

CS 856 Internet Transport Performance

Network Control: Routing & Signalling

Martin Karsten

School of Computer Science, University of Waterloo mkarsten@uwaterloo.ca

Contents

Waterloo

Routing

Multi-Protocol Label Switching

Network Signalling

Discussion

Waterloo

Naming & Addressing

Name

IIIII

- human readable identification of host, service, etc.
- location-dependency of name: centralized or distributed lookup?
- complexity/overhead of name lookup?

Address

- topological relevance: encoding of network access point
- entity which is used for routing

Example: Mobile Phone Number

strictly speaking: neither name nor address?

Datagram Networks

- simple/limited addressing required
 - routing of each packet
- vs. virtual circuit: complex addressing more acceptable
 - routing of path setup only

Flat vs. Hierarchical Routing

Flat Routing

Waterloo

- large global routing tables (distributed storage possible)
- global scope of routing updates \rightarrow overhead & error-prone system

Hierarchical Routing

- goal: reduce size of routing tables
- address: encoding of network access point & host identifier
- old Internet addressing: subnetwork classes
 - class A: 2^7 networks with up to 2^{24} -2 hosts
 - class B: 2¹⁴ networks with up to 2¹⁶-2 hosts
 - class C: 2²¹ networks with up to 2⁸-2 hosts
 - plus some special classes
- observation: most networks are between class B and C
 - exhaustion of class B address space
 - potential administrative solution: enforcement of network structure
 - multiple smaller networks need to team up as a class B network
 - and internally structure themselves as set of class C networks
 - not a very good solution!
 - still need modification is routing system \rightarrow classes are hard-coded

Dynamic Routing Hierarchy

Waterloo

- **Classless Inter-domain Routing (CIDR)**
- explicit representation of subnet length in routing information
 - e.g. 10.4.12.0/22 represents all IP addresses in 10.4.12.0 10.4.15.255
- more flexible allocation of IP addresses to networks
- route aggregation on contiguous addressing ranges
 - e.g. 10.4.12.0/22 and 10.4.8.0/22 \rightarrow 10.4.8.0/21
 - e.g. 10.4.8.0/21 and 10.4.0.0/22 \rightarrow no aggregation without 10.4.4.0/22
 - when forwarding route advertisements
- arbitrary aggregation possible

Route Lookup for Packet Forwarding

- critical for datagram networks \rightarrow performance
- multiple routing entries may exist
 - e.g. entry for 10.4.0.0/20 and 10.4.8.0/22
 - 10.4.0.0/20 is a possible route, but a better route is known to 10.4.8.0/22
 - e.g. learned from a different peer router
 - 10.4.8.0/22 may be multi-homed through different ISPs
 - prefer 2 overlapping entries over 16 disjoint entries
- address matches multiple entries in routing table \rightarrow find longest match

Address Space Limitations

IPv6

Waterloo

- extends IP address space to 128 bit
- deployment slower than earlier predictions

Network Address Translation (NAT)

- local address within local network
- dynamic address translation at access gateway
 - side effect: no disclosure of internal structures
- additional level of hierarchy
 - hosts in 2nd level have restricted capabilities

Generic Overlay Networks

- IP over ATM
- IPv6 over IPv4
- IPv4 over IPv4
- etc.

Fault Recovery in IP Routing

Failure Detection

- explicit link monitoring
- HELLO messages (periodic)

System Healing

- link-state routing
 - propagation of global updates
 - local route computation at each node
- path/distance-vector routing
 - local updates and count-to-infinity problem
 - even longer propagation delays for changes
- frequency of faults vs. speed of convergence?

Waterloo

Multi-Protocol Label Switching (MPLS)

IP Forwarding

- stateless
- packet-switched
- packet forwarding: longest-prefix lookup

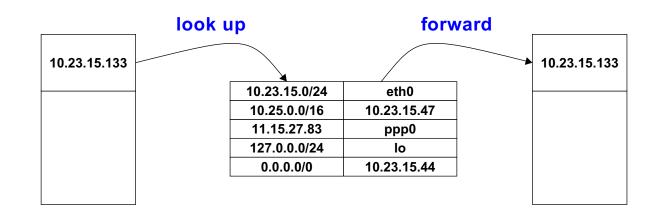
Label Switching

- virtual-circuit approach
 - "connection" here: FORWARDING EQUIVALENCE CLASS (FEC)
 - arbitrary topological scope of FEC (flows, trunks, etc.)
- assign local label to FEC
- forward packets according to label
- multiple links form LABEL SWITCHED PATH (LSP)
- control protocol needed for label distribution

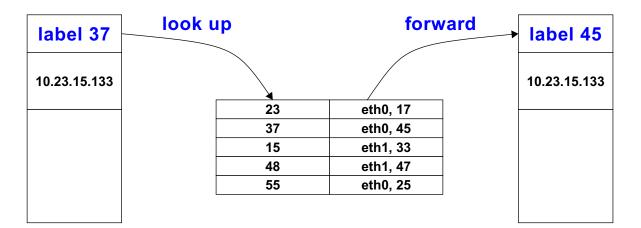
MPLS

- technical functionality: network layer
- conceived as intermediate layer between various data link layers and IP
 - particularly: exploit ATM switching technology without ATM signalling
- inter-operates with any link and any network protocol

