

Overhead in Network

- only mobile agents are involved in connectivity
- handover \rightarrow at routers: normal IP packets
- regular operation \rightarrow at routers: normal IP packets

Hierarchical Mobility Solutions

Waterloo

Break End-to-End Association

- similar to hierarchical IP routing
- macro-mobility ~ inter-domain routing
- micro-mobility ~ intra-domain routing

Reduced Scope of Handover Updates

- improved handover latency
- reduced packet loss

Intermediate Chain Forwarding or Bicasting

- further reduce packet loss
- requires overlapping radio connectivity with multiple base stations
 - network design
 - wireless access technology

Mechanisms - Connection State

- IP in IP tunneling, e.g. Hierarchical Mobile IP
- separate routing, e.g. Cellular IP

Other Features

Waterloo

Passive Connectivity for Paging

- requires support for paging area
- paging agent broadcasts or multicasts paging requests
- MN must detect paging area boundaries...

Intra-Domain Traffic

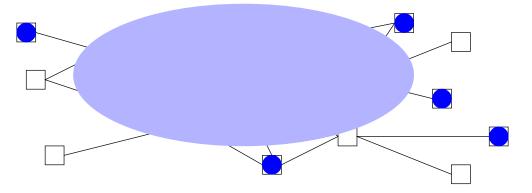
- often not considered in specification
- important in reality, e.g. "no airtime charge for calls from same network"

Interaction with Radio Layer

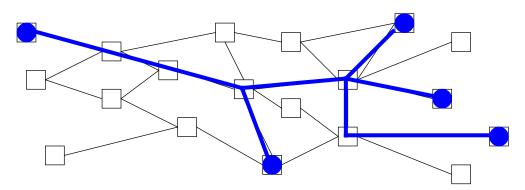
strong handoff radio trigger (SHRT)

Fundamental Relationship to Mobility Architecture

- omission of feature vs. infeasibility of feature
 - e.g. paging in Mobile IP \rightarrow always involves HA
 - e.g. SHRT in Mobile IP \rightarrow would be possible, BUT: bicasting or chain?
 - chain forwarding would require changes to FA and MN
 - Hierarchical Mobile IP, Cellular IP: intermediate FA can bicast


IP Multicast

Terminology


Waterloo

Πü

- MULTIPOINT/GROUP COMMUNICATION (end system's viewpoint)
 - multiple senders and/or multiple receivers
 - agnostic of actual transmission

- MULTICAST TRANSMISSION (network's viewpoint)
 - transmission along tree structure
 - replication of packets at branch nodes

IP Multicast

Waterloo

Traditional Multipoint Communication

- sender-initiated (or centrally organized) participation
- well-known participants
- static group membership
- bidirectional core-routed transmission
- individual addressing

Multicast Goals

- efficient resource utilization
- avoid traffic duplication

IP Multicast Model

- receiver-initiated join
- anonymous receivers
- dynamic membership
- independent, unidirectional transmission tree(s)
- group addressing

IP Multicast Addressing

Class D Network Addresses

1110xxxxxxxxxxxxxxxxxxxxxx

Address Range: 224.0.0.0 - 239.255.255.255

Further Partitioning

• see http://www.iana.org/assignments/multicast-addresses

Well-known Addresses

- routing protocols
- all systems on subnet
- all routers on subnet
- DVMRP routers
- etc.

224.0.0.0 - 224.0.0.255 (no data forwarding) 224.0.0.1 224.0.0.2 224.0.0.4

Multicast Routing

Multicast Tree Computation - Packet Distribution

- Flooding and Variants \rightarrow Spanning Tree (per source)
- Link State → Spanning Tree (per source)
- Shared Trees
- assume (mostly) hierarchical network structure

Evaluation Criteria

- amount of generated traffic
- average path length
- computation complexity
- state complexity
- system convergence

General Trade-Off

- (+) transmission cost savings
- (-) increased system complexity
- (-) transmission cost overheads

Waterloo

Waterloo

IIIII

Flooding

Characteristics/Variants

- data-driven
- pure flooding
- (truncated) reverse path broadcasting \rightarrow arrival via shortest path?
 - truncate: pruning only at leafs
- reverse path multicasting \rightarrow recursive pruning
 - initial join: periodic flood
 - join after prune: graft (multicast tree already exists)
- using unicast routing information

