

CS 856 Internet Transport Performance

Congestion Control: TCP, ECN, and Variants

Martin Karsten

School of Computer Science, University of Waterloo mkarsten@uwaterloo.ca

Martin Karsten - CS 856, Spring 2004

TCP Variants

Explicit Congestion Notification (ECN)

Distributed Admission Control and Rate Allocation

TCP Congestion Control - Background

Pre-Congestion Control TCP

- reliable transport protocol
- window-based flow control between sender and receiver
 - Go-back-N sliding window algorithm

Problems

Waterloo

- window size negotiated between sender and receiver only
- round trip time (RTT) estimation insufficient
- \Rightarrow No Consideration of Changing Network State
- no large initial bursts after connection setup
- Internet congestion collapse

TCP Congestion Control

- slow start after connection establishment and time-out
- exponential timer back-off upon congestion indication
- improved RTT estimation
- dynamic window sizing
 - minimum of receiver window and congestion window

TCP - Deployed Variants

Tahoe

Waterloo

IIIII

- basic version with slow-start
- three duplicate ACKs or time-out \rightarrow congestion
- congestion \rightarrow reset congestion window to 1 and enter slow-start

Reno

- fast retransmit and recovery
- three duplicate ACKs \rightarrow fast retransmit/recovery
 - retransmit packets clocked by ACKs without checking congestion window
- time-out \rightarrow reset congestion window to 1 and enter slow-start

NewReno

improvement of fast recovery for multiple packet losses

Sack

selective acknowledgements

TCP Vegas

Waterloo

TCP Observations

- requires packet loss as congestion signal
 - packet loss caused by buffer overflow
 - relatively drastic congestion control action
- oscillation between under-utilization and over-utilization?

TCP Vegas

- observe RTT and infer buffer occupation
- reduce sending rate when RTT grows large
- increase sending rate when RTT is small

Problems

- estimation of base RTT, i.e. propagation delay round-trip
- congestion on reverse path from destination to source
- fairness compared to traditional TCP

Random Early Detection (RED)

- measure average queue length
 - if greater than threshold $max_{th} \rightarrow mark$ packet
 - if between min_{th} and max_{th} \rightarrow randomly mark packet
- packet marking: explicit (ECN) or drop packet

Goals

Waterloo

- avoid synchronization between flows
 - buffer overflow \rightarrow packets from all connections would dropped
 - probabilistic dropping of packets from some connections
- control/reduce queue length by packet dropping \rightarrow better average delay

Problems

- parameter setting
- infinite variants

Explicit Congestion Notification (ECN)

Early Packet Dropping Problems

- drop without necessity
- other reasons for packet drop, e.g. corruption
- other transport protocols than TCP?

Idea: Packet Marking instead of Dropping

packets carry congestion signal to end systems

IETF Version: TCP/ECN

- end systems: negotiate ECN capability at connection setup
 - sender: mark packets a ECN-capable
 - receiver: reflect congestion indications back to sender
 - · sender: react to congestion indications similar as to drop
- router: use RED or comparable algorithm to infer incipient congestion
 - mark ECN-capable packet or drop otherwise
- using bits 6 and 7 in old IP TOS field
 - $00 \rightarrow not ECN$ capable
 - 01 & 10 \rightarrow ECN capable (two codepoints)
 - $11 \rightarrow congestion indication$

TCP/ECN Challenges

Incremental Deployment

- packet dropping still possible \rightarrow TCP must react to drop and mark
- non-compliant end systems
- non-compliant routers
- restrictive firewalls

Future-Proof Mechanisms

- isolated congestion signal vs. persistent load signal
 - different time-scales
- fairness between different marking and flow control algorithms
- suitability of marking algorithm?
- interaction with tunnels and non-IP subnet layers (e.g. MPLS)

Security

- malicious end systems pretending to use ECN
 - not a new threat: TCP w/o congestion control, multiple TCP flows, etc.
- malicious routers subverting ECN
 - not a new threat: routers can drop, insert or change packets
- interaction with IPsec \rightarrow isolation of tunnels required

4-transport.fm 8/27 May 26, 2004

Waterloo

TCP/ECN - ECN Nonces

Scenario

Waterloo

拙

- sender wants to use ECN congestion control, e.g. web server
- receiver wants to trick sender into fast downloads
 - receiver never reflects a congestion indication to sender

Solution: ECN Nonces

- sender produces random stream of 01 and 10 codepoints
- receiver needs to reproduce stream in ACKs to prove no congestion
- router congestion indication destroys codepoint information
 - congestion indication changes ECN bits to 11

Other Marking and Control Algorithms

Active Queue Management (AQM)

send the "right" signal and use the "best" flow control algorithm

Virtual Queue (VQ)

- run virtual queue at lower speed, mark when virtual buffer is full
- stop marking when virtual buffer empties

Adaptive Virtual Queue (AVQ)

- load > target rate \rightarrow reduce virtual rate
- load < target rate \rightarrow increase virtual rate
- start/stop marking depending on virtual buffer compared to limit

Load-based Marking (LBM)

- marking probability derived from relative load \rightarrow explicit load signal
- problem with multiple resources along transmission path

Packet Marking - Other Application Scenarios

Consider Packet Mark as Charge Indication

- enforce congestion control cooperation from end users
- not only to prevent/handle congestion
- differentiate network/transport service \rightarrow "rate control"