3-network.fm 8/46 May 20, 2004



Waterloo



Packet Switching vs. Label-Switching

Label Switching

Label Encoding

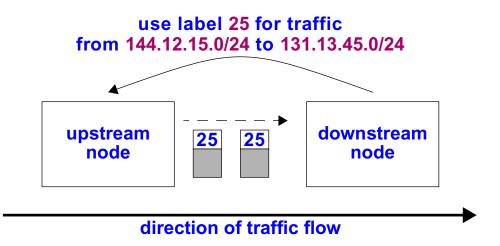
32 Bit Shim Header between L2- and L3-Header

0	10	20 23	31
	Label	Exp S	TTL

- Label: Label Value, 20 bits
- Exp: Experimental Use, 3 bits
- S: Bottom of Stack, 1 bit
- TTL: Time to Live, 8 bits

Label Stacking

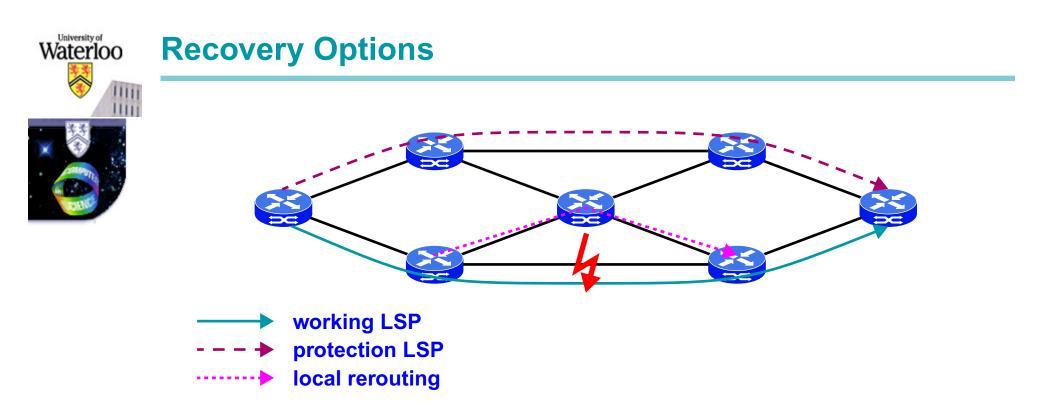
- push label in front of stack
- create aggregate trunks while preserving flow identification
- extended version of ATM's VCI/VPI


Waterloo

Label Assignment

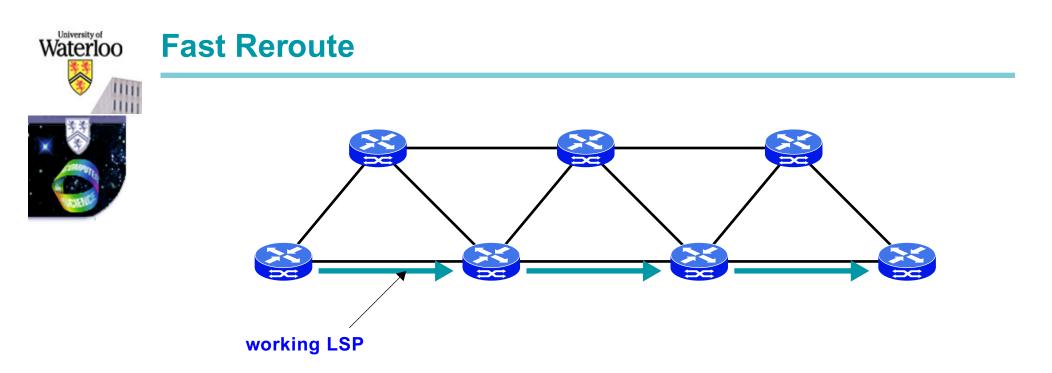
Waterloo

Unique Label Binding Needed


- downstream node announces label to upstream node
- downstream node chooses label scope
 - global scope: (label) \rightarrow lookup
 - interface scope: (label, interface) \rightarrow lookup
 - no previous hop information available

Label Assignment Modes

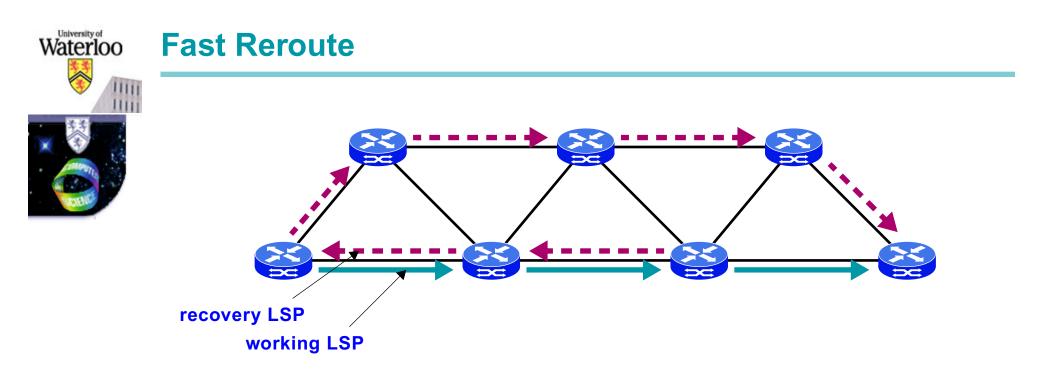
- downstream on demand \rightarrow upstream node requests label
- unsolicited downstream