Evaluation

- high transmission overhead (flooding part, amount depends on variant)
- sub-optimal path lengths (computation based on local state)
- low computation complexity
- state complexity (inverse to transmission overhead)
 - low/constant: pure flooding, reverse path broadcasting
 - medium: truncated reverse path broadcasting (per group)
 - high: reverse path multicasting (per group, per sender)

\Rightarrow Suitable for densely populated multicast groups

Link State

Waterloo

Characteristics/Variants

- control-driven (join/leave)
- periodic flood of link-states
- with/without flood and prune

Evaluation

- some transmission overhead (if flood & prune is used)
 - additionally: link-state routing overhead
- optimal path lengths (computation based on global state)
- high computation complexity
- high state complexity (per group, per sender)
- \Rightarrow Suitable for intra-domain multicast routing

Example: Multicast OSPF (RFC 1584)

- extensions to OSPF
- every node calculates same optimal multicast tree (per source, per group)
 - calculation triggered by first arriving data packet

5-architecture.fm **14/34** Jun 2, 2004

Shared Trees

Waterloo

Characteristics/Variants

- control-driven (join/leave)
- core-based tree
- Steiner tree (optimal core-based tree)
 - NP-complete, unstable \Rightarrow not implemented

Evaluation

- no transmission overhead
- no optimal path lengths (central point, independent of source)
- high computation complexity (computation based on global state)
 - but only at central point
- medium state complexity (mostly per group, not per source)
 - except central point
- central node with high load
 - load balancing through nomination of multiple central points
- central point of failure!
 - often handled through backup nodes
 - but not inherently robust!

\Rightarrow Suitable for sparsely populated multicast groups

Multicast Routing Protocols

IETF Multicast Protocols

- IGMP, RFC 1112, 2236
 - last-hop (broadcast network) group membership
 - communication (broadcast) between hops in distribution network
- DVMRP, RFC 1075
- PIM (SM & DM), RFC 2362
- Core Based Tree (similar to PIM-SM), RFCs 2189 & 2201
- M-OSPF, RFC 1584

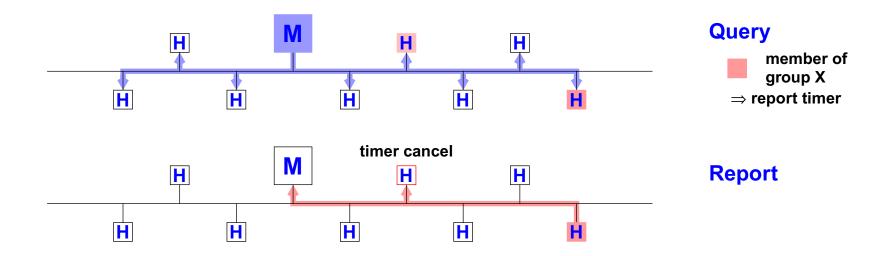
Common Characteristics

- soft state: state information times out if not refreshed
- not necessarily striving for optimal tree

Key Distinction

- source/group individual tree
 - link state vs. flood & prune
- group shared tree

Waterloo


Internet Group Management Protocol

Query/Report about Group Memberships

- primarily between router and hosts in LAN environment
- but also used as carrier for DVMRP

Message Types

- Query sent periodically to 224.0.0.1
- Report sent to respective multicast group (delayed)
 - on query received or join

Random Timers \rightarrow Reduction of Message Load

Waterloo

Internet Group Management Protocol

- see RFC 2236, RFC 1112
- see http://www.ietf.org/html.charters/idmr-charter.html

Change to v1: Generalized Terminology

- roles in v1: "router" vs. "host"
 - implicitly assumes 1 router and n hosts
- roles in v2: "querier" vs. "non-querier"
 - multiple multicast routers may exist on subnet

Extensions to v1

- message type: group leave \rightarrow better leave latency
- message type: group specific query
- flexible maximum response time setting in query
 - set by local host configuration in v1
 - set dynamically by querier in v2
 - allows tuning state update latency & message load
- ⇒ Increased Precision, Timely State Updates and Additional Tuning