System Mechanics

- end systems control amount of traffic
- network controls load signal (probabilistic packet marks)
- higher network load \rightarrow more marks \rightarrow higher price for transmission rate
- end systems back off from sending at increasing prices

Theory

- distributed resource auction
- strictly concave utility curves
- mark/price represents end-to-end load situation
 - i.e. additive price for multiple resources
- dominance of long-lived flows
- \Rightarrow Stable Rate Allocation, i.e. QoS

Waterloo

Perceived QoS

Utility Curve

Waterloo

- user's value of one-dimensional transmission performance
- fairness: user's willingness to pay
- assumption: certain typical shapes

Simple Application Classification

- elastic
- inelastic

Utility in Reality

- multi-dimensional utility curves
- variation of utility curve during transaction

• web

Often modelled as strictly concave, but in reality there's an upper limit

Examples

- multimedia transmission
- interactive games

Single Marking Bit \Rightarrow Path Marking Rate: $M_p = 1 - \prod_{i \in p} (1 - m_i)$ 0.65 ٦ 0.5 0.1 0.55] 🔳 🗆 🗆 0.3 1 1 1

Martin Karsten - CS 856, Spring 2004

Waterloo Service Differentiation

IIIII

WTP Modification to TCP

- approximate rate-based flow control by window-based congestion control
- additional parameters control speed of increase and decrease

Marking Algorithms

• RED, VQ, LBM

Service Differentiation

- good with RED & LBM, ok with VQ
- depending on TCP/WTP details

Marking Probability

• steep increase with RED, depending on RED configuration

Average Queueing Delay

RED & LBM better than VQ

Waterloo

Packet Marking and Rate Control - Challenges

Modelling

- applicability of idealized mathematical models
- short-lived flows \rightarrow background noise?
- system stability in the presence of feedback delays?

Technical

- multiple resources vs. single-bit marking
 - additive load signal? only approximated, if marking rate is very low
- per packet accounting is expensive

User Preferences

- price may not be known ahead of time
- price may fluctuate
- incentives for providers to upgrade networks?
 - only indirect marketing incentives

Security

responsibility for payment vs. responsibility for sending rate?

4-transport.fm 18/27 May 26, 2004

Flow Control vs. Admission Control

Flow Control

Waterloo

拙

- throttle sending rate according to load signal (packet marks)
- packet marking at internal nodes
- feedback from receiver
- suitable for elastic flows

Admission Control

- decide about connection acceptance
- inherent per-domain concept
 - reliability of end systems
- feedback between edge gateways
- suitable for inelastic flows

Packet Marking and Admission Control

Use Packet Marking for Admission Control of Inelastic Traffic

- end systems or gateways probe network to infer load state
- or infer load from existing traffic
- no calls are accepted, if load is below threshold

Gateways: Solve Technical and Security Challenges

- controlling traffic and reacting to packet marks
- easier to account for than individual end systems
- more reliable rate control reaction
- operated by network provider
- offering traditional signalling-based service interface
- fixed price per mark vs. very high willingness-to-pay

Different Level of Insight

- mathematical models and proofs for flow control
- reasoning and simulation for admission control

Integration of Elastic and Inelastic Flows?

at least offer unused capacity to background traffic

Waterloo

iiii

Random Early Detection (RED) & Variants

- queue-based feedback
- ineligible packets \rightarrow random drop (ok)
- meaning of path marking rate for inelastic flows (?)

Virtual Queue (VQ) & Variants

- hybrid feedback, time-scale dependent
- ineligible packets \rightarrow bursty dropping (?)
- inelastic flows \rightarrow binary path marking rate

Load Based Marking (LBM)

- rate-based feedback
- ineligible packets \rightarrow continuous random dropping (?)
- path marking rate is product of local load values
- use relative load of link or node (!)

Marking vs. Dropping

Waterloo

Dropping of Ineligible Packets?

Influence of Ineligible Packets on Local Load?

⇒ Differentiated Queue Management (DQM) at Internal Nodes

- admission control of VoIP flows
- VQ marking & simple admission control threshold

- mix of VoIP flows and unresponsive UDP background traffic
- VQ marking, simple admission control threshold, DQM discrimination

Dynamic Pricing

Packet Marking, Flow Control, and Dynamic Pricing

- economic market models
- market efficiency: stability and high utilization

Packet Marking and Admission Control Gateways

- traditional business model possible: price per time and resources
- dynamic pricing: calculate dynamic price from load information
 - price formula $\frac{a}{1-x} + b$ possible for relative marking rate x
- insurance model
 - gateways operated by different institution than network provider
 - gateways accept the economic risk of rising load for a fixed surcharge
 - over-subscription \rightarrow bad luck for everyone

Deployment

- use gateways now, end system control later?
- chain of trust to solve security problems?

Waterloo

諎措

Admission Control - Challenges

Service Integration

- support elastic and inelastic flows
- different time-scales
- flow control at edge vs. flow control at end system

Dynamic System Adaptation

- reactive system \rightarrow safety margins needed
 - automatic parameter adaptation?
- controlled overbooking \rightarrow currently "use it or loose it"
 - only actual traffic generates load signals

Delay Guarantees?

precise: delay differentiation

Waterloo

Discussion

Waterloo

End-System Rate Control and Packet Marking Charges

packet marking algorithms

Packet Marking and Gateway Admission Control

- packet marking algorithms
- "use it or loose it" problem
- safety margins