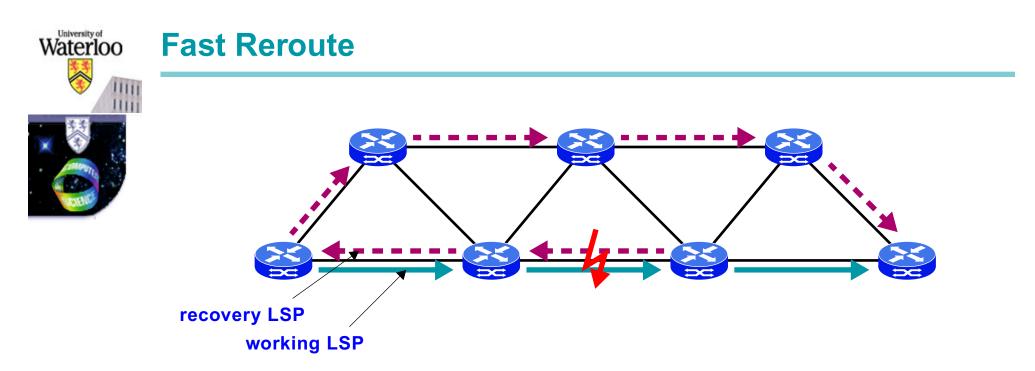
LSP Setup

- explicit routing of LSP
- resource allocation for LSP
 - protection LSP: pre-reserved or on-demand

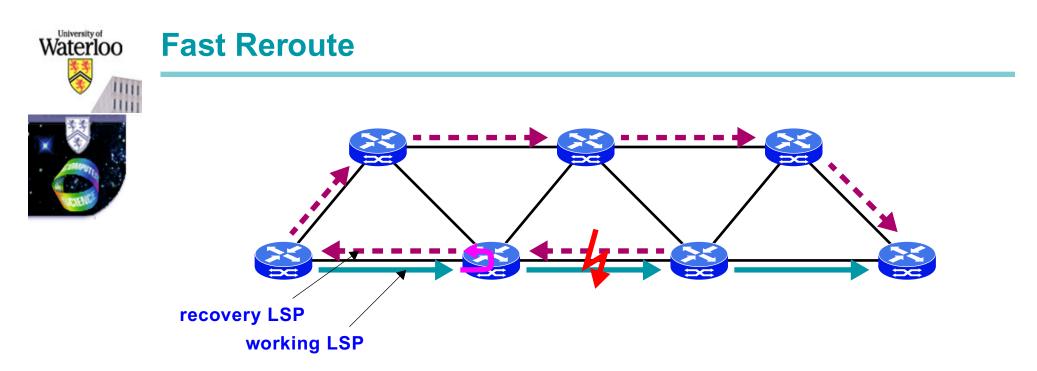
Protection LSP

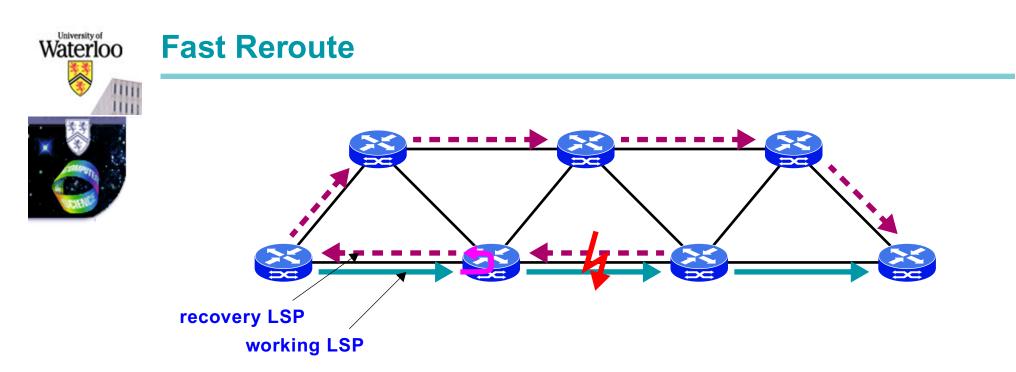

- disjoint path (if possible)
- fast failure detection needed

Establish Primary LSP

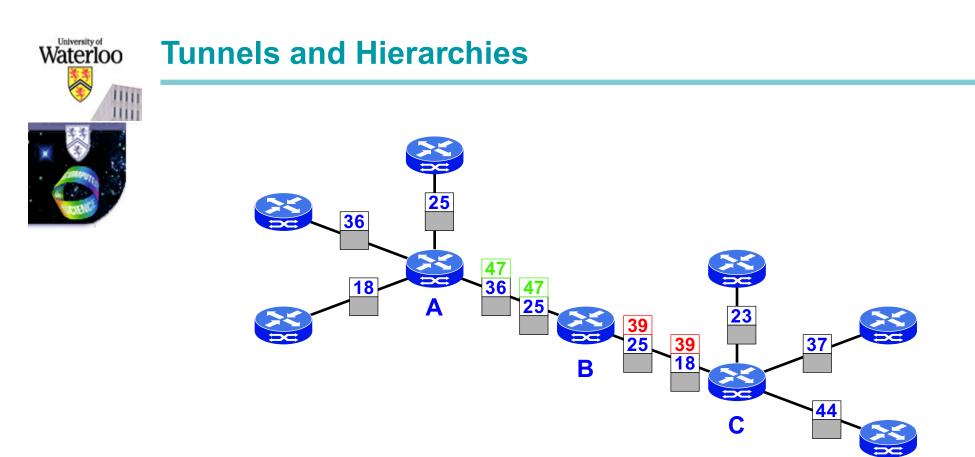


Martin Karsten - CS 856, Spring 2004


Establish Backup LSP


Intermediate Node Discovers Link Failure

Node Can Immediately Reroute Traffic



Recovery LSP

- automatic establishment from last-hop switch in reverse direction
- along disjoint path from source to destination