Waterloo

IIIII

Distance-Vector Multicast Routing Protocol

Flood and Prune

Waterloo

- Reverse Path Broadcasting (initially)
 - discard packets, if not arrived along shortest path
- Reverse Path Multicasting (mrouted)
 - per-source routing, recursive pruning

Link Configuration

- TTL threshold (decision about packet forwarding)
- TTL metric (governs TTL decrement)

RIP-like Unicast Routing ("reverse")

- routers keep state (distance) per source per previous router
 - routing information is periodically exchanged with neighbours
- R1 keeps state per source whether being on the shortest path to R2
 - if not \rightarrow don't forward packets to R2 (selective forwarding \rightarrow less flooding)
- multiple routers on LAN \rightarrow shortest path to source is DOMINANT
 - others are **SUBORDINATE**
- equal distance \rightarrow lowest IP address becomes dominant
- ⇒ Multicast routing can be decoupled from unicast routing

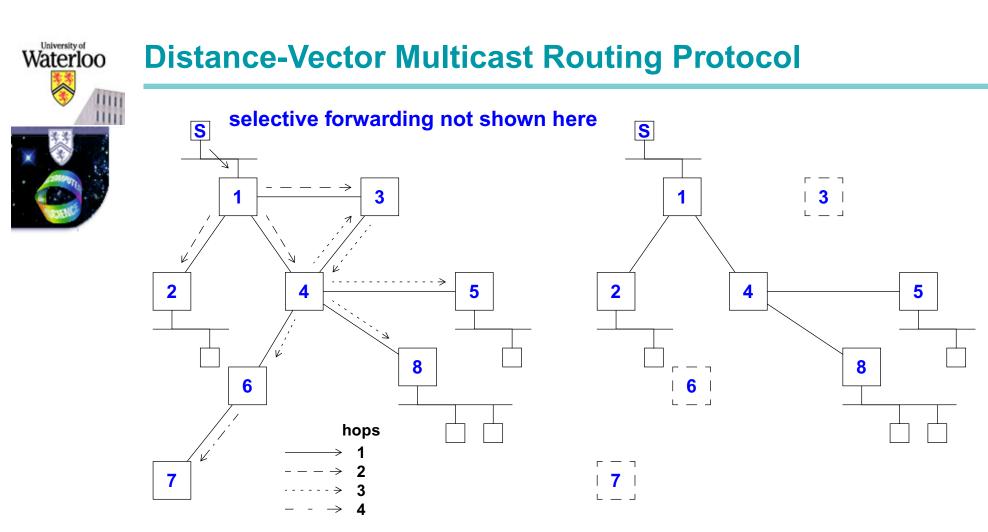
5-architecture.fm 19/34 Jun 2, 2004

Distance-Vector Multicast Routing Protocol

Routing State

Source Prefix	Subnet Mask	From Gateway	Metric	Status	TTL
128.1.0.0	255.255.0.0	128.7.5.2	3	up	200
128.2.0.0	255.255.0.0	128.7.5.2	5	up	150
128.3.0.0	255.255.0.0	128.6.3.1	2	up	150
128.3.0.0	255.255.0.0	128.6.3.2	4	up	200

- TTL: Validity Time of Routing Entry (Not Packet TTL)
- Metric: Unicast distance (in hops)
- \Rightarrow Complexity: linear in number of sources


Distance-Vector Multicast Routing Protocol

Forwarding State

Source Prefix	Group	TTL	Inc. Interface	Out Interface
128.1.0.0	224.1.1.1	200	1 Pr	2р,3р
	224.2.2.2	100	1	2p,3
	224.3.3.3	250	1	2
128.2.0.0	224.1.1.1	150	2	2p,3

- TTL: Validity Time of Routing Entry (Not Packet TTL)
- p: prune received
- Pr: prune sent
- \Rightarrow Complexity: n * m
- n: (average) number of sources
- m: number of groups

Usage of IGMP Messages for DVMRP Messages

- prune (unreliable), graft (reliable)
- routing table updates similar to RIP

Further Info

• see RFC 1075

• see draft-ietf-idmr-dvmrp-v3-11

University of Waterloo

Protocol Independent Multicast

MOSPF: Depends on OSPF

DVMRP: Dedicated Unicast Routing Protocol

Protocol Independent

- utilize "least common denominator" of unicast routing
- $\bullet \rightarrow \textbf{unicast routing table}$
- \Rightarrow multicast routing must be co-located with unicast routing
- inhibits some optimizations

Variants

- Dense Mode: based on flood and prune
- Sparse Mode: based on shared trees

Interoperability

- dense mode: flood & prune \rightarrow no 'join' message
 - 'graft' only cancels earlier prune, but tree already exists
- create 'join' at dense mode border router towards sparse-mode region

PIM - Dense Mode

Waterloo

Similar to DVMRP: Flood and Prune

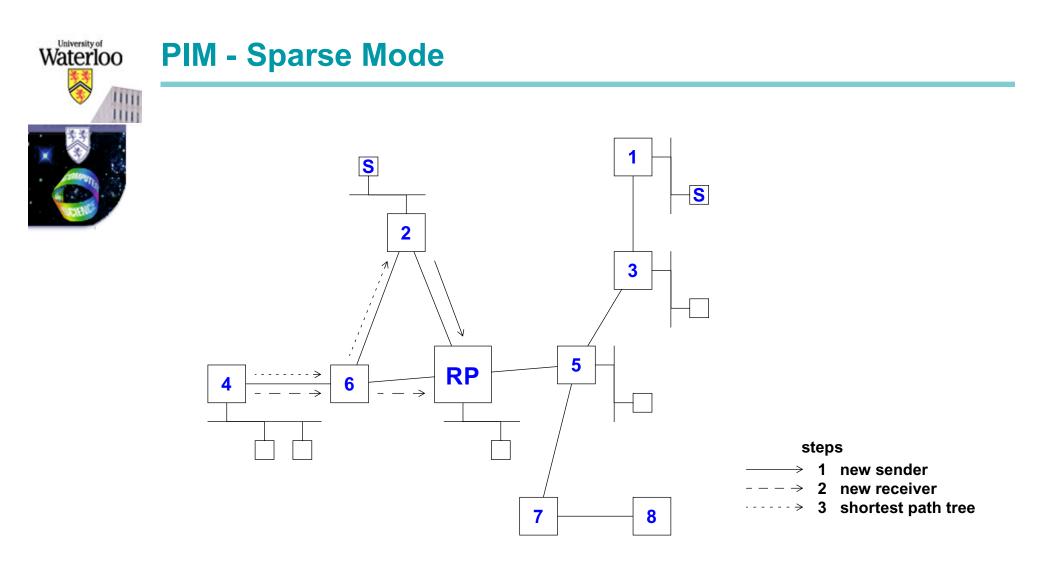
Reverse Path Multicasting

No Separate Routing Information Exchange

- no selective forwarding
- always flood packets over all interfaces (except incoming)
 - subsequent pruning
 - more flooding than $\text{DVMRP} \rightarrow \text{increased traffic load}$

PIM - Sparse Mode

Shared Tree


Waterloo

- central point: RENDEZVOUS POINT (RP)
- distributed construction of shared trees
 - each router maintains list of RPs
 - hash-based mapping: group $\rightarrow \mathsf{RP}$
 - receiver: join request is sent to RP
 - intermediate nodes (RP \rightarrow receiver) create (*,group) forwarding state
 - check join with unicast routing information
 - sender: encapsulate first data packet in control message (SM register)
 - RP responds with join to source
 - intermediate nodes (source \rightarrow RP) create (source, group) forwarding state
 - check join with unicast routing information
- not shortest path

Source-based Shortest Path Tree

- can be requested by receiver
- can be initiated by RP
- corresponding prunes in shared tree

Further Infosee RFC 2362

Emerging Approaches

Source Discovery (MSDP)

- find path to source
- connect shared-trees across multiple domains
- use information to optimize multicast tree
- http://www.ietf.org/html.charters/OLD/msdp-charter.html

Source-Specific Multicast

- http://www.ietf.org/html.charters/ssm-charter.html
- receiver must know source address
 - dedicated address space: 232.0.0.0/8
 - rules for allocating addresses
 - URD: URL-based rendezvous protocol for unaware receivers

Border Gateway Multicast Protocol (BGMP)

- inter-domain multicast routing
- http://www.ietf.org/html.charters/bgmp-charter.html