Upon Failure

- adjacent upstream node redirects traffic
 - similar to e.g. FDDI ring protection
- later: source node redirects traffic
- lossless recovery possible
 - depending on speed of link failure detection

Tunnel $\textbf{A} \rightarrow \textbf{C}$

- tunnel ingress A
- LSP via B (label 47), label push
- from B to C (label 39), label switching
- tunnel egress C, label pop, label switching & forwarding

3-network.fm **18/46** May 20, 2004

Routing Mix in the Internet

Waterloo

- Inter-domain Routing
- BGP
- long-term traffic contracts
- packet forwarding: IP

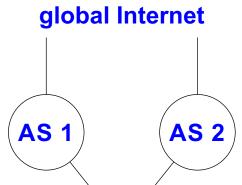
Intra-domain Routing

- OSPF
- IS-IS
- static configuration
- packet forwarding: IP or MPLS

Other NBMA Technologies (Intra-Domain)

- NBMA = Non-Broadcast Multiple Access
 - subnet technology with own addressing/routing function
- ATM
- Sonet/SDH

Routing Problems in the Internet


Waterloo

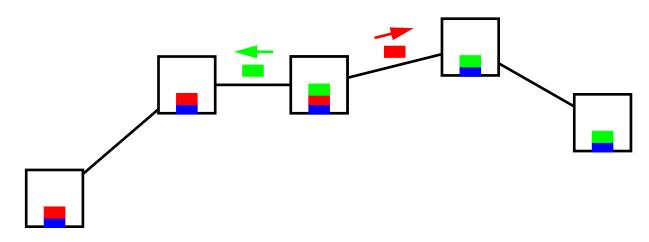
Changes in Network Structure ⇒ Routing State "Explosion"

- global Internet evolves from tree towards denser mesh
 - end-user multi-homing
 - regional peering between ISPs

Example

- AS3 receives address range from AS1
- AS3 also advertises through AS2
- AS2 cannot aggregate AS3 info
- later in the network:
 - AS3 via AS2 info is more specific than AS1 aggregate ⇒ longest-prefix matching directs all traffic via AS2
 - AS1 needs to announce AS3 specific rather than aggregated ⇒ more state information

AS 3


Routing Convergence

- fast reaction to routing changes \rightarrow route flapping
- ${\ensuremath{\,\bullet\,}} \Rightarrow$ reaction to changes on the order of seconds and minutes
- $\bullet \Rightarrow \text{slow global convergence}$
- local configuration & policy vs. global goals

Network Signalling

Transmission of State Information between "Neighbours"

relationship to network path (explicit or not)

- path setup
- QoS signalling
- firewall traversal

Issues

- state complexity
- message transmission overhead
- protocol complexity
- consistency \rightarrow system convergence

Waterloo

Hard State vs. Soft State

Goals

Waterloo

- system convergence \rightarrow stability after state change
 - avoid manual maintenance
- fast recovery \rightarrow immediate problem resolution after failure

Hard State

- transmit state once, receive acknowledgement
- detect all errors
- correct errors
- combination of convergence and recovery

Soft State

- transmit state periodically, no acknowledgement
 - idempotent messages
- ignore errors
- automatic error correction
- optimisation (fast recovery): detect and correct errors
- convergence + optional fast recovery

Resource Reservation Protocol (RSVP)

RFC 2205

Waterloo

Conceived as Signalling Protocol for Integrated Services Architecture

not limited to this scenario

Design Goals

- multi-sender and multi-receiver
- heterogeneous multicast
- dynamic multicast group membership
- aggregation within multicast group and for multiple senders
- selection of senders
- independent of routing
- adaptive to routing changes
- robustness
- controlled protocol overhead

Design Principles

Receiver-Initiated Reservation

- receiver knows best which QoS to ask for
- adopt IP multicast model
- allow for heterogeneous receivers

Separating Reservation from Packet Filtering

allow for dynamic filter changes

Different Reservation Styles

- multi-sender applications
- shared vs. fixed reservations
- explicit vs. wildcard reservations

	shared	fixed
explicit	SE	FF
wildcard	WF	

Waterloo

拙

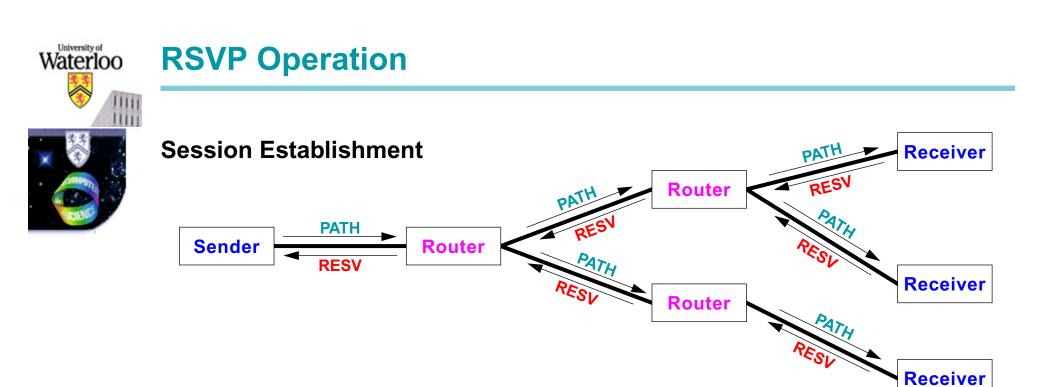
Waterloo Des

IIIII

Design Principles

Soft State

- periodic refresh of state information (otherwise state times out)
- compromise between stateful and stateless
- stateful, but robust
- "hard state" vs. "soft state"


Protocol Overhead Control

- merging of reservation messages along the multicast tree
- configurable refresh timeout for soft state

Modular Architecture

- decoupling of services from signalling protocol
 - decoupling of service enforcement (admission control and traffic control)
- decoupling of signalling and routing
 - RSVP does not influence routing
 - eventually RSVP & routing should cooperate
 - see discussion later

Two-Way Session Setup

- one-pass with advertising
- PATH message follows data path
- reverse path is stored hop-by-hop at intermediate nodes
- RESV message is transmitted along reverse path

Soft State

- asynchronous refresh between nodes
- independent refresh frequency

3-network.fm 26/46 May 20, 2004

Alternative Operation

Traversal of RSVP-unaware clouds

- PATH message is regularly routed through subnet
- RESV message is addressed to previous RSVP-capable hop
- service guarantees have to be ensured by other means

Protocol Messages

Waterloo

Messages Composed of Objects

SESSION

destination address, destination port, protocol number

SENDER_TEMPLATE/FILTER_SPEC

sender address, port number

SENDER_TSPEC

traffic description: token bucket

FLOWSPEC

QoS description: rate allocation

ADSPEC

characteristics of transmission path

RSVP_HOP

sending node of protocol message

Others

• INTEGRITY, TIME_VALUES, ERROR_SPEC, SCOPE, STYLE, POLICY_DATA, RESV_CONFIRM

Message Types

PATH

Waterloo

拙

- sender \rightarrow receiver
- traffic announcement
- establishment of path
- path characteristics: intermediate nodes \rightarrow receiver

RESV

- receiver \rightarrow sender
- QoS request
- reverse transmission along established path

PTEAR

- sender \rightarrow receiver
- path teardown

RTEAR

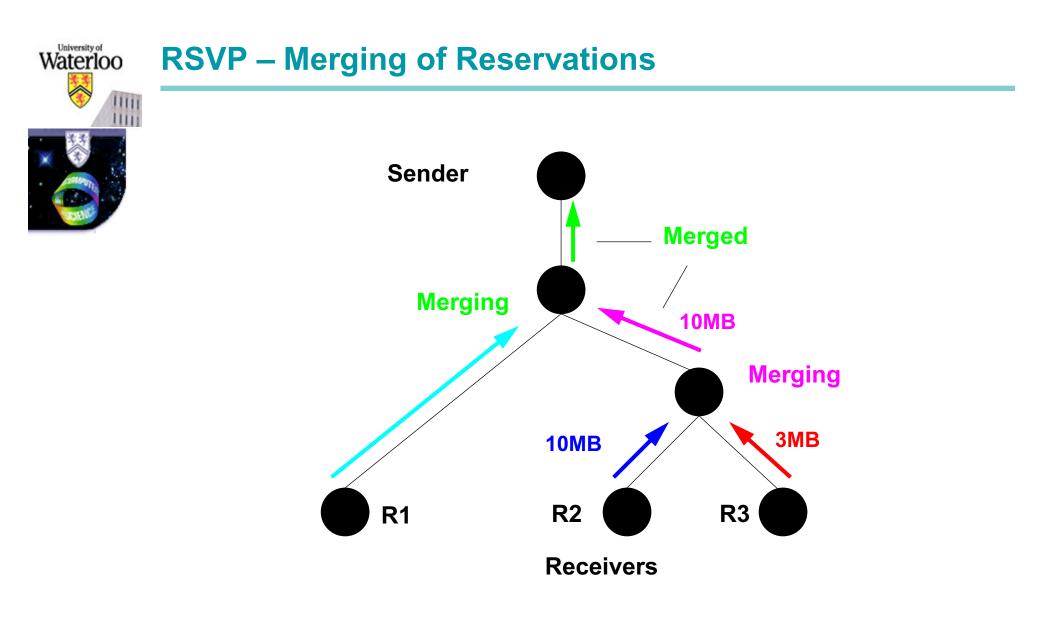
- receiver \rightarrow sender
- reservation teardown