Waterloo

IIIII

Multicast & Naming

Waterloo

Naming and Address Allocation

- no natural hierarchy as in IP addresses
 - flat address space with some restrictions
- no controlled address range allocation

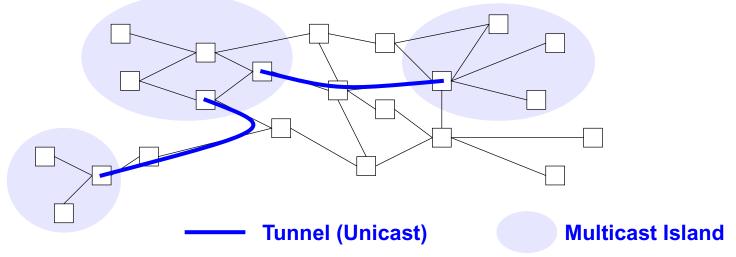
Some Global Administration

• different address ranges used for different distribution range

Dynamic Session Directory

- group announcements are multicast (broadcast) in special group
- soft-state \rightarrow announcement expires if not refreshed
- advance announcements
- scope of announcement can be limited by TTL
- \Rightarrow Collisions possible and require manual intervention.

MBone


Waterloo

Experimental Overlay Network

- connecting multicast-capable islands
- edge-to-edge tunneling
 - routing protocol messages
 - data packets

Global Multicast Testbed

- multicast transport protocols
- multicast applications

IP Multicast - Evaluation

Or: Why IP Multicast "failed"...

Technical Problems

- integration with unicast IP \rightarrow no flexible design
- IPv4 limited address range: ~ 1 Mio group addresses
- uncontrolled address allocation
 - hacks for good utilization of address range: address designation, TTL

General Problems

- most interesting applications: games, multimedia
- no guaranteed transmission quality
- \Rightarrow little demand
- significant deployment cost for providers

\Rightarrow Failure or Postponement?

- IPv6 removes address limitations
- multicast overlay networks

Multicast Overlays

iiiii

Waterloo

- "overlay" in terms of network structure \rightarrow already in IP multicast
 - not every node is a multicast router
 - unicast tunneling integral part of multicast approach
- "overlay" in terms of edge vs. core
 - main cost metric: access bandwidth
- "overlay" in terms of protocol layering \rightarrow on top of IP
- "overlay" in terms of implementation layering
 - user-level process, vs.
 - low-level kernel or hardware implementation
 - modularity
- distinct & orthogonal design concepts, same terminology

Trade-Offs

- network structure \rightarrow deployment vs. path selection efficiency
- edge vs. core \rightarrow deployment with network efficiency
- protocol layering \rightarrow implementation/deployment vs. protocol overhead
- implementation layering \rightarrow flexibility vs. execution cost

Routing in Edge-System Overlays

Parameters

- degree of vertices in routing graph
 - packet replication overhead
 - acess link bandwidth requirements
- diameter of routing graph
 - transmission delay

Suggested Algorithms

- fix degree, minimize diameter
 - max workload at node, find best worst-case delay
- fix diameter, balance degree
 - max worst-case delay, find best workload distribution
- NP-hard / NP-complete problems \rightarrow heuristic algorithms needed

Comparison with IP Multicast

- IP Multicast: find spanning tree with shortest paths to receivers
- IP Multicast: source-specific routing
- replication workload and replication efficiency \rightarrow lesser concern
 - possible with link-state protocols, but only with high computation complexity

Waterloo

Example: Balanced Degree Allocation

Goal: Balance Degree subject to Maximum Diameter

- d_{max}(v): replication capacity (configuration parameter)
- Note: number of nodes \rightarrow number of edges \rightarrow fixed sum of degrees
- 1. Degree Allocation

Waterloo

IIIII

- increase degree of node with most available capacity
- balance remaining capacity at nodes (residual degree)
- 2. Find Edges, subject to Degree Allocation
- try to satisfy diameter condition
- several algorithms possible, no perfect choice
- 3. Restart at 2.
- if diameter constraint is not met
- relax degree allocation

Discussion

Waterloo

Routing in Overlay Networks

- relation to network structure and underlying routing
- distributed route computation
- large-scale groups

Mobile and Multicast Communication

- differences
- commonalities