3-network.fm 29/46 May 20, 2004

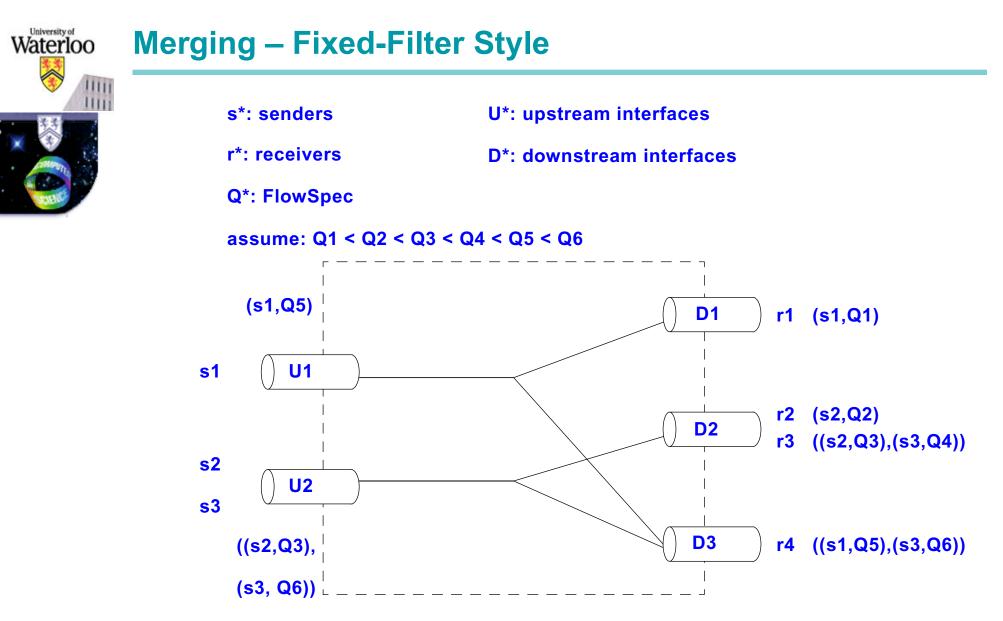
Message Types

PERR

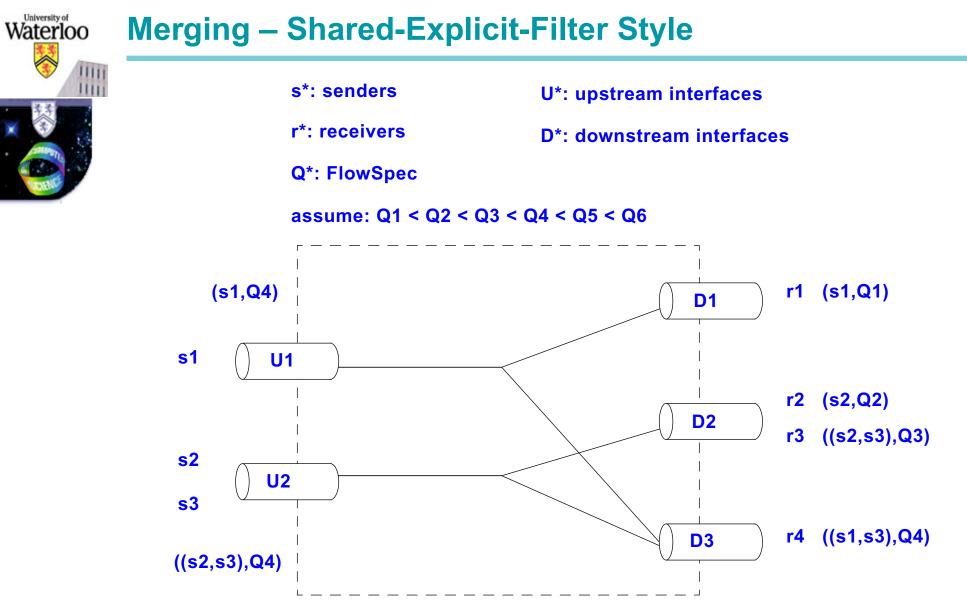
- intermediate node \rightarrow sender
- error when establishing the path


RERR

- intermediate node \rightarrow receiver
- error when establishing the end-to-end reservation
 - e.g. admission control failure

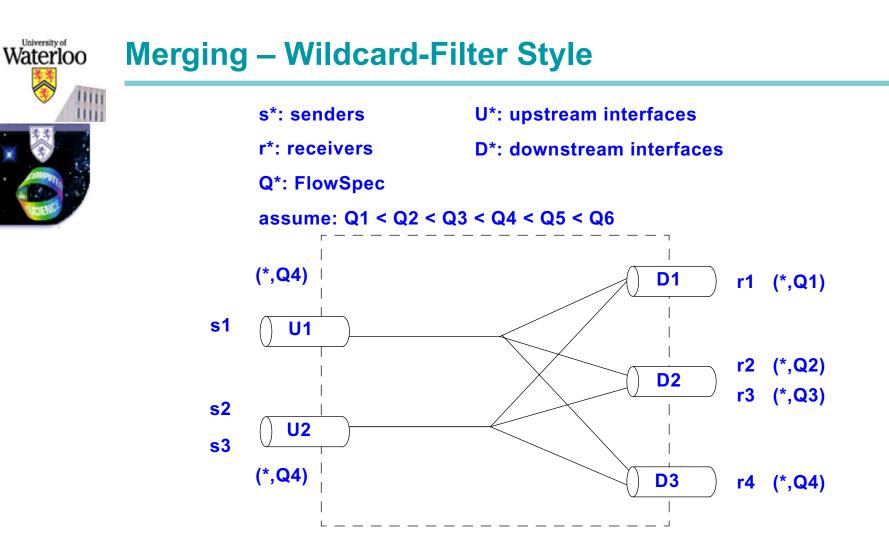

RCONF

- intermediate node/sender \rightarrow receiver
 - depending on previously established reservation
 - branching node in multicast tree
- confirmation of reservation
 - not reliable



Each interface reserves maximum of received reservations for each source

Separate reservation sent to each requested source


3-network.fm **32/46** May 20, 2004

FilterSpec of merged reservations is union of FilterSpecs

FlowSpec of merged reservations is maximum FlowSpec

3-network.fm 33/46 May 20, 2004

Each interface reserves maximum of received reservations Maximum of all reservations is sent to all sources

RSVP & Routing

Data forwarding tree is set up by routing protocol (esp. IP Multicast).

RSVP Messages

- independent from reservations
- before knowledge about reservations is available
- data transmission possible without reservation
- various routing protocols could be used

Decoupling of RSVP and Routing

- simple handling of link failures
- adaptation to route changes \rightarrow delay of adaptation?
- route flapping possible
- \Rightarrow no hard QoS guarantees

Other Routing Issues

- path selection: find path that can handle new flow
- load balancing \rightarrow traffic engineering

Evaluation of IntServ/RSVP

IntServ

Waterloo

- extensible
- vague definition of Controlled Load service
- often wrongly assessed as enforcing fine-grained flows

RSVP

- linear scaling per number of flows
- tuned for multicast
- handles multi-sender conferencing
- relatively complex for unicast
- only host and group addressing \rightarrow enforcing fine-grained flows
 - no support for topological aggregation (e.g. subnet to subnet)
 - limitation easy to eliminate (replace IP addresses by subnet prefixes)
- heterogeneous reservations not always sufficient
 - traffic filtering needed, as well
- service reliability?

Waterloo RSVP as Label Distribution Protocol

Extensions to RSVP: RSVP-TE

PATH messages

- label request
- tunnel request
- explicit routing
- route recording
 - nodes
 - labels

RESV messages

- label distribution
- resource allocation

Decoupling of Functionality

- other setup protocols exist for MPLS
- RSVP could even be used for other signalling purposes

Waterloo

諎措

Message Objects

LABEL_REQUEST

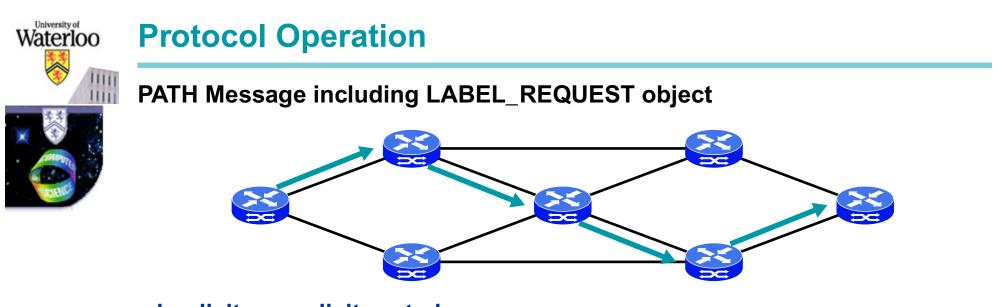
network layer protocol identification

LABEL

20 bit label

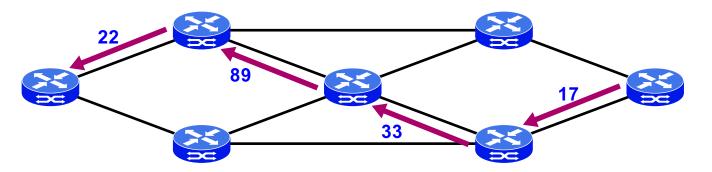
EXPLICIT ROUTE

- strict route: node addresses
- loose route: network addresses / AS numbers


RECORD_ROUTE

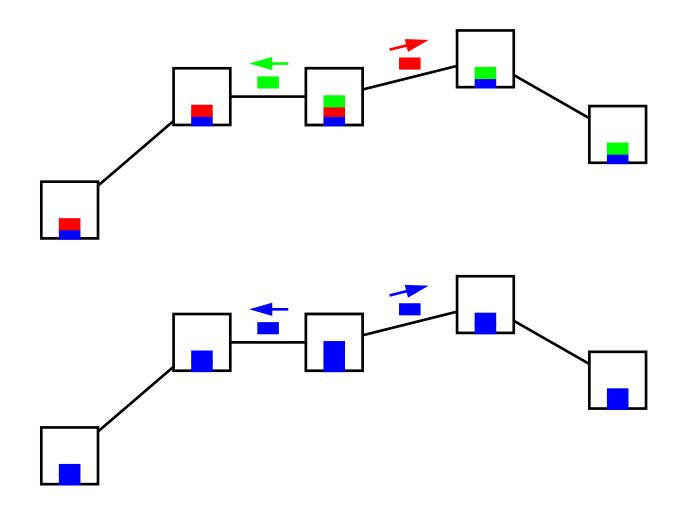
- node addresses
- labels at each link

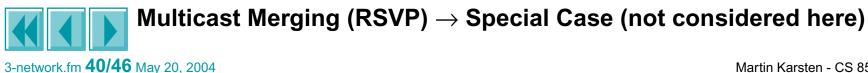
LSP TUNNEL


- refinement of SESSION object
- ingress/egress addresses
- identifier (to distinguish primary from backup/reroute path)

implicit or explicit routed

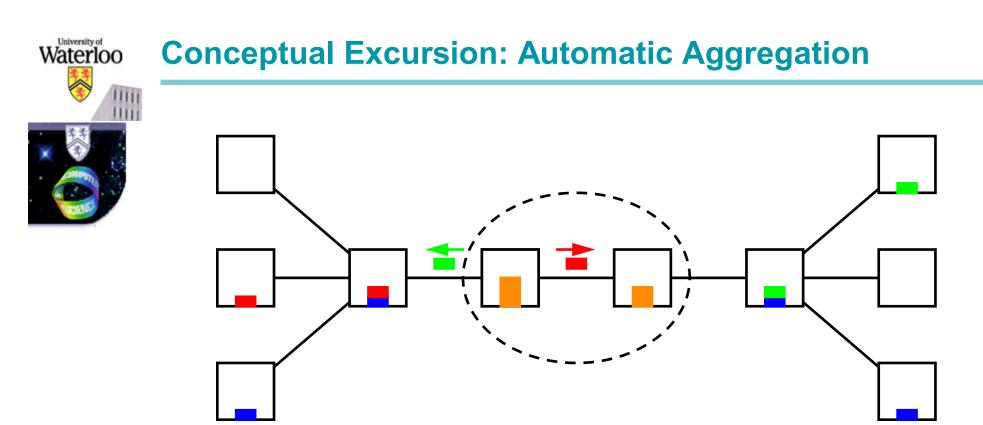
RESV Message including LABEL object




- message follows reverse path (established through PATH message)
- distribution of locally unique label
 - unique for downstream node

Aggregation

Assumption: Addition of Individual Requests Yields Same Service


Solution Stateway-based Aggregation

Gateway-based Aggregation

- gateways control internal network
- encapsulation/decapsulation necessary
 - control path
 - data path

Individual Requests / Internal Aggregation

- messages are interpreted as increase or decrease request
- data path: aggregation mechanism needed (could be DiffServ-like)
- soft state: message loss \rightarrow distinction between setup and refresh?
 - sequence numbers, timeouts, etc. \rightarrow complex management
- hard state
 - temporary node failure: complex detection and recovery
 - transient node failure: all state for all nodes along the path affected

YESSIR

YEt another Sender Session Internet Reservation

Piggybacked on RTP/RTCP

- RTCP periodically transports Sender Reports and Receiver Reports
- IP option: router alert \rightarrow routers intercept packets
- soft state

Differences to RSVP

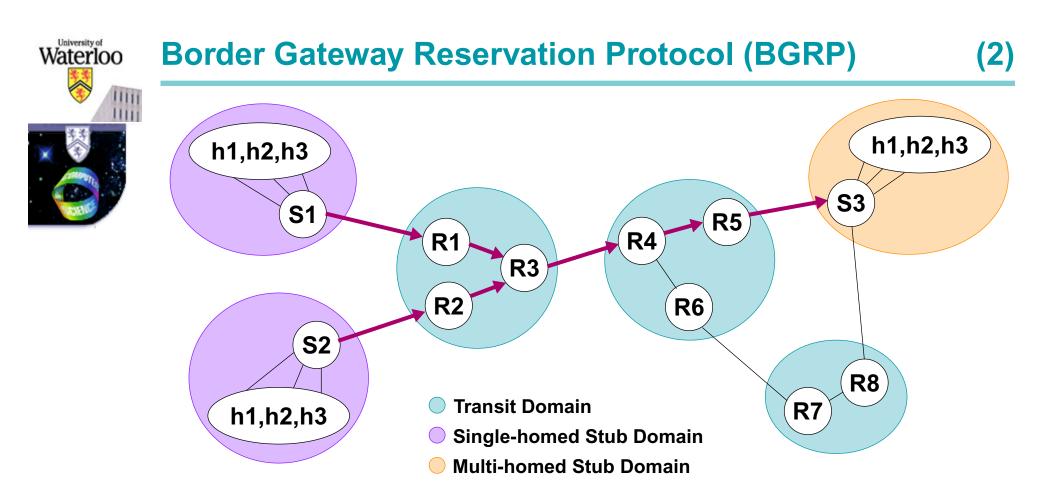
- sender-initiated reservations
 - end-to-end transport of path information
- partial reservations
 - but: if segment is overloaded \rightarrow why end-to-end reservation at all?
- synchronous state refresh \rightarrow no refresh timers
 - triggered by end systems
- simpler filter styles
- smaller messages \rightarrow less overhead
- learn classification from RTCP packets
- possibly: learn resource requirements from RTCP packets
- \Rightarrow No Complete Protocol, but Extension to RTCP

Border Gateway Reservation Protocol (BGRP)

Proposal

- claim/idea: simple protocol in access networks (e.g. YESSIR)
- trunk reservation needed in the core

State Complexity: $O(N^2) \rightarrow O(N)$


- state for pair of edge nodes
- \Rightarrow Sinktree-based Aggregation (aligned with route aggregation in BGP)

Message Types

- PROBE downstream message to probe network
- **GRAFT** upstream message to reserve resources
- REFRESH upstream/downstream message to refresh state
- ERROR upstream/downstream message to report erros
- TEAR upstream message to release resources

Similarities to RSVP

Differences to Traditional RSVP

- no PATH state \rightarrow record route in packet
- sink-tree reservations: sum of individual reservations on leg
 - delta reservations ⇒ reliable message transmission required!
 - egress keeps track of aggregated reservation
 - \Rightarrow node failure & other error management becomes highly complex
- bundled refresh refresh multiple reservations with one message

3-network.fm 45/46 May 20, 2004

Discussion

Waterloo

Gedankenexperiment: End-to-End MPLS

• pros and cons?

Comparison of RSVP and BGRP

- can BGRP be done with RSVP mechanisms?
- what are the fundamental differences?

QoS System = Admission Control & Scheduling

pros and cons of different combinations?

MPLS & QoS

can MPLS help? if yes, how?

